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Issues in Riverine Nutrient Export

Research

- Lacking integrated climate, extreme weather,
land surface, river flow, biogeochemistry, and
ecological models
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How do we deal with these issues?
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Integrated Approach
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Framework for calculation

Noah LSM in NCEP Eta, MM5 and WRF Models
(Pan and Mahrt, 1987; Chen et al., 1996; Chen and Dudhia, 2001
| EK et al., 2003)
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Modeling across spatial and temporal scales:
Global - Regional-> Watershed-> Coastal

Vector River Network -
High-Performance Computing River

Current and future: interannual to hourly Network Model




Framework for calculation
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The New Dynamic Downscaling (NDD)

method

 Central Idea
= Correct cllmatologlcal mean bias in GCM outputs

Correct GCM bias

Run RCM



Methodology of GCM bias correction

CAM =CAM +CAM
NNRP = NNRP + NNRP

« Bias correction 1: |
CAMbcl = NNRP + CAM

o Bias correction 2: D: standard deviation

CAMbc2 = NNRP + CAM " DNNRP

D CAM




Annual mean RMSEs in GCM and RCM
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Framework for calculation

Noah LSM in NCEP Eta, MM5 and WRF Models
(Pan and Mahrt, 1987; Chen et al., 1996; Chen and Dudhia, 2001

Atmospheric Model
or Dataset

Land Surface Model

Modeling across spatial and temporal scales:
Global - Regional> Watershed




oah land surface model with multi-
hysics options

Noah LSM in NCEP Eta, MMS and WRF Models

(Pan and Mahrt, 1987; Chen et al., 1996; Chen and Dudhia, 2001
Ek et al., 2003)
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il
Noah LSM with multi-physics options

Leaf area index (prescribed; predicted)
Turbulent transfer (Noah; NCAR LSM)
Soil moisture stress factor for transpiration (Noah; BATS; CLM)
Canopy stomatal resistance (Jarvis; Ball-Berry)
Snow surface albedo (BATS; CLASS)
Frozen soil permeability (Noah; Niu and Yang, 2006)
Supercooled liquid water (Noah; Niu and Yang, 2006)
Radiation transfer:

Modified two-stream:

Gap = F (3D structure; solar zenith angle; ...) = 1-GVF

Two-stream applied to the entire grid cell: Gap =0

Two-stream applied to fractional vegetated area: Gap = 1-GVF
9. Partitioning of precipitation to snowfall and rainfall (CLM; Noah)
10. Runoff and groundwater:

TOPMODEL with groundwater

TOPMODEL with an equilibrium water table(Chen&Kumar,2001)
Original Noah scheme

BATS surface runoff and free drainage

NGO RWNKH

More to be added Niu et al. (2011)
Collaborators: Yang, Niu (UT), Chen (NCAR), Ek/Mitchell (NCEP/NOAA), and others




Maximum Number of Combinations

Leaf area index (prescribed; predicted) 2
Turbulent transfer (Noah; NCAR LSM) 2
Soil moisture stress factor for transpiration (Noah; BATS; CLM) 4
Canopy stomatal resistance (Jarvis; Ball-Berry) 2
Snow surface albedo (BATS; CLASS) 2
Frozen soil permeability (Noah; Niu and Yang, 2006) 2
Supercooled liquid water (Noah; Niu and Yang, 2006) 2
Radiation transfer: 3

Modified two-stream:

Gap = F (3D structure; solar zenith angle; ...) =< 1-GVF

Two-stream applied to the entire grid cell: Gap =0

Two-stream applied to fractional vegetated area: Gap = 1-GVF
9. Partitioning of precipitation to snowfall and rainfall (CLM; Noah)2
10. Runoff and groundwater: 4

TOPMODEL with groundwater

TOPMODEL with an equilibrium water table(Chen&Kumar,2001)
Original Noah scheme

BATS surface runoff and free drainage

ONOURWNKM

2X2X3X2X2x2X2xXx3x2x4 =4608 combinations
Process understanding, probabilistic forecasting, quantifying uncertainties




Framework for calculation

Modeling across spatial and temporal scales:
Global - Regional-> Watershed-> Coastal

Current and future: interannual to hourly

Vector River Network -
High-Performance Computing River
Network Model




River network modeling

RAPID

« Uses mapped rivers

 Uses high-performance
parallel computing

» Computes everywhere
including ungaged
locations




River Network Model: RAPID

Routing Application for Parallel computatlon of Discharge

Based on Muskingum
Method
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RAPID and Noah-MP Performance
Results
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Texas Rivers Draining to the Gulf of
Mexico

« 01/01/2004 - 12/31/2007 every 3 hours

» 4-km grid

« NARR meteorological forcmg + NEXRAD
rainfall

« Noah-MP runoff > RAPID routing

- facilitate modeling of nutrient loading, transport and
export to coastal waters ' '

www.geo.utexas.edu/scientist daVid rapid.htm

Thanks to Cedric David, Bryan Hong, David Maidment, Ben Hodges, Ahmad Tavakoly, and Adam
Kubach of Texas Advanced Computing Center



http://www.geo.utexas.edu/scientist/david/rapid.htm

(David et al., 2011, HP, JHM)

RAPID Routing model

« adapted to large scale basin with high spatial resolution
- few parameters, inversion process included
« numerical efficiency (parallel computation)

8

Application in the Guadalupe river, Texas
River network based on NHDplus

-




Framework; what is missing?

Extreme Weather /
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San Antonio, Guadalupe, Mission, and
Aransas Rivers
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Observations and Chemistry Sampling

- Sampling targeted to high flow events
= potential for high nutrient export
- Stream Gauge data:
o Taken from Texas Commission of Environmental Quality (TCEQ)
+ Gauge data collected at constant time step
» Taken from University of Texas Marine Science Institute (UTMSI)
» Gauge data collected during high flow events



Stream Gauge Nitrate Concentration:
Urban vs. Less Urban
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Estuary Model Nutrient Transport Study
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Generic Ecosystem Model
(3 components with 2 boundary conditions)

« Mass-balance model

Lower San Antonio River Lower Guadalupe River

(HUC 12100303) (HUC 12100204) « Two boundaries: LGRW &
\/ LSRW
- Three components: Nutrient
Guadalupe Estuary (DIN) —PhytOplankton —
Zooplankton
/’ Phytoplankton ‘\' - Re-mineralization and implicit
—" Y sinking (or horizontal

exchange) were assumed to be
50%, respectively
« A=1hr & RK 4t order scheme
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Generic Ecosystem Model Results

- No Loadings
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Generic Ecosystem Model Conclusions and
Discussion

- Estuary response differs with respect to varying
nutrient concentrations.

« Lower San Antonio River (Urban/developed
region) is delivering more nutrients and driving
greater ranges of ecological response than the
Lower Guadalupe River (Less Urban region).

- Increases in nutrient concentrations due to
human alterations of the landscape may result
in future eutrophic conditions in the Guadalupe
Estuary.



Improving on Nutrient Loading

 Developing a Comprehensive Nitrogen Budget
for Texas
= Agriculture Sources
- Crop fixation, Livestock, and Fertilizer application
= Atmospheric
» Dry and wet deposition



Quantification of Sources
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Conclusions

- Predicting nutrient transport from land to coast
requires an integrated approach

- Improvement of atmosphere, land, and river
flow modeling has lead to better prediction of
nutrient fluxes

- Understanding the full pathways of nutrients,
with enhanced modeling techniques, will lead to
better understanding of sources and solutions



Future Work

- Land Surface model with leaching (Noah-MP),
coupled with regional weather model (WRF)

Total Livestock and Fertilizer Nitrogen Input 2007

Fertilizer and Livestock Nitrogen Input 2007 (kg N /yr)

[] 40,766 -316,037 1,432,593-1,955,421 [l 5.755673-7.820614
[_]316,038-559,857 [ 1.955.422-2,447,143 [} 7.820615- 10,509,419

[ |sse.858-767,019 (M 2.447,144-3 231,935 [ 10,509,420 - 14,651,048

[ ] 767,020 1,074,431 [ 3231936 - 4,336,600 [ 14661,049 - 21,431,636
[ 1,074,482 1,432,592 [ 4336601 5,755,672 [l 21.431.637 - 33,515,732



E————————.
Future Work

- Expansion beyond the Texas Regional Domain

Mississippi River Network

Legend
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