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[1] Estimation of parameters for land-surface models, along with their corresponding
uncertainties, relies on the input data for the atmospheric forcing variables including
atmospheric pressure, temperature, humidity, wind speed, precipitation, and incoming
shortwave and longwave radiation. Most studies assume that forcing data are accurate and
contain no random or systematic observational errors. In practice, there are indeed
systematic errors in precipitation measurements, especially for snowfall, due to wind-
caused undercatch. Incoming shortwave and longwave radiation fluxes are often not
directly measured, but estimated from empirical formulations. Uncertainties in these
forcing data may substantially affect optimization and uncertainty estimates of land
surface models. In this study, we used 18-year forcing and calibration data as well as
information about the uncertainties in the forcing variables at Valdai, Russia, to study the
impacts of forcing errors on selection of optimal model parameters and their uncertainty
estimates when three different hydrological variables were used for calibration. The results
show that forcing errors have few effects on the selection of optimal model parameter
sets when monthly evapotranspiration and runoff are calibrated. However, forcing errors
do introduce significant effects on the selection of optimal model parameters when daily
snow water equivalent is calibrated. Forcing errors also significantly affect uncertainty
estimates of the land surface model parameters. In addition, constraints of forcing errors
are different when different hydrological variables are calibrated. All three hydrological
variables constrain the incoming longwave radiation error well, and the snow water
equivalent and runoff constrain winter snowfall errors well. However, all three
hydrological variables cannot constrain the incoming solar radiation error well. We
highlight in this study that runoff is shown to be a good observable to use for calibration,
the reason being that it integrates multiple hydrological processes; and the results
support the theory that typical rain/snow gauges have 10–20% undercatch.
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1. Introduction

[2] The principal purpose of the Project for Intercompar-
ison of Land-surface Parameterization Schemes (PILPS) is
to understand land surface processes and to improve their

parameterizations [Henderson-Sellers et al., 1996]. To
achieve this purpose, PILPS initiated a four-phase compar-
ison effort. Phases 1 and 2 involve stand-alone and regional
offline simulations of land surface models driven by syn-
thetic and observed atmospheric forcing, respectively.
Phases 3 and 4 investigate the performance of land surface
models in fully coupled simulations with a host regional
atmospheric model or general circulation model. The
experiment in phase 1 was performed using synthetic
forcing data [Pitman et al., 1999]. The experiments in phase
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2 were performed using observed forcing data for different
climate zones, soils and vegetation types from local com-
parisons, for example, phase 2a (a midlatitude grassland site
at Cabauw, Netherlands [Chen et al., 1997]), phase 2b
(a soybean site at Camount, France [Shao and Henderson-
Sellers, 1998]), and phase 2d (a boreal grassland site atValdai,
Russia [Schlosser et al., 2000; Slater et al., 2001]) to regional
comparisons such as phase 2c (Red River basin, Arkansas,
U.S. [Wood et al., 1998]) and phase 2e (Torne River basin,
Sweden [Bowling et al., 2003]). The results from PILPS have
revealed large uncertainties and significant differences
among the land surface models [Henderson-Sellers, 1996;
Henderson-Sellers et al., 1996; Sellers et al., 1997;
Desborough, 1999]. In particular, PILPS phase 2d and 2e
have identified and documented two key atmospheric
variables, precipitation and downwelling longwave radiation,
that are critical for accurately determining the snow mass
balances, across different scales in cold regions.
[3] However, almost all these studies concerning the

derivation of optimal land surface parameters assume that
the forcing data are accurate and do not contain observa-
tional errors [Sellers et al., 1989; Franks and Beven, 1997;
Gupta et al., 1999; Leplastrier et al., 2002; Xia et al., 2002;
Jackson et al., 2003; Xia et al., 2004a, 2004b, 2004c]. In
fact, significant systematic errors (biases) in precipitation
measurement, obviously caused by wind, existed in all
types of precipitation gauges, in particular for snowfalls
[Groisman et al., 1991; Yang et al., 1995; Groisman et al.,
1996; Yang et al., 1998]. These errors affect analysis of
macro scale water fluxes [Milly and Dunne, 2002a, 2002b],
simulations of regional land surface models [Pan et al.,
2003; Lohmann et al., 2004], and simulations of global land
water and energy fluxes [Milly and Shmakin, 2002a,
2002b]. Furthermore, Milly and Shmakin [2002b] believed
‘insufficient characterization and control of errors in model
forcing, especially precipitation, is currently the ‘‘bottle-
neck’’ or limiting factor for simulation of macro scale water
fluxes.’ Certainly, the precipitation errors also result from
spatial and temporal sampling biases and topographic
effects. However, for cold regions, bias of snowfall resulting
from wind remains the major error. Besides precipitation
errors, radiation errors also significantly affect simulations
of water fluxes and energy fluxes both for a catchment
simulation [Yang et al., 1997; Schlosser et al., 1997, 2000;
Slater et al., 2001] and for a global simulation [Milly and
Dunne, 2002b], especially in cold regions.
[4] The errors in a variable computed by a land surface

model may come from intrinsic model errors, forcing errors
(errors in forcing data) and/or model parameter errors.
These undoubtedly interact in nonlinear ways. Nonlinear
interaction of errors and correlation between the errors can
be studied using a correlation matrix derived by a Bayesian
stochastic inversion [Sen and Stoffa, 1996]. In order to
investigate how the errors in these forcing data impact the
derivation of optimal parameters, and to study how the
results depend on the calibration variables, we designed 2
experiments for each of the calibration variables (i.e.
evapotranspiration, runoff, snow water equivalent). The first
experiment is to use the fixed forcing data and varying
model parameters, and the second experiment is to use both
varying forcing data and varying model parameters. There-
fore, we conducted a total of 6 experiments. For each

experiment, Bayesian stochastic inversion selects 60,000–
90,000 parameter sets. Therefore, we have almost 500,000
model runs. For all experiments, we used a one-year spin-up
period to minimize the impact of the initial condition on
simulations of monthly runoff, monthly evapotranspiration
and daily snow water equivalent. This means that the model
was integrated for one year prior to the start of each
experiment. This one-year spin-up time is appropriate for
the CHASM land surface model according to Schlosser et
al. [2000].
[5] In order to explain our results more clearly in this

study, we represent the forcing errors as overall errors from
precipitation, solar radiation, and downward longwave
radiation. The forcing error for a variable (say precipitation)
represents the difference between the fixed forcing value
multiplied by a ratio factor (see Table 1) and the fixed
forcing value.

2. Data, Model, and Method

2.1. Forcing and Calibration Data Sets

[6] Observational data from Valdai (57.6�N, 33.1�E),
Russia, have been used to test the representation of snow
accumulation, snowmelt, and frozen soil processes in land
surface models [e.g., Robock et al., 1995; Vinnikov et al.,
1996; Schlosser et al., 1997, 2000; Luo et al., 2003].
Fedorov [1977], Vinnikov et al. [1996], and Schlosser et
al. [1997] described the details of the continuous 18 years of
atmospheric forcing and hydrologic data at Valdai. Here we
give a brief overview, for completeness. The Valdai water-
balance station is located at a catchment with an area of
about 0.36 km2 in a boreal forest region. The vegetation
cover is mainly grassland meadow. The climate at Valdai is
highly seasonal with an annual temperature range of 35�C
and an annual average precipitation of 730 mm. The
majority of precipitation falls in the summer and autumn
months. Near surface air temperatures rise above 15�C in
summer and fall below �10�C in winter. Continuous snow
cover exists from November to April.
[7] The atmospheric forcing data include atmospheric

pressure, air temperature, humidity, wind speed, and incom-
ing shortwave and longwave radiation. Atmospheric pres-
sure, air temperature, and humidity were recorded at a
height of 2 m. Wind speed was recorded at a height of
10 m. Longwave radiation fluxes that were not directly
measured, but estimated from air humidity and air temper-
ature were used in this study, following Schlosser et al.
[1997]. The original data recorded at 3-hour intervals were
interpolated to 30-minute intervals.
[8] The calibration data include monthly evaporation,

runoff and daily snow water equivalent. Monthly evapora-
tion was measured using a lysimeter from May to October
for the years 1966–1973 [Fedorov, 1977]. Evaporation data
for the remaining months (November to April) were esti-
mated using the algorithm of Budyko [1956]. Schlosser et
al. [1997] compared the monthly evaporation calculated
from the residual of the water balance from the top 1 m of
soil with the lysimeter measurements and found that their
seasonal cycles were in good agreement. A stream gauge at
the catchment outflow site was used to measure monthly
runoff. To assure a more consistent comparison of the
observed catchment runoff to modeled runoff from the
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root-active zone, the observed runoff were modified by
Schlosser et al. [1997] according to variations in the
observed averaged water table depth. At forty-four sites
within the catchment, snow measurements were made at
least every month during the winter and more frequently (at
intervals of days) during the spring snowmelt. The ranges of
errors for both the evapotranspiration and runoff were
estimated to be as large as ±0.25 mm/day [Schlosser et
al., 2000].

2.2. Chameleon Surface Model (CHASM)

[9] The CHASM [Desborough, 1999; Pitman et al.,
2003] land surface model has been used in offline inter-
comparison within PILPS phase 2d [Schlosser et al., 2000;
Slater et al., 2001] and phase 2e [Bowling et al., 2003],
global climate simulations [Desborough et al., 2001], and
regional climate simulations [Zhang et al., 2001]. CHASM
was designed to explore the general aspects of the land-
surface energy balance representation within a common
modeling framework that can be run for a variety of surface
energy balance modes ranging from the simplest energy
balance formulation [Manabe, 1969] to a complex mosaic
type structure [Koster and Suarez, 1992]. Here we use the
two-tile mosaic-type representation, in which the land-
atmosphere interface is divided into two tiles. The first tile
is a combination of bare ground and exposed snow and the
second tile consists of dense vegetation. The tiles may be of
different sizes and the energy fluxes of each tile are area-
weighted. Because a separate surface balance is calculated
for each tile, temperature variations may exist across
the land-atmosphere interface. A prognostic bulk tempera-
ture for the storage of energy and a diagnostic skin temper-
ature for the computation of surface energy fluxes are
calculated for each tile. Snow fraction cover for both ground
and foliage surfaces are calculated as functions of the snow
pack depth, density, and the vegetation roughness length.
The vegetation fraction is further divided into wet and dry
fractions if canopy interception is considered. This model
has explicit parameterizations for canopy resistance, canopy
interception, vegetation transpiration and bare ground evap-
oration, but has no explicit canopy-air space [Pitman et al.,
2003].
[10] CHASM uses the formulation of Manabe [1969] for

the hydrologic component of the land surface in which the

root zone is treated as a bucket with finite water holding
capacity. Any water accumulation beyond this capacity is
assumed to be runoff. In addition to storage as moisture in
the root zone, water can be stored as snow on the ground or
on the canopy. Soil temperature is calculated within four
soil layers using a finite difference method and zero-flux
boundary condition. Each tile has four evaporation sources
including canopy evaporation, transpiration, bare ground
evaporation, and snow sublimation.
[11] The CHASM model (previously known as the

SLAM model in the PILPS 2d intercomparison) was used
in the PILPS phase 2d experiment at Valdai, and showed
reasonable performance [Schlosser et al., 2000; Slater et al.,
2001; Luo et al., 2003]. Furthermore, it was also used to
investigate the impacts of data length on the optimal
parameter and uncertainty estimates [Xia et al., 2004c].

2.3. Bayesian Stochastic Inversion

[12] Bayesian stochastic inversion (BSI) [Sen and Stoffa,
1996] is based on Bayes theorem and, usually, a stochastic
method to select sets of parameter values from a distribution
of realistic choices for model parameters. Within the Bayes-
ian nomenclature, the relative probability for each combi-
nation of parameter values is expressed as a ‘‘posterior’’
probability density function (PPD), which is given mathe-
matically as

s m=dobsð Þ ¼ exp �sE mð Þ½ �p mð ÞZ
exp �sE mð Þ½ �p mð Þdm

; ð1Þ

where the domain of integration spans the entire model
parameter space m, s(m/dobs) is the PPD, vector dobs is the
observational data, E(m) is the error function, exp[�sE(m)]
is the likelihood function, and p(m) is the ‘‘prior’’ probability
density function form. The shaping factor, s, is derived from
the estimated errors as described in Jackson et al. [2003].
Because only the range for each model parameter in m is
known, a uniform distribution within the ranges is used as
the ‘‘prior’’ probability density function. This selection is the
least-biased as a uniform distribution corresponds to the
maximum uncertainty range.
[13] Because the PPD is multidimensional, it is difficult

to visualize. Therefore, a one-dimensional projection of the

Table 1. Descriptions and Ranges of 12 CHASM Parameters and 4 Forcing Error Factors

Parameter Description Minimum Value Maximum Value

ALBG bare ground albedo 0.15 0.25
ALBN snow albedo 0.65 0.85
ALBV vegetation albedo 0.15 0.25
LEFM maximum leaf area index 3 5
LEFS maximum LAI seasonality 0 3
VEGM maximum fractional vegetation cover 0.70 0.95
VEGS fractional vegetation cover seasonality 0.00 0.50
RCMIN minimum canopy resistance, s/m 40.0 200
RHON snow density, kg/m3 50 450
WRMAX available water holding capacity, mm 200 300
Z0G ground roughness length, m 1.0 � 10�3 0.01
Z0V vegetation roughness length, m 0.00 0.20
SLR ratio factor for solar radiation 0.9 1.1
LWR ratio factor for incoming longwave radiation 0.9 1.1
RAS1 ratio factor for January and December precipitation 0.8 1.2
RAS2 ratio factor for February, March, and November precipitation 0.9 1.1
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PPD (i.e. the marginal PPD) is usually displayed. Parameter
inter-dependencies may be described by the covariance
matrix, which is defined by

I ¼
Z

f mð Þs m=dobsð Þdm ð2Þ

where f(m) = (m � hmi)(m � hmi)T and hmi is the vector
of parameter means.
[14] We use the Very Fast Simulated Annealing Algo-

rithm (VFSA [Ingber, 1989]) to stochastically select param-
eter sets. VFSA is a form of importance sampling that
reduces the computational burden of modeling the impact of
every possible combination of model parameters. The
VFSA algorithm will sample more frequently those regions
of the PPD that are more probable [Sen and Stoffa, 1996].

2.4. Very Fast Simulated Annealing

[15] One may use the temperature construct within the
Metropolis algorithm [Metropolis et al., 1953] to locate the
global minimum of an error function by very slowly
lowering the temperature parameter within

P ¼ exp
�DE

T

� �
ð3Þ

where P is the probability of acceptance of a new parameter
set with positive change of error function values, DE is the
change in the error function between the new and previous
parameter sets, and T is a control parameter analogous to
temperature. If the change is negative, this new parameter
set is accepted. If the change is positive, and if and only if P
is less than a randomly generated number between 0 and 1,
the new parameter set is rejected. This is analogous to the
annealing process within a physical system where the
lowest energy state between atoms or molecules is reached
by the gradual cooling of the substance within a heat bath.
Because of this physical analog, the algorithm is called
simulated annealing. In order to enhance the ability of
simulated annealing to converge to the global minimum of
an error function, Ingber [1989] introduced a new procedure
for selecting parameter sets according to a temperature
dependent Cauchy distribution. This modified simulated
annealing algorithm is called very fast simulated annealing.
Ingber’s algorithm can be described as follows:
[16] Let us assume that a model parameter mi at the kth

iteration (annealing step k) is represented by mi
(k) such that

mmin
i 
 m

kð Þ
i 
 mmax

i ð4Þ

where mi
min and mi

max are the minimum and maximum
values of the model parameter mi. This model
parameter value is perturbed at iteration (k + 1) using
mi
(k+1) = mi(k) + yi(mi

max � mi
min), mi

min 
 mi
(k+1) 


mi
max and yi 2 [�1, 1]. The yi is generated from the

distribution gT (y) =
QNM
i¼1

1

2 yij jþTið Þ ln 1þ 1
Ti

� � =
QNM
i¼1

gTi (yi) and

has a cumulative probability GTi
= 1

2
+

sgn yið Þ
2

ln 1þ yij j
Ti

� �

ln 1þ 1
Ti

� � .

Ingber [1989] showed that, for such a distribution, a

global minimum can be statistically obtained by using
the following cooling schedule:

Ti kð Þ ¼ T0i exp �cik
1

NM

� �
ð5Þ

where T0i is the initial temperature for model parameter
i and ci is a parameter used to control the temperature. The
acceptance rule of very fast simulated annealing algorithm
is the same as that used in the Metropolis algorithm.
However, very fast simulated annealing is more efficient
when compared with conventional simulated annealing.
More detailed descriptions and applications of this method
can be found in Sen and Stoffa [1996] and Jackson et al.
[2003].

2.5. Forcing Data Errors

[17] Atmospheric forcing data are usually used to drive
land surface models to produce energy and water flux
simulations, and calibration data are usually used to com-
pare these simulated variables to evaluate the performance
of land surface models. Both forcing data errors and
calibration data errors may place constraints on theory and
model development in the land surface model community.
Forcing errors and model parameter errors may be major
error factors affecting the simulations of energy and water
fluxes when a land surface model is used. Precipitation error
is one of the crucial factors to consider in the evaluation of
simulations of the water budget variables such as runoff,
evapotranspiration and snow water equivalent. This is
especially true for cold region simulations, because wind
results in undercatch of snowfalls. Schlosser et al. [1997]
compared two observed precipitation datasets from 1974 to
1983. One is the original precipitation observation at Valdai,
and the other is the new observation in which effects of
wind biasing on the catchment of snowfall and rainfall at a
gauge station were minimized by surrounding the rain
gauge with natural shrub-type vegetation. The comparison
results showed that the original precipitation estimate is low
by about 20% for January and December and 10% for
February, March and November due to the aerodynamic
effects on wind-blowing snow. Therefore, Schlosser et al.
[1997] used a monthly ratio of the two precipitation datasets
to correct the original precipitation for each time step. This
corrected precipitation was further used as the default
forcing in the studies of PILPS phase 2d. However, Slater
et al. [2001] argued that the corrected snowfall rate may
have been overestimated. Either undercatch or overcatch
would result in precipitation errors, affecting the simulations
of monthly evapotranspiration, runoff and snow water
equivalent.
[18] The other important forcing errors come from

incoming solar radiation and longwave radiation, especially
longwave radiation because the data obtained from the
Valdai site did not include any incoming longwave mea-
surements. Brutsaert’s algorithm [Brutsaert, 1982] was used
to derive incoming longwave radiation. The derived incom-
ing longwave radiation was used as a default radiation
forcing in PILPS phase 2d. In addition, other algorithms
such as those of Idso [1981], Satterlund [1979], Monteith
[1973], and Brutsaert [1975], were also used to derive
the incoming longwave radiation. Among these schemes,
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the Idso [1981] and Brutsaert [1975] schemes spanned the
range of disparity for the estimated incoming longwave
radiation. The range between the two schemes is about ±
10% during the winter and ±5% during the summer
[Schlosser et al., 2000]. A similar uncertainty range exists
for the incoming solar radiation during the summer
[Schlosser et al., 1997], and a smaller uncertainty range
exists in the winter. The sensitivity tests of PILPS phase 2d
have shown that incoming longwave radiation has a signif-
icant effect on the hydrological simulations at the Valdai site
[Schlosser et al., 2000; Slater et al., 2001].

2.6. Error Functions

[19] The error function is defined as the ratio of the
variance of the errors to the variance of the observations.
It represents the mismatch between observations and model
simulations for the BSI calibration. It is defined as

EF ¼

PN
n¼1

obsn � simnð Þ2

PN
n¼1

obsn � obs
� 	2 ; ð6Þ

where N is number of observational data points (i.e. number
of months or number of days), obsn is the observed data,
simn is the simulated data, and obs is mean value of the
observed data. In the following study, this definition is used
for monthly evapotranspiration, monthly runoff and daily
snow water equivalent, respectively.

3. Experiment Design

[20] Table 1 lists 12 CHASM model parameters and 4
forcing error factors, all with their assumed feasible ranges.
The range of forcing factor (see the definitions of Schlosser
et al. [1997]) is 0.9–1.1 for both incoming solar radiation
and incoming longwave radiation. (We multiply the default
forcing data by this factor for each time step to form a new
set of forcing data.) For winter snowfalls, the range is 0.8–
1.2 for January and December and 0.9–1.1 for February,
March and November. It should be noted that precipitation
data that were not modified by Schlosser et al. [1997] were
used in the second experiment.
[21] In order to reduce the computing burden, we first

used a traditional perturbation method (one factor at a time)
as used by Jackson et al. [2003] to make an error profile
analysis, to select sensitive parameters, and to remove
insensitive parameters. The sensitivity analysis of 12 model
parameters and 4 forcing error factors is shown in Figure 1.
Different calibration variables show sensitivities to different
parameters because different physical processes affect them.
For example, evapotranspiration and runoff are very sensi-
tive to minimum stomatal resistance (RCMIN), but snow
water equivalent is not. Comparison of sensitivity tests
shows that ALBN and LWR are important parameters for
all three calibrated variables. The model results are also
sensitive to other model parameters such as VEGS,
WRMAX, and Z0V and forcing variables such as SLR,
RAS1 and RAS2. None of the three calibrated variables
were sensitive to ALBG, ALBV, LEFM, LEFS, VEGM,
RHON and Z0G, so these were assigned their default
values. Except for these parameters assigned to default

values, the other parameters were allowed to vary within
the specified ranges.
[22] Although complicated sensitivity analysis techniques

such as variational (adjoint) methods [Skaggs and Barry,
1996; Margulis and Entekhabi, 2001], factorial methods
[Henderson-Sellers, 1993], Fourier amplitude sensitivity
tests [Collins and Avissar, 1994], multicriteria methods
[Bastidas et al., 1999], reduced form model [Lynch et al.,
2001], and response surface methods [Niyogi et al., 2002],
can be used to select model parameters and forcing error
factors, we decide to use this simple error profile technique
to select parameters because it has been used in previous
studies [Wilson et al., 1987; Bonan et al., 1993; Pitman,
1994; Alapaty et al., 1997; Jackson et al., 2003; Xia et al.,
2004b]. The sensitivity analysis also shows that these
sensitive parameters are consistent with previous results
such as PILPS 2d [Schlosser et al., 2000; Slater et al.,
2001] and a tundra region experiment in high latitude
[Lynch et al., 2001; Beringer et al., 2002].
[23] Figure 2 is a simple schematic diagram that represents

the impacts of the major sensitive model parameters and
forcing error factors on simulations of monthly evapotrans-
piration, monthly runoff and daily snow water equivalent.
Simulation of snow water equivalent is mainly determined
by snowfall errors, incoming solar and longwave radiation
errors, and snow albedo in the winter. In the summer,
minimum stomatal resistance, incoming solar and longwave
radiation errors mainly control the simulation of monthly
evapotranspiration. The physical factors controlling runoff
simulation may be different for the snow and snow-free
seasons. For the snow season, snowfall errors, incoming
solar radiation error, incoming longwave radiation error and
snow albedo determine simulations of monthly runoff,
whereas for the snow-free season, the minimum stomatal
resistance, incoming solar radiation error, and incoming
longwave radiation error may be major factors that control
simulation of monthly runoff. Besides these factors, vegeta-
tion fractional cover seasonality, maximum water holding
capacity and vegetation roughness length may also generate
simulation errors for these three calibration variables.
[24] The performance of the CHASM model is assessed

using the root mean square error, bias, PPDs of model
parameters and forcing error factors. In addition, a compar-
ison of the observed and simulated data and correlation
matrices are also used to evaluate the performance of the
CHASM model.

4. Results

4.1. Comparison of Simulations and Observations

[25] Figure 3 shows the ability of the CHASM model to
reproduce the observed monthly evapotranspiration and
runoff, and daily snow water equivalent. The simulations
are generated using the optimal parameters derived by the
Bayesian stochastic inversion and available calibration data
(e.g., 17-year monthly runoff and daily snow water equiv-
alent, 8-year monthly evapotranspiration) and the default
parameter set provided in the PILPS 2d experiment. The
results show that the default parameter set gives simulation
results consistent with the observations. However, the
optimal simulations agree better with the observations.
The performances of the optimal parameter sets are superior
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to the default parameter set, as indicated by their smaller
RMSE and larger correlation coefficient, when the forcing
errors were optimized (Figure 3e). Overall, the results show
that the CHASM model is a reasonable tool to simulate the
monthly evapotranspiration, monthly runoff and daily snow
water equivalent.

4.2. Impact of Forcing Errors on Optimal Parameters
and Simulations

[26] Table 2 shows the default values used in the PILPS
2d experiment for the CHASM model and the optimal
parameter values selected using Bayesian stochastic inver-
sion when monthly evapotranspiration, monthly runoff and
daily snow water equivalent were calibrated. The results
show that the optimal parameters are similar to the default
parameters and that the forcing errors have only small
additional effects on the estimation of the five sensitive
model parameters when monthly evapotranspiration and
runoff were used to minimize error function values. But,
the optimal forcing data are different when the model is
calibrated by the evapotranspiration data. Forcing errors
have significant impacts on the estimation of model param-

eters (i.e., snow albedo) when the daily snow water equiv-
alent is calibrated. Figure 4 shows a cross-validation test for
the optimal model parameters. That is, we pair five optimal
model parameters (see Table 2) derived with the consider-
ation of forcing errors with the original forcing data
(Figure 4c), and we pair five optimal model parameters
derived using fixed forcing with optimal forcing data
(Figure 4d) into two separate simulations. The validation
results show that the simulated evapotranspiration and
runoff are consistent with the observations because the
comparison of Figures 3 and 4 show very similar results.
This is consistent with our optimal parameter analysis
because the two forcing data sets generate similar optimal
model parameters when monthly evapotranspiration and
runoff were used as the calibrated variables. However, when
the optimal model parameters were derived using forcing
errors and fixed forcing was used to simulate snow water
equivalent, its bias is changed from �1.7 mm (Figure 3d) to
�18.9 mm (Figure 4d), RMSE is increased from 21.9 mm
(Figure 3d) to 35.1 mm (Figure 4d), and r is reduced from
0.89 (Figure 3d) to 0.79 (Figure 4d). When optimal model
parameters derived from fixed forcing and optimal forcing

Figure 1. Sensitivity analysis of 12 CHASM parameters and 4 forcing error factors for monthly
evaporation (solid), runoff (dashed), and daily snow water equivalent (dotted). Y-axis values were
computed as a ratio of the difference between calculated error values and the minimum error value to the
minimum error value. The minimum error value is the minimum value of all the calculated errors for each
hydrological variable.
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were used to simulate snow water equivalent, its bias is
changed from 6.2 mm (Figure 3e) to 20.6 mm (Figure 4c),
RMSE is increased from 18.5 mm (Figure 3e) to 29.3 mm
(Figure 4c), and r is reduced from 0.93 (Figure 3e) to 0.89
(Figure 4c). This significant change is a result of different

optimal parameter sets, particularly snow albedo. Therefore,
forcing errors have their most significant impact on the
daily snow water equivalent simulations.
[27] The simulations for daily evapotranspiration, runoff,

snowmelt and snow water equivalent are compared

Figure 3. Observed and simulated (a) monthly evapotranspiration, (b) monthly runoff, (c) default daily
snow water equivalent, (d) optimal simulations of daily snow water equivalent when fixed forcing was
used, and (e) optimal simulations of daily snow water equivalent when forcing errors were used. (For
Figures 3a and 3b, dot is observations, solid is default simulations, dashed is optimal simulations when
fixed forcing was used, and dotted is optimal simulations when forcing factors were optimized.)

Figure 2. A simple schematic diagram representing impacts of sensitive model parameters and forcing
errors (solid line represents snow seasons, and dashed line represents snow-free seasons).
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in Figures 5a – 5c. Here optimal evapotranspiration
(Figure 3a), optimal runoff (Figure 3b) and optimal snow
water equivalent (Figure 3e) were used as comparisons
(dotted). Optimal parameters estimated using monthly
evapotranspiration give consistent simulations of daily
evapotranspiration for both forcing data sets. However,
two optimal parameter sets generate early snowmelt and
runoff (Figure 5a) when compared to the optimal simula-
tion. This different simulation is due to the use of a small
snow albedo. Because the snow albedo is smaller, less
incoming solar radiation is reflected into the air, and more
solar energy is absorbed by the land surface, resulting in an

increase in the land surface temperature. Increased surface
temperature makes snow melt early, resulting in an early
runoff peak. Therefore, monthly evapotranspiration is not a
good calibration variable for the selection of the optimal
snow albedo. This is consistent with our sensitivity analysis
because snow albedo is not sensitive to evapotranspiration
(Figure 1). Optimal parameters derived using daily snow
water equivalent give good snowmelt and snow water
equivalent simulations as well as winter runoff simulation.
However, they give poor simulations for evapotranspiration
and summer runoff. The reason for the poor simulations is
that the optimal minimum stomatal resistance is too large

Figure 4. Observed and simulated (a) monthly evapotranspiration, (b) runoff, (c) cross-validation of
daily snow water equivalent when optimal model parameters derived from fixed forcing and optimized
forcing was used or when optimal model parameters derived from forcing error factors and fixed forcing
was used, and (d) cross-validation of daily snow water equivalent when optimal model parameters
derived from forcing errors and fixed forcing were used (dot is observations, dashed is simulations when
optimal model parameters derived from fixed forcing and optimal forcing were used, and dotted is
simulations when optimal model parameters derived from forcing errors and fixed forcing were used).

Table 2. Default Parameter Set Used in PILPS 2d Experiment and Optimal Parameter Sets Generated Using Bayesian Stochastic

Inversiona

Calibration Variables E R SWE

Parameter Default Fixed Forcing Optimized Forcing Fixed Forcing Optimized Forcing Fixed Forcing Optimized Forcing

ALBN 0.75 0.65 0.66 0.77 0.85 0.65 0.85
VEGS 0.25 0.50 0.50 0.00 0.00 0.00 0.00
RCMIN 50 57 48 40 40 197 93
WRMAX 206 215 201 206 202 222 251
Z0V 0.10 0.01 0.01 0.2 0.18 0.17 0.18
SLR 1.00 1.00 0.90 1.00 0.96 1.00 1.08
LWR 1.00 1.00 1.02 1.00 1.03 1.00 1.05
RAS1 1.20 1.20 0.81 1.20 1.20 1.20 1.20
RAS2 1.10 1.10 0.90 1.10 1.09 1.10 1.10

aThe values represented in bold are not optimized; the optimal values with forcing error are represented in italics; E, evapotranspiration; R, runoff; SWE,
snow water equivalent.
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and leads to a small evapotranspiration simulation and large
runoff simulation in the summer (Figure 5c). Minimum
stomatal resistance is not searched well using VFSA when
the daily snow water equivalent is used as a calibration
variable because it is not sensitive to daily snow water
equivalent. In addition, the simulations of evapotranspira-
tion and runoff are different for the fixed and optimized
forcing runs because these runs produce different values of
minimum stomatal resistance (Figure 5c). Comparisons of the
snowmelt for Figures 5a and 5c show that small snow albedo
causes early snowmelt for the evapotranspiration case com-
pared to the snowwater equivalent case. This is due to the use
of different VEGS and Z0V in two optimal parameter sets.
Optimal parameters derived using monthly runoff give rela-
tively good simulations for evapotranspiration, runoff, snow-
melt and snow water equivalent (Figure 5b), although
differences exist for the spring snowmelt period because of
different ALBN, VEGS, and Z0V (Table 1). In addition, the
forcing errors affect the snow water equivalent simulations.
However, from this study we know runoff is a more appro-
priate calibration variable for a cold catchment.

4.3. Impacts of Forcing Errors on PPDS of Model
Parameters

[28] Figure 6 shows the marginal posterior probability
density distributions for the three most sensitive parameters:
snow albedo (ALBN), fractional vegetation cover season-
ality (VEGS) and minimum stomatal resistance (RCMIN).
For evapotranspiration, the forcing errors (solid line) result

in wider PPDs, which means larger uncertainty when
compared to the fixed forcing case (dashed line). For the
runoff case, the forcing errors not only influence the
uncertainty range of ALBN and RCMIN but also influence
the shape of the PPD’s distribution for ALBN. The same
conclusion can be drawn for ALBN for the snow water
equivalent case (note that VEGS and RCMIN are moder-
ately sensitive for the snow water equivalent case (see
Figure 1)). Forcing errors result in quite different PPDs,
that is, the snow albedo favors small values for the fixed
forcing case, and it favors large values for the case of
forcing with error.
[29] Therefore, forcing errors indeed influence the width

and shape of the PPD’s for the most important model
parameters. This is a result of the model parameters and
forcing errors interdependency (correlation of model param-
eters and forcing errors). A schematic diagram derived from
the correlation matrices calculated using Bayesian stochas-
tic inversion is shown in Figure 7. Values in the figure
represent the correlation coefficients between the model
parameters and forcing errors. Large correlations can be
seen in Figures 7b and 7c, for example, 0.75 for LWR and
RAS2, 0.65 for LWR and ALBN, 0.61 for LWR and RAS1
when the daily snow water equivalent was calibrated. 0.65
is for LWR and ALBN when the monthly runoff was
calibrated. This large correlation indicates the existence of
dependencies between forcing errors (e.g., LWR) and model
parameters (e.g., ALBN) as well as dependencies between
forcing errors. The dependencies between model parameters

Figure 5a. The 17-year average (1967–1983) of optimal simulations for daily evapotranspiration (E),
runoff (R), snowmelt (SMT), and snow water equivalent (SWE) when monthly E was used as a
calibration variable (dotted is optimal simulations for calibration variables, solid is simulations using the
optimal parameters derived by forcing with errors, and dashed is simulations using the optimal
parameters derived by fixed forcing).
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also exist in Figure 6. For the evapotranspiration case, LWR
first affects VEGS. Interaction among VEGS, RCMIN and
ALBN results in wider PPDs for these three model param-
eters (see Figure 6). For the snow water equivalent case, all

forcing errors except for SLR affect the snow albedo so that
this effect results in totally different snow albedo PPD. As
the incoming longwave radiation increases (this would
cause more snowmelt because the land surface gets more

Figure 5b. Same as Figure 5a when monthly R was used as a calibration variable.

Figure 5c. Same as Figure 5a when daily SWE was used as a calibration variable.
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incoming energy), the snow albedo should increase to
reduce the incoming surface energy and to control snowmelt
rate. When we compare Table 2 and Figure 6 for the fixed
forcing and forcing with error, we find that larger snow
albedo exists for the latter because of the larger incoming
longwave radiation. This is consistent with our analysis
here. The combination of the evapotranspiration and snow
water equivalent case forms the runoff case (see Figure 7c).
This result echoes the sensitivity analysis of Figures 1 and 2
because the runoff simulations are determined by snowmelt
and evapotranspiration. Therefore, the forcing errors affect
snow albedo, and further affect snowmelt for the snow
season. For snow-free seasons they affect VEGS and
RCMIN, and further affect evapotranspiration. As a result,
changes in either the snowmelt or evapotranspiration will
result in changes the runoff simulations.
[30] Comparisons of Figures 7a and 7c as well as

Figures 7b and 7c show that correlations between the forcing
errors and model parameters (those between model param-
eters and those between forcing errors) are similar except that
the correlation coefficient between VEGS and RCMIN is

changed from a negative to positive value. This means that
the relationships between the forcing errors and the model
parameters are relatively stable. If we compare Figure 7 with
Figures 1 and 2, we believe this schematic diagram may be
reasonable. For example, larger incoming longwave radiation
implies larger snow albedo for the conservation of surface
energy (see Figure 6b). However, it should be noted that
some model parameters and forcing errors may be correlated
although we cannot give a physical explanation.

4.4. Constraint of Hydrological Variables on Forcing
Errors

[31] Errors in forcing data can be optimized and their
uncertainties can be estimated using Bayesian stochastic
inversion. Figure 8 shows the marginal posterior probability
densities (PPD) for SLR, LWR, RAS1, and RAS2 when
different hydrological variables (i.e., evapotranspiration,
runoff, snow water equivalent) were used to constrain the
errors between observations and simulations. The results
show that all hydrological variables give good constraints
for LWR although the peaks of the PPDs are different. Most

Figure 6. Calculated PPDs for the three most sensitive model parameters when observed monthly
evapotranspiration, monthly runoff, and daily snow water equivalent were used as calibration variables
(solid is fixed forcing, dash-dotted is forcing with errors, EVAPO is evapotranspiration, and SWE is snow
water equivalent).
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likely values exist within 0.98 to 1.05, which is consistent
with the value of 1.0 used in the PILPS 2d experiment. In
addition, optimal values are very close to each other (i.e.,
1.02, 1.03, 1.05) for the three calibrations. Snow water
equivalent and runoff give strong constraints on winter
snowfalls although the constraints are much stronger on
RAS1 than RAS2. Evapotranspiration gives only a weak
constraint on winter snowfalls. All hydrological variables
give weak constraints on SLR because their PPDs are
almost uniform, indicating large uncertainties. Comparisons
of Figures 8 and 1 show that the most sensitive parameters
such as LWR, RAS1, ALBN, and RCMIN can be well
constrained by using the observed hydrological variables.
[32] Different hydrological variables show different sen-

sitivities to forcing errors. Evapotranspiration, runoff and
snow water equivalent are sensitive to incoming longwave
radiation, so these hydrological variables may be used to
constrain the incoming longwave radiation. However, they
may not constrain the incoming shortwave radiation. Snow
water equivalent and runoff are sensitive to winter snowfall,
so both variables may be used to constrain the winter
snowfall forcing. Evapotranspiration is small in the winter,
so it cannot be used to constrain the winter snowfall forcing.
The optimal rate of winter snowfall obtained in this study
appears to be consistent with the estimates in Schlosser et
al. [1997], who suggested that the gauged snowfall at Valdai
is subject to a 20% undercatch for December and January
snowfalls, and a 10% undercatch for November, February
and March snowfalls. Our results do not support Slater et al.

[2001], who asserted the overcatch of winter snowfalls at
Valdai.

4.5. Discussion

[33] This study was performed using a single criterion
method (e.g., one calibration variable at a time) instead of a
multicriteria method [Gupta et al., 1998, 1999]. Usually, the
optimal parameter set derived using a single criterion
method (e.g., a variable) is difficult to use to simulate
another variable because this may result in poor simulation
for another variable [see Leplastrier et al., 2002]. However,
our cross-validation shows that the optimal model parameter
set derived using monthly runoff can simulate evapotrans-
piration and snow water equivalent well. However, the
optimal model set derived using monthly evapotranspiration
cannot simulate runoff and snow water equivalent well,
and the optimal parameter set derived using the daily snow
water equivalent is also unable to simulate evaporation
and runoff well. The reason is that the runoff process
comprises snowmelt (snow water equivalent) and evapo-
transpiration processes, and therefore the runoff calibration
indirectly contains the snow water equivalent calibration
and evapotranspiration calibration. However, there is no
direct relationship between snowmelt and evapotranspira-
tion processes, and the important parameters that control the
two processes are different (see Figure 1). As a result,
optimal parameter values such as optimal RCMIN and
VEGS that derived by evapotranspiration are quite different
from optimal parameter values derived by snow water

Figure 7. A schematic diagram derived from correlation matrices calculated using Bayesian stochastic
inversion and very fast simulated annealing when (a) monthly evapotranspiration, (b) daily snow water
equivalent, and (c) monthly runoff were calibrated (values in this figure represent correlation coefficients;
total parameters set is over 50,000 for each experiment).
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equivalent. The cross-validation of these different optimal
parameter values result in different simulations.
[34] Based on our experiments, runoff appears to be an

appropriate variable for model optimization at a cold
catchment when water flux is analyzed. When an appropri-
ate variable is difficult to choose, a multicriteria method
[Gupta et al., 1999] may be a more appropriate choice if at
least two hydrological variables are measured. For the study
of regional water fluxes [Lohmann et al., 2004], macroscale
water fluxes [Milly and Dunne, 2002a] and global modeling
of land water and energy balances, precipitation error is a
serious limit for evaluating runoff simulation because pre-
cipitation contains several errors including gauge errors,
spatial sampling errors, spatial interpolation errors, and
topographic spatial sampling errors as well as their inter-
actions. As indicated by Milly and Dunne [2002a], a 10% to
20% bias in precipitation is typical among the basins they
used, and in some cases, the bias in precipitation is 50% or
larger. These errors may produce a 100% error in runoff
simulation [Milly and Dunne, 2002a]. In the case of
inaccurate LWR, runoff can be used to constrain the
incoming longwave radiation and winter snowfalls by
Bayesian stochastic inversion.
[35] Both single and multiple criteria methods have their

benefits and limits for calibrating land surface models. The
benefit of the multiple criteria method is that it can select
more reasonably optimal parameter sets if calibrated varia-
bles such as sensible heat fluxes, latent heat fluxes, evapo-
transpiration, soil moisture, runoff, and soil temperature are
available. (It should also be noted that a selection of
different combinations of the calibrated variables is needed
because some combinations may result in poor simulations
[Gupta et al., 1999].) As indicated by Leplastrier et al.
[2002], the use of a single hydrological variable or energy

flux may result in the reduction of errors in the calibrated
variable and an increase in the errors of the other variables.
Through multiple criteria calibration, the physical mecha-
nism or relationships between model parameters found from
calibrating land surface models may be more reliable than
single criterion calibration because more observed data are
used to constrain land surface models. These benefits are
also the limits of the single criterion method. It should be
noted that these benefits are dependent on the available
measurement data. At the current time, these data are
difficult to measure for GCM grid cells, small to large
basins, on a national scope or a global scope except for at
some sites [see Xia et al., 2004a], and therefore, lack of
available measurement data limit the use of the multiple
criteria method. Therefore, the single criterion method had
to be used to calibrate land surface models. (For example,
streamflow from basins are widely measured in the world,
particularly, the U.S. Geological Survey has archived high-
quality streamflow data for both the U.S. and on a global
scope.) This study is a basis for calibrating land surface
model for regional (e.g., U.S.) or global simulation, given
that reliable observations are not widely available.
[36] Finally, it should be noted that we did not use soil

moisture as a calibration variable although monthly soil
moisture at the root zone are available at Valdai. The reason
is that we have previously conducted a similar study for soil
moisture [Xia et al., 2004c] although forcing data errors
were not included in that study.

5. Conclusions

[37] The primary goal of this study is to discuss the effects
of forcing errors on the estimates of optimal parameters and
uncertainty of the CHASMmodel parameters. The paper has

Figure 8. Calculated PPDs for four forcing error factors (a) SLR, (b) LWR, (c) RAS1, and (d) RAS2
when observed monthly evapotranspiration, monthly runoff, and daily snow water equivalent were used
as the calibration variables (solid is evapotranspiration, dashed is runoff, and dotted is snow water
equivalent).
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shown that the optimal parameters give relatively accurate
simulations of evapotranspiration, runoff and snow water
equivalent. The BSI method also gives a relatively reason-
able uncertainty estimate by considering the marginal pos-
terior probability densities. We have shown that forcing
errors have little effect on the estimation of the optimal
model parameters when monthly evapotranspiration and
runoff were calibrated. However, forcing errors do have
significant effects on the estimation of the optimal model
parameters when the daily snow water equivalent was
calibrated. Forcing errors also affect the uncertainty esti-
mates of the CHASM model parameters. Forcing errors
result in large uncertainties of model parameters and totally
different PPDs in some cases. These uncertainties are a result
of interactions between the forcing errors and model param-
eters, interactions between model parameters, and interac-
tions between forcing error factors. Therefore, all these
interactions contribute to uncertainties in the simulations
of evapotranspiration, runoff and snow water equivalent.
[38] All calibrated hydrological variables are sensitive to

incoming longwave radiation errors. Snow water equivalent
and runoff are sensitive to winter snowfalls errors. There-
fore, they are well constrained by Bayesian stochastic
inversion. However, all the hydrological variables cannot
constrain incoming solar radiation error well. Evapotrans-
piration cannot constrain winter snowfall errors because of
small evaporation in winter. Optimal winter snowfalls are
relatively consistent with the results of Schlosser et al.
[1997], and our results suggest a low possibility for over-
catch of winter snowfalls at Valdai as suggested by Slater et
al. [2001].
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