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[1] We use sensitivity analysis to identify the parameters that are most responsible for
controlling land surface model (LSM) simulations and to understand complex parameter
interactions in three versions of the Noah LSM: the standard version (STD), a version
enhanced with a simple groundwater module (GW), and version augmented by a dynamic
phenology module (DV). We use warm season, high-frequency, near-surface states and
turbulent fluxes collected over nine sites in the U.S. Southern Great Plains. We quantify
changes in the pattern of sensitive parameters, the amount and nature of the interaction
between parameters, and the covariance structure of the distribution of behavioral
parameter sets. Using Sobol0’s total and first-order sensitivity indexes, we show that few
parameters directly control the variance of the model response. Significant parameter
interaction occurs. Optimal parameter values differ between models, and the
relationships between parameters also change. GW decreases unwarranted parameter
interaction and appears to improve model realism, especially at wetter study sites. DV
increases parameter interaction and decreases identifiability, implying it is
overparameterized and/or underconstrained. At a wet site, GW has two functional
modes: one that mimics STD and a second in which GW improves model function by
decoupling direct evaporation and base flow. Unsupervised classification of the posterior
distributions of behavioral parameter sets cannot group similar sites based solely on soil
or vegetation type, helping to explain why transferability between sites and models is
not straightforward. Our results suggest that the a priori assignment of parameters
should also consider the climatic conditions of a study location.
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1. Introduction

[2] Like other environmental models built to support
scientific reasoning and to test hypotheses to improve our
understanding of the Earth system, land surface models
(LSMs) have grown in sophistication and complexity
[Pitman, 2003; G.-Y. Niu et al., The community Noah land

surface model with multiphysics options, unpublished man-
uscript, 2009]. The evaluation of LSM simulations is
consequently nontrivial and, especially when LSMs are to
be used in predictive mode for operational forecasting,
policy assessments, or decision making, demands more
powerful methods for the analysis of their behavior [Saltelli,
1999; Jakeman et al., 2006; Wagener and Gupta, 2005;
Randall et al., 2007; Gupta et al., 2008; Abramowitz et al.,
2008]. One powerful method in this context is sensitivity
analysis (SA). In this article, we inform LSM development
by using sophisticated SA to guide the ongoing develop-
ment of the commonly used Noah LSM [Ek et al., 2003].
[3] SA is the process of investigating the role of the

various assumptions, simplifications and other factors
(including input data and parameters) in controlling the
simulations made by a model. SA is a tool that enables
the exploration of high-dimensional parameter spaces of
complex environmental models to better understand what
controls model performance [Saltelli et al., 2008]. Monte
Carlo-based SA uses multiple model realizations to evaluate
the range of model outcomes and identifies the input

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D03106, doi:10.1029/2009JD012035, 2010
Click
Here

for

Full
Article

1Department of Geological Sciences, Jackson School of Geosciences,
University of Texas at Austin, Austin, Texas, USA.

2Now at ExxonMobil Upstream Research Company, Houston, Texas,
USA.

3Department of Civil and Environmental Engineering, Pennsylvania
State University, University Park, Pennsylvania, USA.

4Hydrological Sciences Branch, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA.

5Also at Earth System Science Interdisciplinary Center, University of
Maryland, College Park, Maryland, USA.

6Biosphere 2 Earth Science, University of Arizona, Tucson, Arizona,
USA.

Copyright 2010 by the American Geophysical Union.
0148-0227/10/2009JD012035$09.00

D03106 1 of 21

http://dx.doi.org/10.1029/2009JD012035


parameters that give rise to this uncertainty [Wagener et al.,
2001; Wagener and Kollat, 2007]. Used to its full potential,
SAweighs model adequacy and relevance, identifies critical
regions in the space of the inputs, unravels parameter
interactions, establishes priorities for research, and, through
an interactive process of revising the model structure, leads
to simplified models and increased understanding of the
natural system [Saltelli et al., 2006].
[4] Detailed SA has so far been underutilized in LSM

development and evaluation. If SA has been performed,
then approaches to quantify ‘‘sensitivity’’ (the rate of
change in model response with respect to a factor) are very
frequently restricted to a simple exploratory analysis of the
effects of factors taken one at a time (OAT), without regard
for their interactions and only in the neighborhood of an
initial reference set of factors. Although OAT is only
justified for linear models [Saltelli, 1999; Bastidas et al.,
1999; Saltelli et al., 2006], it has been used to explore the
effects of parameters [e.g., Pitman, 1994; Gao et al., 1996;
Chen and Dudhia, 2001; Trier et al., 2008], meteorological
forcing, and ancillary data sets [e.g., Kato et al., 2007;
Gulden et al., 2008a]. Global sensitivity analysis, the
evaluation of sensitivity across the full feasible factor space,
is considered a more powerful and sophisticated approach,
though one with higher computational demands. One of the
earliest approaches to global SA is the regionalized sensi-
tivity analysis (RSA) [Hornberger and Spear, 1981]. RSA
samples the entire parameter space and provides a robust
assessment of the way parameter distributions change
between subjectively defined ‘‘good’’ and ‘‘bad’’ (i.e.,
behavioral and nonbehavioral) model simulations [e.g.,
Bastidas et al., 2006; Prihodko et al., 2008] or within the
behavioral ranges of different models [e.g., Gulden et al.,
2007; Demaria et al., 2007]. By not explicitly accounting
for interactions between parameters, RSA is prone to type II
errors (nonidentification of an influential parameter) [Saltelli
et al., 2008]. RSA does not quantify the extent to which a
parameter affects the variance of the model output, and it is
typically applied with the sole purpose of identifying
parameters that merit calibration [e.g., Bastidas et al.,
1999] (see the auxiliary material).1 Another common ap-
proach to SA is the factorial method, a global variance-
based SA (VSA) that explicitly accounts for parameter
interactions. It uses a set of model runs whose parameters
have been perturbed from an arbitrary reference value
(default) to identify parameters that affect the variance of
model output. Because accounting for higher-order inter-
actions requires a prohibitive number of model runs, facto-
rial analyses in LSM research have been limited to two
factor interactions of few selected parameters [e.g., Hender-
son-Sellers, 1993; Liang and Guo, 2003; Oleson et al.,
2008] and have therefore not fully characterized parameter
space. When RSA and VSA are used separately, both the
dearth of firm conclusions regarding the effect of dominant
parameters (and their interactions) on the model variance
[e.g., Bastidas et al., 2006] and the inability to draw cause-
effect relationships between parameter regions and model
responses [e.g., Liang and Guo, 2003] have precluded SA
findings from being widely used in LSM development.

[5] We employ SA to compare the performance and
physical realism of three versions of the Noah LSM: the
standard Noah (STD), a version augmented with a simple
groundwater model (GW) [Niu et al., 2007], and a version
augmented with an interactive canopy model (DV)
[Dickinson et al., 1998] simulate the land surface states
and fluxes at nine sites in a transition zone between wet and
dry climates using the data sets of International H2O Project
2002 (IHOP_2002) [LeMone et al., 2007]. Because of the
strength of the land-atmosphere coupling in transition zones
[Koster et al., 2004], we focus on warm season climates of
the U.S. Southern Great Plains. Neglecting uncertainty in
the meteorological forcing, we document how parameter
interaction and sensitivity varies with model, site, soil,
vegetation, and climate.
[6] We use the Monte Carlo-based VSA method of Sobol0

to quantify total and first-order sensitivity indexes. The
method of Sobol0 is more robust (it employs a representative
sample of the parameter space) and efficient than factorial
analysis [Saltelli, 2002], and it bypasses the perceived
complexities (e.g., the design of the calculation matrix)
often associated with factorial analysis. Note that because
LSM developers have attempted to use physical principles
when designing their models, the parameters of such phys-
ically based models are assumed to correspond to unchang-
ing physical characteristics of a system. Consequently, the
level of parameter interaction can be treated as an indirect
measure of the physical realism of LSMs. That is, it is
assumed that physically based models with less undesirable
parameter interactions are better (i.e., more physically
realistic) [Beck, 1987; Spear et al., 1994; Gupta et al.,
2005]. We show that only a few parameters directly control
model variance and that parameter interaction is significant.
[7] We look at the marginal distributions of behavioral

parameters to investigate the ways in which ‘‘physically
meaningful’’ LSM parameters function within alternate
model structures. We focus on selected dominant parameter
interactions that dictate model response. Because LSM
parameter are assumed to be physically meaningful values
[e.g., Dickinson et al., 1986] that can either be measured in
the field (e.g., porosity) or be inferred from (remotely
sensed) observations (e.g., leaf area index (LAI)), their
values should not change between models for a given site.
We show that the distributions of the behavioral parameters
differ between models and that the relationships between
parameters change.
[8] A priori assignment of parameters based on soil

texture and vegetation type is standard practice in the
application of LSMs, justified by the assumption that
physically meaningful parameters can be transferred be-
tween locations that share the same physical characteristics
[e.g., Sellers et al., 1996]. As a consequence of our SA-
enabled model evaluation, we observe that LSM parameters
are highly interactive and change between models and
between sites, which implies that a priori assignment of
parameters may not be justified. We use unsupervised
classification to test parameter transferability. The similarity
of estimated multivariate posterior distributions of behav-
ioral parameters and their sensitivity for each site are
compared to those obtained at other sites. We show that
the changes between sites are not solely controlled by soil1Auxiliary materials are available in the HTML. doi:10.1029/

2009JD012035.
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texture or vegetation types but appear to be strongly related
to the climatic gradient.
[9] This paper is organized as follows. Experimental

design and driving questions are formulated in section 2.
Data sets, models, and methods are described in section 3.
Section 4 presents the patterns of sensitivity obtained by the
global variance-based method of Sobol0. Section 5 presents
a case study demonstrating the use of SA to understand the
functional relationships between behavioral parameters,
whose interaction serves to characterize model structure
and test hypotheses that regard the formulation of model.
Section 6 discusses implications of the results for the
transferability of parameters between locations with similar
physical characteristics. Conclusions are summarized in
section 7.

2. Driving Questions and Experimental Design

[10] Our research is guided by three questions that define
our experimental design.
[11] 1. What are the dominant model parameters across

the study region? We run a suite of Monte Carlo simulations
to identify parameters that exert the greatest control on the
variability of simulated fluxes and states at each IHOP site
for all three models (STD, GW, and DV). We quantify
sensitivity using the method of Sobol0. The SA results guide
our subsequent investigation.
[12] 2. How do the dominant parameters’ interactions

change between models? With our focus toward model
development, we investigate the relationships between
behavioral model parameters and quantify how they change
between models using the estimates of the total order
sensitivity, the multivariate posterior parameter distribu-
tions, and the covariance structures.
[13] 3. How do behavioral parameters change with dom-

inant physical characteristics of the study site? We summa-
rize the relationships between model parameters and
physical characteristics by classifying the multivariate pos-
terior parameter distributions according to the sites’ soil and
vegetation types. Our classification provides insights into
how parameters can be transferred to ungauged locations.

3. Models, Data, and Methods

3.1. Hydrologically Enhanced Versions of the Noah
LSM

[14] We compared the standard Noah LSM release 2.7
(STD) to one that couples a lumped, unconfined aquifer
model to the model soil column (GW) and a version that we
equipped with a short-term phenology module (DV).
3.1.1. Noah Standard Release 2.7
[15] Noah [Ek et al., 2003; Mitchell et al., 2004] is a one-

dimensional, medium complexity LSM used in operational
weather and climate forecasting. The model is forced by
incoming short- and long-wave radiation, precipitation,
surface pressure, relative humidity, wind speed and air
temperature. The computed state variables include soil
moisture and temperature, water stored on the canopy and
snow on the ground. Prognostic variables include turbulent
heat fluxes, and fluxes of moisture and momentum. Noah
has a single canopy layer with climatologically prescribed
albedo and vegetation greenness fraction. The soil profile of

Noah is partitioned into 4 layers (lower boundaries at 0.1,
0.4, 1.0 and 2.0 m below the surface). The vertical move-
ment of water is governed by mass conservation and a
diffusive form of the Richard’s equation. Infiltration is
represented by a conceptual parameterization for the subgrid
treatment of precipitation and soil moisture. Drainage at the
bottom of the soil layer is controlled only by gravitational
forces; and the percolation process neglects hydraulic dif-
fusivity. Direct evaporation from the topsoil layer, from
water intercepted by the canopy and adjusted potential
Penman-Monteith transpiration are combined to represent
total evapotranspiration. The surface energy balance deter-
mines the skin temperature of the combined ground vege-
tation surface. Soil layer temperature is resolved with a
Crank-Nicholson numerical scheme. Diffusion equations
for the soil temperature determine ground heat fluxes. The
Noah LSM uses soil and vegetation lookup tables for static
soil and vegetation parameters such as porosity, hydraulic
conductivity, minimum canopy resistance, roughness
length, leaf area index.
3.1.2. Noah Augmented With a Simple Groundwater
Model
[16] GW couples a lumped unconfined aquifer model

[Niu et al., 2007] to the lower boundary of the STD soil
column. In GW, water flows vertically in both directions
between the aquifer and the soil column. The modeled
hydraulic potential is the sum of the soil matric and
gravitational potentials. The relative water head between
the bottom soil layer and the water table determines either
gravitational drainage or upward diffusion of water driven
by capillary forces. Aquifer specific yield is used to convert
the water stored in the aquifer to water table depth. When
water is plentiful, the water table is within the model’s soil
column; if water is insufficient to maintain a near-surface
aquifer, the water table falls below the soil column. An
exponential function of water table depth modifies the
maximum rate of subsurface runoff (for computation of
base flow) and determines the fraction of the grid cell that is
saturated at the land surface (for calculation of surface
runoff) [Niu et al., 2005]. Observed moderate recharge rates
for nonirrigated agricultural ecosystems in the U.S. South-
ern Great Plains [Scanlon et al., 2005] warrant the simple
representation of an aquifer for the simulation of surface-to-
atmosphere fluxes in the region.
3.1.3. Noah Augmented With a Short-Term Dynamic
Phenology Module
[17] We coupled the canopy module of Dickinson et al.

[1998] to STD in order to compute changes in vegetation
greenness fraction that result from environmental perturba-
tions. The module allocates carbon assimilated during
photosynthesis to leaves, roots, and stems; the fraction of
photosynthate allocated to each reservoir is a function of,
among other things, the existing biomass density. The
model also tracks growth and maintenance respiration and
represents carbon storage. Unlike STD, which computes
greenness fraction by linear interpolation between monthly
climatological values, DV represents short-term phenolog-
ical variation by allowing leaf area to vary as a function of
soil moisture, soil temperature, canopy temperature, and
vegetation type. DV makes vegetation fraction an exponen-
tial function of LAI [Yang and Niu, 2003]. Because DV
links vegetation fraction to dynamic LAI, DV makes direct
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soil evaporation, canopy evaporation, and transpiration
more responsive to environmental conditions than STD.
Unlike Dickinson et al. [1998], we parameterized the effect
of water stress on stomatal conductance as a function of soil
moisture deficit, not as a function of soil matric potential.

3.2. IHOP_2002 Sites and Data Sets

[18] We used data sets from the IHOP_2002 field cam-
paign (available at http://www.rap.ucar.edu/research/land/
observations/ihop/) [LeMone et al., 2007] to evaluate the
three versions of the Noah LSM at nine sites located along
theKansas-Oklahoma border and in northern Texas (Figure 1).
The nine stations were sited to obtain a representative
sample of the region, which spans a strong west–east
(east–west) gradient of rainfall (topography and the Bowen
ratio). We used 45 days of high-frequency, multisensor mea-
surements of meteorological forcing, surface-to-atmosphere
fluxes, and near-surface soil moisture and temperature. Site
characteristics, soil and vegetation classes, mean meteorolog-
ical values, average heat fluxes and near-surface states for the
observation period are summarized in Table 1.

3.3. Model Initialization and Spin-up

[19] Following Rodell et al. [2005], we initialized each of
the four soil layers at 50% saturation and at the multiannual
mean temperature. To drive the spin-up (between 1 January
2000 and 13 May 2002), we used downscaled North
American Land Data Assimilation System [Cosgrove et
al., 2003] meteorological forcing, interpolated from a 60 min
to a 30 min time step. The models were subsequently driven
by IHOP_2002 meteorological forcing from 13 May 2002
to 25 June 2002 (day of year 130 to 176). For GW, water
table depth was initialized assuming equilibrium of gravi-

tational and capillary forces in the soil profile [Niu et al.,
2007].

3.4. Evaluation Data Sets

[20] To evaluate the models, we used sensible heat flux
(H), latent heat flux (LE), ground heat flux (G), ground
temperature (Tg), and first layer soil moisture (SMC5cm).
All data was recorded at a 30 min time step. In situ, high-
frequency flux and near-surface state measurements are an
integrated response of the land surface and therefore provide
useful data for examining model soundness at a specific
location [Bastidas et al., 2001; Stöckli et al., 2008]. To
assess model performance, we used the root mean square
error (RMSE) measure.

3.5. Parameters Considered in the Sensitivity Analysis

[21] We studied all 10 soil and 10 vegetation parameters
of STD, assigned a priori via look-up tables. We included
eight parameters responsible for the phenology module and
four that control the groundwater module to analyze a total
of 28 and 24 parameters for DV and GW, respectively. All
other coefficients in the models were kept constant at the
recommended values. Default values and feasible ranges
(Table 2) for all parameters were taken from the literature
[e.g., Chen and Dudhia, 2001; Hogue et al., 2006].

3.6. Sobol0 Indices for Global Variance-Based
Sensitivity Analysis

[22] We used the variance-based method of Sobol0 [1993,
2001] to efficiently identify the factors that contribute most
to the variance of a model’s response. The method of Sobol0

deals explicitly with parameter interaction and has recently
been used to quantify model sensitivity and parameter

Figure 1. IHOP_2002 near-surface state and flux stations. The contours show the strong east–west
mean annual precipitation (MAP) gradient. The nine sites were sited in representative land covers (see
Table 1): six on grassland of varying thickness, two on winter wheat, one on bare ground, and one on
shrubland. The surface temperature of the dry (MAP = 550 mm), sparsely vegetated sites (1–3) is mainly
linked to the soil moisture. In contrast, the green, lush vegetation of the wet sites (7–9) (MAP = 900 mm)
controls the surface temperature. In sites 4–6 (MAP = 750 mm), a mix of winter wheat and grassland, the
surface temperature is influenced by both soil moisture and vegetation.
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interactions in hydrology [e.g., Tang et al., 2006; Bois et al.,
2008; Ratto et al., 2007; Yatheendradas et al., 2008; van
Werkhoven et al., 2008]. Our review of the literature shows
that it has not yet been used for LSM SA.
[23] Sobol0 indices enable researchers to distinguish the

subset of independent input factors (such as the model

parameters) X = {x1, . . ., xi, . . ., xk} that account for most
of the variance of the model’s response Y = f (X) either by
themselves (first-order) or due to interaction with other
parameters (higher-order). For completeness, we briefly
summarize the Monte Carlo-based scheme presented by

Table 1. Average Meteorology, Near-Surface States, and Turbulent Fluxes Observed During the Calibration Period at the Nine

IHOP_2002 Sitesa

Site

1 2 3 4 5 6 7 8 9

Lat (�N) 36.4728 36.6221 36.8610 37.3579 37.3781 37.3545 37.3132 37.4070 37.4103
Lon (�W) 100.6179 100.6270 100.5945 98.2447 98.1636 97.6533 96.9387 96.7656 96.5671
Vegetation
type

bare
ground (1)

grassland (7) sagebrush (9) pasture (7) wheat (12) wheat (12) pasture (7) grassland (7) pasture (7)

Soil texture sandy clay
loam (7)

sandy clay
loam (7)

sandy
loam (4)

loam (8) loam (8) clay
loam (6)

silty clay
loam (2)

silty clay
loam (2)

silty clay
loam (2)

Rain (mm) 154.5 69.1 72.4 164.5 173.6 203.6 175.4 296.6 250.8
MAP (mm) 530 540 560 740 750 800 900 880 900
Elevation (m) 872 859 780 509 506 417 382 430 447
Ta (�C) 21.4 21.7 22.5 20.7 20.7 21.0 20.7 20.1 19.9
b 1.08 0.92 1.11 0.41 0.46 0.63 0.20 0.14 0.24
H (W m�2) 70.5 70.7 75.7 43.9 51.9 61.4 25.9 17.1 27.9
LE (W m�2) 65.1 76.1 68.2 106.2 111.2 97.1 126.4 122.8 115.3
G (W m�2) �10.4 �6.4 �9.3 �2.7 �5.1 �7.5 �5.6 �12.1 �10.5
Tg (�C) 24.1 24.1 25.8 23.2 21.9 22.9 22.3 22.4 22.7
SMC5cm (%) 15.4 18.0 7.0 18.0 18.1 19.0 33.2 32.8 34.0

aCalibration period is 13 May to 25 June. See Figure 1. Indices of vegetation types and soil classes are in parenthesis. Rainfall is cumulative over the
observation period. Dry, sparsely vegetated sites (1–3) receive almost half of the amount of mean annual precipitation (MAP) than wet sites (7–9), with
lush vegetation. Mean 2 m air temperature (Ta), Bowen ratio (b), sensible (H), latent (LE) and ground (G) heat flux, ground temperature (Tg) and soil
moisture content at 5 cm (SMC5cm).

Table 2. Feasible Ranges of Noah-LSM Parameters Considered in the Sensitivity Analysis

Parameter Description Units Min Max

Soil parameters
maxsmc Maximum volumetric soil moisture m3 m�3 0.35 0.55
psisat Saturated soil matric potential m m�1 0.1 0.65
satdk Saturated soil hydraulic conductivity m s�1 1E-6 1E-5
b Clapp-Hornberger b parameter - 4 10
quartz Quartz content - 0.1 0.82
refdk Used with refkdt to compute runoff parameter kdt 0.05 3
fxexp Bare soil evaporation exponent - 0.2 4
refkdt Surface runoff parameter 0.1 10
czil Zilintikevich parameter - 0.05 8
csoil Soil heat capacity J m�3 K�1 1.26 3.5

Vegetation parameters
vrcmin Minimal stomatal resistance s m�1 40 400
rgl Radiation stress parameter used in F1 term of canopy resistance 30 100
hs Coefficient of vapor pressure deficit term F2 in canopy resistance 36 47
z0 Roughness length m 0.01 0.1
lai Leaf area index - 0.1 5
cfactr Exponent in canopy water evaporation function - 0.4 0.95
cmcmax Maximum canopy water capacity used in canopy evaporation m 0.1 2.0
sbeta Used to compute canopy effect on ground heat flux - �4 �1
rsmax Maximum stomatal resistance s m�1 2,000 10,000
topt Optimum air temperature for transpiration K 293 303

Dynamic phenology parameters (Noah-DV only)
fragr Fraction of carbon into growth respiration - 0.1 0.5
gl Conversion between greenness fraction and LAI - 0.1 1.0
rssoil Soil respiration coefficient s�1 � 10�6 0.005 0.5
tauhf Average inverse optical depth for 1/e decay of light - 0.1 0.4
bf Parameter for present wood allocation 0.4 1.3
wstrc Water stress parameter 10 400
xlaimin Minimum leaf area index - 0.05 0.5
sla Specific leaf area - 5 70

Groundwater parameters (Noah-GW only)
rous Specific yield m3 m�3 0.01 0.5
fff e-folding depth of saturated hydraulic capacity m�1 0.5 10
fsatmx Maximum saturated fraction % 0 90
rsbmx Maximum rate of subsurface runoff m s�1 � 10�3 0.01 1
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Saltelli [2002] to compute first-order and total Sobol0

sensitivity indices.
[24] The first-order sensitivity index (Si) represents a

measure of the sensitivity of Y = f (x1, x2, . . ., xk) (the RMSE
of a model realization evaluated against observations in our
case) to variations in the parameter (or factor) xi. Si is
defined as the ratio of the variance of Y conditioned on the
ith factor (Vi) to the total unconditional variance (V):

Si ¼
Vi

V Yð Þ ¼
V E Y jxið Þð Þ

V Yð Þ ¼ Û i � Ê
2
Yð Þ

V
_

Yð Þ
ð1Þ

where

Û i ¼
1

n� 1

Xn
r¼1

f xr1; xr2; . . . ; xrkð Þ

� f x0r1; x
0
r2; . . . ; x0r i�1ð Þ; xri; x

0
r iþ1ð Þ; . . . ; x0rk

� �
; ð2Þ

is obtained from products of values of f computed from the
sample matrix (n model realizations long) times values of f
computed from another n realizations matrix where all k
parameters except xi are resampled.
[25] The estimates of the mean squared and the total

variance are computed as

Ê
2
Yð Þ ¼ 1

n

Xn
r¼1

f xr1; xr2; . . . ; xrkð Þ f x0r1; x
0
r2; . . . ; x0rk

� �
ð3Þ

V
_

Yð Þ ¼ 1

n

Xn
r¼1

f xr1; xr2; . . . ; xrkð Þ2�Ê2
Yð Þ: ð4Þ

[26] Instead of computing all 2k–1 terms of the variance
decomposition

V Yð Þ ¼
Xk
i

Vi þ
X
i

X
j>i

Vij þ . . . ::þ V12::k ; ð5Þ

(which would require as many as n2k model runs), in
addition to estimating Si, it is customary to estimate only the
total sensitivity index (STi) associated with parameter xi. STi
encompasses the effect that of all the terms in the variance
decomposition that include the factor xi have on the
variance of the model’s response. STi is estimated by the
difference between the global unconditional variance of Y
and the total contribution to the variance of Y that is caused
by factors other than xi, divided by the unconditional
variance:

STi ¼
V Yð Þ � V E Y x�ijð Þð Þ

V Yð Þ ¼ 1� Û�i � Ê
2
Yð Þ

V
_

Yð Þ
; ð6Þ

where

Û�i ¼
1

n� 1

Xn
r¼1

f xr1; xr2; . . . ; xrkð Þ

� f xr1; xr2; . . . xr i�1ð Þ; x
0
ri; xr iþ1ð Þ; . . . xrk

� �
ð7Þ

is obtained from products of values of f computed from the
sample matrix times the values of f computed from another
matrix where only xi is resampled.
[27] A significant difference between STi and Si points to

an important role of the interactions of the ith factor (at all
orders) in affecting Y [Saltelli et al., 2006]. Identification of
such parameter interactions can help guide model develop-
ment. STi are also useful to identify input factors that are
noninfluential, which can help reduce the dimensionality of
the parameter estimation problem. If an STi is negligible,
then it is reasonable to fix that factor to a reasonable value
within its range of uncertainty, and the dimensionality of the
space of input factors or model parameters can be reduced
accordingly [van Werkhoven et al., 2009].

3.7. Sampling Strategies for Sensitivity Analysis

[28] We generated samples of model parameters using
Latin hypercube sampling (LH) and of the behavioral
parameter sets through multiobjective calibration.
3.7.1. Latin Hypercube Monte Carlo Sampling
[29] We ran a total of 405,000 Monte Carlo simulations

sampling random parameter sets (15,000 samples for each
model and site) to obtain a representation of the range of
model responses that was sufficiently detailed yet that also
balanced computational constraints. We assumed that our
conservative sampling was adequate. We used LH because
it combines the strengths of stratified and random sampling
to ensure that all regions of the parameter space are
represented in the sample [McKay et al., 1979; Helton
and Davis, 2003]. LH divides each parameter range into
disjoint intervals of equal probability. From each hypercube,
one sample value is randomly taken. We sampled uniformly
within feasible bounds (Table 2). For each sample, we
recorded the RMSE of 5 criteria: H, LE, G, Tg, and
SMC5cm.To create all the matrices involved in the compu-
tation of the Sobol0 indices, we used a modified LH that
enables replication [Tang et al., 2007].
3.7.2. Multiobjective Markov Chain Monte Carlo
Parameter Estimation Technique
[30] We used the efficient Markov Chain Monte Carlo

sampling strategy of Vrugt et al. [2003] to approximate the
joint posterior distribution of optimal parameters. The
simultaneous minimization of the RMSE of multiple criteria
{H, LE, G, Tg, SMC5cm} allowed us to constrain the
models to be consistent with several types of observations
and facilitated the identification of the underlying posterior
distribution of physically meaningful behavioral parameter
sets. It was assumed that sets from the posterior distribution
cause the model to mimic the processes it was designed to
represent [Gupta et al., 1999; Bastidas et al., 2001;
Leplastrier et al., 2002; Hogue et al., 2006]. The calibration
algorithm runs, in parallel, multiple chains of evolving
parameter distributions to provide a robust exploration of
the parameter space. These chains communicate with each
other through an external population of points, which are
used to continuously update the size and shape of the
proposal distribution in each chain. This procedure allows
an initial population of parameter sets (uniformly sampled
within preestablished, feasible ranges) to converge to a
stationary sample, which maximizes the likelihood function
and fairly approximates the Pareto set (PS). The Pareto set
represents the multiobjective trade-off: no member of the PS
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can perform better with respect to one objective without
simultaneously performing worse with respect to another
competing objective [Gupta et al., 1998]. We used a sample
of 150 parameter sets to represent the posterior distribution
of ‘‘behavioral’’ parameter sets.

3.8. Hierarchical Clustering for Comparisons
of Parameter Distributions

[31] Unsupervised classification of the behavioral param-
eter distributions allowed us to understand data similarities
across locations, with specific focus on the relationships
between types of parameters and sites. We used a clustering
strategy to classify the marginal posterior distributions of
calibrated parameters sets into groups. Agglomerative hier-
archical clustering methods start with n groups (one object
per group) and successively merge the two most similar
groups until a single group is left. We used MATLAB’s
complete linkage algorithm to implement the clustering, in
which the maximum distance between objects, one coming
from each cluster, represents the smallest sphere that can
enclose all objects in the two groups within a single cluster
[Hair et al., 1995]. Because the distance measures (e.g.,
Manhattan, Euclidean) used to measure dissimilarity
between observations may influence the membership of
samples to groups, we used the cophenetic correlation
coefficient to assess the quality of the linkage [Martinez
and Martinez, 2002]. We used dendrograms to visualize the
links between the objects as inverted U-shaped lines, whose
height represents the distance between the objects.

4. Which Parameters Are Sensitive?

[32] VSA showed that there are only a few parameters
that, by themselves, exert significant influence on the model
predictions. In contrast, parameter interaction dominates and
is hence the principal mechanism for sensitivity. Figures 2, 3,
and 4 present, for all sites, all considered parameters, and all
models, the Sobol0 first-order sensitivity indexes (Si, which
is the fraction of the total variance of RMSE that can be
solely attributed to the ith parameter) and the residual
between Sobol0’s total and first-order sensitivity index
(STi –Si, which is the fraction of total variance that results
from the interaction of the ith parameter with other param-
eters at all orders). When the influence of parameters
changed as we would physically expect, we interpret the
results as consistent with our hypothesis that, to a first order,
a model adequately represents the site-to-site variation in
the water and energy cycles. Site-to-site variation in the
most sensitive parameters is not chiefly governed by soil or
vegetation type but, similar to other studies [e.g., Liang and
Guo, 2003; Demaria et al., 2007; van Werkhoven et al.,
2008], appears to be of secondary importance when com-
pared to the influence of the predominant climatic gradient.
Although we cannot rule out the potential importance of
other east–west gradients (e.g., the topographic or hydro-
geologic gradient), in section 4.1 we provide explanations
for the observed patterns that are consistent with the
climatological change between sites.

4.1. First-Order Sensitivity (Si)

[33] For several key parameters, a pattern of first-order
sensitivity can be linked to the hydrology of the sites. For

most sites and models, the greatest first-order control on
simulated top layer soil moisture is porosity (maxsmc)
(Figure 4a). At dry sites 1–3, where direct evaporation is
presumably a major component of LE flux, for STD and
GW, the bare soil evaporation exponent (fxexp) exerts the
highest first-order control on soil moisture. The LE flux
simulated by GW at dry sites is controlled by fxexp and
specific yield (rous), which partially controls the depth to
the water table. Parameter lai directly controls transpiration
and hence the surface energy budget; at the most vegetated
sites (7–9), lai consequently shapes most of the variance of
H and LE for both STD and GW (Figures 2a and 3a). The
initial value of lai is not important to DV’s simulated H and
LE because DV allows lai to change over time. Instead,
minimum stomatal resistance (rcmin) exerts the most con-
trol on DV-simulated LE. Two new parameters associated
with DV, gl and sla, which control the calculation of lai, also
exert first-order control on the simulated energy fluxes. In
the sparsely vegetated sites (1–3), the Zilintikevich coeffi-
cient (czil) plays a significant role in the variance of H.
[34] The specific parameters that control model variance

change between models and between sites. In STD, as the
mean annual precipitation (MAP) increases, fxexp becomes
less important to top layer soil moisture (SMC5cm) and
refkdt, a parameter involved in determining maximum rates
of infiltration, becomes more important (Figure 4a). This
pattern changes for GW, in which surface runoff is relatively
deemphasized and subsurface runoff is relatively empha-
sized (see discussion about GW’s preferred modes of
operation, section 5). In GW, although fxexp still exerts
first-order control on SMC5cm at dry sites, refkdt has little
direct influence on SMC5cm at wet sites. The most sensitive
parameter for SMC5cm at sites 1–3 is rous, which controls
whether aquifer water is accessible to the near-surface soil.
Consistent with our expectations, soil suction (psisat), which
in GW controls upward movement of water from the aquifer
to the soil, has significant control on SMC5cm within GW but
not within STD, in which psisat plays a less dominant role in
shaping soil hydraulic behavior (Figure 4a).
[35] Especially in the case of STD and DV, as sites get

wetter, the surface exchange coefficient czil exerts progres-
sively less influence and rcmin progressively more influ-
ence on H (Figure 2a). The shift is consistent with our
expectation that at more vegetated sites, stomatal resistance
should be important to determining the surface energy
balance. As a site’s MAP increases, rcmin and lai increas-
ingly shape simulated LE, and fxexp becomes less influen-
tial (Figure 3a). Even at the dry sites (1–3), DV favors
larger values of vegetation fraction (shdfac) than are pre-
scribed by STD and GW. As a consequence, DV stands
apart from GW and STD in that fxexp does not directly
contribute to variance of any objective at the three driest
sites (with the exception of unvegetated site 1, at which LE
is controlled by fxexp).
[36] Examinations of Si that are not in line with expect-

ations may be used to help modelers diagnose likely
problems with conceptualization, forcing data, and/or model
structure. For instance, in STD, fxexp has the highest Si of
simulated H and LE at site 6. We do not expect direct
evaporation to be a relatively more significant component of
the LE flux at site 6 than at climatically similar sites 4 and 5
or at the semiarid sites 1–3. The discrepancy implies that

D03106 ROSERO ET AL.: SENSITIVITY AND INTERACTIONS IN NOAH LSM

7 of 21

D03106



Figure 2. (a) First-order Sobol0 sensitivity indices for the parameters of STD, GW, and DV at all sites.
Si stands for the individual contribution of a parameter to the variance of the RMSE of H. (b) Difference
between Sobol0’s total sensitivity index and Si. STi - Si is the contribution to the variance through
interactions with other parameters. Parameters grouped by soil and vegetation. Regional sensitivity
patterns from semiarid (MAP = 550 mm), sparsely vegetated sites (1–3) to semihumid (MAP = 900 mm)
sites (7–9) with green, lush vegetation, are easily distinguishable.
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either our conceptual understanding of the physical pro-
cesses at site 6 is incorrect, that the model does not
adequately represent the physical processes, and/or that
our forcing and/or evaluation data are faulty at one or more
of the sites.

4.2. Sensitivity Through Interactions (Si–STi)

[37] Interactions between parameters are responsible for
most of the variance in the models’ predicted H, LE, and
SMC5cm (Figures 2b, 3b, and 4b). If we assume that the
parameterizations are correct, then the significant parameter

Figure 3. Same as Figure 2 but for LE.
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interaction indicates model overparameterization [Saltelli et
al., 2008; Bastidas et al., 2006; Yatheendradas et al., 2008].
Arguably, it is also possible that the observed parameter
interaction results from models that are either too simplistic
and/or incorrect. Although parameter interaction may not be

an inherently negative trait (e.g., in porous media, we expect
hydraulic conductivity and porosity to be functionally
related), when there are no known functional relationships
between the physical quantities that two parameters repre-
sent, interaction is likely to be indication that the model

Figure 4. Same as Figure 2 but for SMC5cm.
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works in a way that is not consistent with the conceptual
model from which the parameterizations were built.
[38] All models exhibit the most parameter interaction at

the driest sites, consistent with the findings of Liang and
Guo [2003] and suggesting the need to revise the formula-
tion of all three models for semiarid regions [Hogue et al.,
2005; Rosero and Bastidas, 2007]. Especially for H and
SMC, GW reduces parameter interaction at the middling
moisture (4–6) and semihumid sites (7–9) (e.g., Figure 5b).
GW’s reduction of parameter interaction is evidence
(although by no means conclusive) that GW is more realistic
than STD at sites 4–9. This result is consistent with
foregoing observations on the robustness of GW [Gulden
et al., 2007]. Conversely, GW appears to increase parameter
interaction at the driest sites (1–3), indicating STD better
represents semiarid processes than GW. DV parameters are
much more interactive than those of STD and GW, espe-
cially at the wettest sites when simulating LE and SMC5cm.
The increased interaction between the DV-specific parame-
ters and the rest of the conceptually unrelated STD param-
eters suggests DV is not functioning as its developers
intended. The significant parameter interaction is consistent
with the poor robustness of DV [Rosero et al., 2009].
[39] Looked at in full, the models best represent the

surface water and energy balances at the intermediate
moisture and wet sites, where parameter interaction tends,
within a given model, to be lowest. Because it reduces
parameter interaction, GW is most likely of any of the three
models to be representing the key physical processes with
the most realism.

5. How Do Sensitive Parameters Interact and
Shape Model Behavior? Case Study at Site 7

[40] Toward our objective of thoroughly evaluating the
physical realism of the three models presented, we per-
formed a case study in which sensitivity analysis linked
model identification and model development. We followed
the impact of shifted preferred values of three physically
meaningful parameters that made considerable contributions
to the output variance: porosity (smcmax), the muting factor
for vegetation’s effect on thermal conductivity (sbeta), and

minimum stomatal resistance (rcmin). We examined the
model structures at site 7 because at that site STD, DV,
and GW show nearly equivalent performance when using
their behavioral parameter sets (Figure 5). Such ‘‘equifin-
ality’’ occurs frequently in hydrologic modeling [Beven and
Freer, 2001]. When equifinality occurs, distinguishing a
‘‘best’’ model is not trivial. It requires us not only to
confront the simulations with observed behavior to test for
consistency [Rosero et al., 2009] but also to understand the
underlying model structures (the relationship between
parameters) that make the models perform equally well.
We show below how sensitivity analysis offers the power
and the ability to discriminate between the structures of
STD, GW and DV that do and do not conform to our
physical understanding of the systems.

5.1. Relationships Between Behavioral Parameters
Change Between Models

[41] The models have distinctly different optimal parame-
ter distributions for the same physical parameters (Figure 6),
implying not only that the parameters cannot be transferred
between models but that the relationships between them are
different. Even the direction of ‘‘sensitivity’’ (understood as
the rate of change of RMSE with parameter value along the
range of possible values of the parameter) changes between
models (e.g., Figure 6a). The simulation of SMC5cm by STD
and DV degrades as porosity increases, while GW improves.
We also note that, along the possible range, the response can
be enhanced (Figure 6d) or become relatively insensitive to
changes in parameter value (Figure 6c). The identifiability of
parameters (when parameters have a clearly defined local
minimum) changes between models. For example, in DV,
there is a clear low point of the RMSE of LE along the range
of values of the maximum water-holding capacity of the
canopy (cmcmax), but STD andGWhave less of a preference
(Figure 6c). The interquartile range of rcmin of STD is
smaller than that of GWor DV (Figure 6b). The fundamental
implication of our observations is that although the different
optimal values of parameters are important (as found during
model identification), the change in the functional relation-
ship between the parameters (the information contained in

Figure 5. Trade-off LE-SMC5cm and cumulative distribution functions (CDF) of scores of behavioral
STD, GW, and DV at site 7. (a) Scatterplot in objective function space of parameter sets that maximize
the likelihood function after multiobjective calibration against {H, LE, G, Tg, SMC5cm}. CDF of root-
mean-square errors (RMSE) of behavioral runs evaluated against observed (b) LE and (c) SMC5cm. GW
(dark gray) and DV (light gray) perform as good as or better than STD (black).
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the interactions) is most relevant for purposes of model
development.
5.1.1. Role of Porosity (maxsmc)
[42] In all three versions of the Noah LSM, higher values

of maxsmc tend to decrease direct evaporation from the first
soil layer (Edir). Edir is estimated as the product of Penman’s
potential evaporation (ETpot), the complement of the vege-
tated fraction (shdfac), and the ratio of top layer volumetric
soil moisture (SMC1) to maxsmc:

Edir ¼ ETpot 1� shdfacð Þ SMC1 � SMCdry

maxsmc� SMCdry

� �fx exp

: ð8Þ

SMCdry is the lowest possible volumetric water content of
the topsoil layer, and fxexp is a parameter ranging from
0.2 to 4.
[43] In both STD and DV, the error in simulated LE tends

to be relatively small when maxsmc is low and relatively
large when maxsmc is high (Figure 6a). However, GW
better simulates LE as maxsmc increases. The tendency of
STD and DV to simulate LE well when maxsmc is low (and
direct evaporation from the soil consequently tends to be
high) implies that STD and DV often underestimate direct
evaporation at site 7. The tendency of STD to underestimate
direct evaporation was also suggested by Peters-Lidard et
al. [2008], who improved results by changing the value of

Figure 6. Marginal cumulative distribution functions (CDF) of the posterior distribution of selected
behavioral parameter sets at site 7. (a) Porosity (maxsmc), (b) minimum stomatal resistance (rcmin),
(c) maximum water holding capacity of the canopy (cmcmax), and (d) effect of the vegetation on ground
heat flux (sbeta). Along with the CDFs, the histograms and interquatile ranges are shown. The trend in the
scatterplots of RMSE of LE and SMC5cm is shown by fitting a minimum complexity polynomial. Note
that GW (dark gray), DV (light gray), and STD (black) are shown.
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fxexp from 2 to 1. Given the same maxsmc, GW more
easily simulates sufficient direct evaporation, perhaps
because of wetter soil [Rosero et al., 2009].
[44] In STD and DV, parameter maxsmc controls both

surface and subsurface runoff. Hydraulic conductivity
(wcnd) is computed by scaling saturated hydraulic conduc-
tivity (satdk) by wetness (SMC/maxsmc), raised to an
exponent containing the Clapp and Hornberger parameter
(b):

wcnd ¼ dksat
SMC

maxsmc

� �2bþ3
: ð9Þ

Lower maxsmc yields higher wcnd, which means water
moves through the soil more quickly. For subsurface runoff
(Runoff2), wcnd controls lateral water movement through
the soil. In STD and DV, Runoff2 is wcnd times the slope of
the grid cell. Consequently, higher maxsmc decreases
Runoff2. Higher maxsmc also decreases surface runoff
(Runoff1) by increasing the maximum rate of infiltration.
Both changes increase soil wetness.
[45] GW changes the way runoff is computed; maxsmc

does not control surface or subsurface runoff in GW, which
eliminates two of the three ways that maxsmc controls soil
moisture. Runoff2 is represented as an exponential function
of depth to water [Niu et al., 2007]:

Runoff2 ¼ rsbmx e�fff*ZWT ; ð10Þ

where rsbmx is the maximum rate of subsurface runoff, fff
is the e-folding depth of saturated hydraulic conductivity,
and ZWT is the depth to the water table, which is computed
by the model. Runoff1 is computed using a version of the
function used to compute Runoff2 [Niu et al., 2005]:

Runoff1 ¼ pcpdrp* fsatmx e�0:5*fff*ZWT

� �
; ð11Þ

where pcpdrp is the effective incident water and the second
term is the fraction of unfrozen grid cell that is saturated.
[46] In STD (and DV), maxsmc couples two physically

unrelated (or very weakly related) processes (direct soil
evaporation and lateral surface and subsurface runoff). GW
decouples these processes by eliminating the dependence of
parameterized lateral runoff on maxsmc. This decoupling
reduces the spurious parameter interaction of maxsmc and,
within GW, nearly eliminates the trade-off between good
simulation of LE and SMC5cm. GW is, in this regard, a
better model for simulating fluxes at site 7.
[47] The question remains – why does GW poorly

simulate SMC5cm when maxsmc increases? maxsmc is used
to compute vertical hydraulic conductivity (using the same
function as STD). GW uses vertical hydraulic conductivity
to regulate the flow of water between the aquifer and soil
down a hydraulic gradient. Higher maxsmc yields lower
hydraulic conductivity, which, in addition to decreasing the
transfer of water between layers within the soil column,
decreases the communication between the aquifer and the
soil profile (that is, it decreases the flow of water between
the two, increasing the potential for water to be retained
near the surface). At site 7, GW best simulates SMC5cm

when high vertical hydraulic conductivity connects the
aquifer and soil.
[48] Consistent with the work of others [e.g., Demaria et

al., 2007], parameter values and model sensitivity to
maxsmc are not consistent between sites along a climatic
gradient or even within a set of sites with similar character-
istics. Conclusions about model performance are therefore
difficult to generalize. This lack of continuity of behavior
between sites is consistent with at least one of the following
possibilities: (1) model parameterizations do not represent
key aspects of the system and/or (2) our multiobjective
calibration provided insufficient constraint for the estima-
tion of behavioral parameters. We suggest the use of
observed infiltration and/or runoff to increase the strength
of conclusions drawn regarding the physical realism of
runoff-related processes in GW.
5.1.2. Role of the Thermal Conductivity Muting Factor
(sbeta)
[49] All three models compute ground heat flux (G) using

a flux-gradient relationship:

G ¼ DF1
STC1 � T1

0:5*ZSOIL 1ð Þ
; ð12Þ

in which STC1 is the temperature at the center of the first
soil layer (0.5*ZSOIL(1)) and T1 is the surface temperature.
DF1 is the heat conductivity of the topsoil layer.
[50] Noah assumes that, as vegetation cover increases,

heat flux into the ground decreases. sbeta and the vegetated
fraction (shdfac) mute DF1:

DF1 ¼ DF1e
sbeta*shdfac: ð13Þ

[51] At site 7, the mode of the posterior probability
distribution of all three models is near the bound of the
explored parameter range (�1) (Figure 6d). The preference
for near-bound values is more pronounced in DV, which at
site 7 tends to have shdfac values near 1.0 (putting down-
ward pressure on the value of sbeta). The skewed posterior
parameter distributions suggest that an even less negative
value of sbeta may have yielded better results at site 7.
[52] The assumption that vegetation necessarily decreases

the thermal conductivity of the top layer of the soil may be
incorrect. If the ‘‘vegetation effect’’ on thermal conductivity
is real, then the model underestimates the top layer soil
thermal conductivity. At site 7 (and at several other sites),
there is a clear trade-off between H and G that is mediated
by the thermal conductivity. The trade-off suggest a need for
revised process representation.
[53] When comparing site 7 simulations to those of the

other two wet sites (8 and 9), we see a roughly consistent
preference for near zero values of sbeta. At the drier sites
(1–6), the model’s strong preference for near zero values of
sbeta is less obvious; however, shdfac is closer to zero at
these sites, which lowers the value of the muting factor
equation (13).
5.1.3. Role of Minimum Stomatal Resistance (rcmin)
[54] Parameter rcmin controls much of the variance in H

and LE, especially at the wetter sites. As rcmin increases,
the ratio of actual to potential evapotranspiration decreases.
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Overall, rcmin has a more consistent influence on the
variance of H than on that of LE.
[55] At site 7, all three models perform best with low

values for rcmin (Figure 6b), which increases LE for a given
potential evapotranspiration; however, rcmin is less identi-
fiable in GW and DV. The mode of the rcmin distribution is
higher for GW than for STD, perhaps because GW tends to
have a wetter soil and a more robust simulation of LE. The
spread of the posterior parameter distribution of rcmin for
DV is significantly larger than that for STD, although both
models share the same mode. This decrease in identifiability
of parameters functionally related to lai (as is rcmin) is
consistent with the added degrees of freedom available in
DV (DV parameters gl and sla are most important in
predicting lai) (Figure 2). Because DV simulations include
a wider spread of lai states, they also have a wider spread of
‘‘good’’ rcmin values.

5.2. How Does GW Have to Be Adjusted to Make It
Work Better Than or as Well as STD at Site 7?

[56] The response surface of RMSE SMC5cm changes
between STD and GW (Figure 7; e.g., see maxsmc versus
psisat). For GW, the shape of the bivariate posterior dis-
tributions of soil parameters that are shared with STD is
significantly different, presumably because of interaction of
the GW parameters and module with those of STD. Such
shifts in model function affect the model covariance struc-
ture as shown in Table 3.
[57] After multiobjective parameter estimation at site 7,

GW functions in one of two preferred modes (Figure 7b). In
the slightly preferred first mode (m1), the parameters work
together to help GW function as the developers likely
intended. Strong communication between the aquifer and
the soil column is supported by relatively high values of
saturated hydraulic conductivity (satdk), low values of the
reciprocal of the e-folding depth of hydraulic conductivity

Figure 7. Multivariate posterior distribution of the behavioral parameters of STD and GW at site 7
shown for selected parameter combinations in bivariate plots. Higher density of parameter values are
indicated with increasingly redder contours. The response surface of SMC5cm is shown in the back;
darker regions have higher errors. The bimodal behavior of GW is signaled by m1 and m2. See text for
explanation.
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(fff), and low porosity (maxsmc). A relatively low surface
runoff scaling factor (fsatmx) and a relatively high subsur-
face runoff scaling factor (rsbmx) ensure that subsurface
runoff dominates surface runoff. Consistent with natural
processes, high soil suction (psisat) pulls water upward. A
high aquifer specific yield (rous) deepens the water table
(weakening the direct influence of the saturated zone on the
model soil column) and transforms more water to runoff
rather than to recharge.
[58] In the second mode (m2), GW adopts parameter

values that make the model work as one would expect
STD to function (i.e., the model operates with parameters
that render GW nonfunctional) (Figure 7b). Relatively high
values of fff effectively seal the bottom of the soil column,
limiting communication between the aquifer and the soil
column; high maxsmc decreases the vertical conductivity,
further inhibiting the already poor communication. High
maxsmc favors decreased direct evaporation. Surface runoff
is augmented by a relatively high fsatmx; subsurface runoff
is lessened by the relatively low rsbmx.
[59] These alternative behaviors are a possible explana-

tion for the issue identified by Rosero et al. [2009], who
showed that despite very good performance of calibrated
GW, the model suffered from low robustness (i.e., a high
sensitivity to unmeasurable parameters).

5.3. How Does DV Have to be Adjusted to Make It
Work Better Than or as Well as STD at Site 7?

[60] STD and DV functionally differ in two ways: (1) STD
prescribes shdfac using monthly climatological values (�0.7
at site 7), while DV predicts it as a function of environmental
variation in moisture and radiation availability and (2) STD
treats lai as a parameter, while DV uses shdfac to predict lai
variation using a functional relationship:

lai ¼ max xlaimin;
�1
gl

log�1 1� shdfacð Þ
� �

: ð14Þ

[61] Vegetation affects all components of LE flux (via
shdfac): (1) vegetation shades the soil, modulating direct
evaporation (Edir); (2) vegetation retains water above the
soil, contributing to evaporation from the canopy (Ec); and
(3) vegetation fuels transpiration (Etransp). In DV, a high
value of conversion parameter gl fixes shdfac near 1 and
yields a regime in which Ec and Etransp are strongly favored
over Edir. Low values of gl fix shdfac near zero and promote

a regime in which Edir is the dominant component of LE.
When shdfac is near zero, both Ec and Etransp are minimized.
At sites with sufficient vegetation, DV enables the model to
correctly give more weight to Etransp. STD, unable to change
the value of shdfac to shift the balance of components of
LE, favors higher lai (which decreases stomatal resistance
and increases Etransp) as means for increasing total LE.
[62] When compared to STD, DV can achieve ‘‘good’’

model performance using a wider range of values for shdfac
and lai. We see this decreased identifiability of DV param-
eters when comparing the bivariate posterior parameter
distributions of STD to those of DV at site 7 (Figure 8).
The identifiability in the response surface of RMSE LE has
changed (e.g., lai versus rcmin) (Figure 8). The decrease in
identifiability of parameters that are functionally related to
shdfac and/or lai can be seen across the IHOP sites (results
not shown). The interplay of the parameters of the DV
module also leads to changes in parameter densities of STD
and DV (Figure 8). We see additional evidence for increased
interaction between parameters in DV when we note that the
models’ covariance structure has been altered (Table 4). For
example, rcmin and maxsmc are positively correlated in
STD, but in DV they have a very slight negative correlation.
[63] Although the increased flexibility of lai and shdfac

values may improve the model’s simulation of seasonal and
interannual variation in surface fluxes, over time scales
examined here, DV does not appear to improve the model.
The constraints imposed by the turbulent and near-surface
states may be insufficient for the complexity of the model
and/or DV may need to be constrained with observations of
carbon fluxes and plant growth. When there is little vege-
tation (e.g., at sites 1–3), DV may be failing to consider
special water use features associated with the semiarid
vegetation [Unland et al., 1996]. The function of the DV
module may also be hindered by Noah’s lack of a separate
canopy layer [Rosero et al., 2009] and/or by the absence of
a more complex Ball-Berry type of stomatal conductance
formulation (Niu et al., unpublished manuscript, 2009).

6. What Are the Implications of Our Sensitivity
Analysis Results for Parameter Transferability?

[64] Our foregoing assessments have shown that param-
eter interaction is a significant contributor to model variance
(section 4) and that the behavioral posterior parameter
distributions for a given site change between models
(section 5) and for a given model between sites (not shown;
see Figure 9). These observations challenge the long-standing
assumption of land surface modeling that LSM parameters
are physically meaningful quantities. Because developers
have attempted to use physical principles when designing
LSMs, physically based model parameters have been as-
sumed to correspond to physical characteristics of a system
[e.g., Dickinson et al., 1986], which can be either measured
in the field (e.g., porosity) or inferred from (remotely
sensed) observations (e.g., LAI). Identical LSM parameters
are used in locations that share the same physical character-
istics [e.g., Sellers et al., 1996]. ‘‘Parameter transferability,’’
the a priori assignment of parameter values based on a site’s
physical characteristics (e.g., soil and vegetation type),
depends on the appropriateness of the above stated assump-
tion. By making sets of vegetation-related (soil-related)

Table 3. Spearman Rank Correlation Coefficients Between

Parameter Sets Belonging to the Behavioral Set for STD and GWa

GW

STD

maxsmc psisat satdk fxexp rous fff fsatmx

maxsmc �0.10 �0.40 0.29
psisat �0.33 �0.14 �0.32
satdk �0.09 0.49 0.22
fxexp �0.26 0.41 0.23
rous �0.01 0.26 0.24 0.14
fff 0.11 �0.46 �0.45 �0.49 �0.37
fsatmx �0.22 �0.04 �0.17 0.09 �0.37 0.17
rsbmx 0.11 �0.25 �0.13 �0.21 0.32 0.08 �0.24

aNote the change in the covariance structure in Figure 7. See Table 1 for
abbreviations of parameter names.
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parameters functions of vegetation (soil) type, LSMs con-
tain the implicit assumption that vegetation (soil) type solely
determines the ideal values of vegetation (soil) parameters.
[65] The joint multivariate posterior distribution summa-

rizes much of the information regarding the relationships
between model parameters (i.e., the model structure) at a
particular location given observed data sets. To test the
assumption that parameters and parameter relationships
directly relate to physical characteristics, we compare the
similarity of the marginal posterior distributions of the
behavioral parameter sets between sites. We also evaluate
the extent to which climate determines the similarity of
parameter distributions between locations.

6.1. Testing Parameter Transferability Between Sites
Using Soil Textures and Vegetation Types

[66] If parameters were readily ‘‘transferable’’ between
sites solely based on the sites’ vegetation type, we would
expect the distributions of the vegetation parameters at two
sites with the same vegetation type but different climatic
regime (e.g., sites 2 and 8) to be more similar than the

distributions of the same parameters at two sites with
different vegetation but similar climate (e.g., sites 2 and 1).
This expectation is in general not supported by our evidence.
The distributions of rcmin and lai (Figures 9a and 9b) and
rsmax and z0 are more similar between sites with similar

Figure 8. Bivariate depiction of the posterior distribution of behavioral parameters of STD and DV at
site 7. Higher densities of parameter values are indicated with red contours. The response surface of LE is
shown in the back; darker regions have higher errors. Note the significant change in the identifiability of
hs and maxsmc.

Table 4. Spearman Rank Correlation Coefficients Between

Parameter Sets Belonging to the Behavioral Set for STD and DVa

DV

STD

rcmin hs maxsmc psisat fragr bf xlaimin

rcmin �0.35 0.44 0.02
hs 0.30 �0.15 �0.36
maxsmc �0.16 �0.29 �0.10
psisat 0.50 0.36 �0.21
fragr 0.58 0.24 �0.02 0.10
bf 0.61 0.30 �0.19 0.59 0.40
xlaimin �0.72 �0.31 0.10 �0.31 �0.62 �0.54
sla 0.80 0.21 �0.15 0.35 0.66 0.45 �0.67

aNote the change in the covariance structure in Figure 8. See Table 1 for
abbreviations of parameter names.
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climate (dry) than they are between sites with the same
vegetation (grass). The parameters hs and cmcmax show a
similar lack of transferability. Only sbeta shows ‘‘transfer-
ability’’ (i.e., there are smaller differences between the
distributions from sites with the same vegetation cover) for
all models (Figure 9c). Parameter cfactr is transferable, but
only for STD. Parameter rgl could be considered transferable,
but only for DVand GW. The IHOP data set does not enable
us to test parameter transferability using two sites with the
same soil texture but different climatology.
[67] The case studies above are by no means conclusive,

but they do not support the hypothesis that parameters are
transferable solely based on vegetation type. The results
instead suggest that LSM parameters are more sensitive to
climatic forcing than to a specific land cover classification.
Our results are consistent with similar observations for other
hydrologic models [Demaria et al., 2007; van Werkhoven et
al., 2008], and they are also consistent with observations
made using single optimal parameter sets for the Noah LSM
[Hogue et al., 2005; Rosero and Bastidas, 2007; Gutmann
and Small, 2007].

6.2. Synthesizing Sensitivity to Site, Soil,
and Vegetation Classes by Means of Clustering

[68] In order to more quantitatively synthesize knowledge
gained through sensitivity analysis for use at ungauged
locations, we built upon the aforementioned idea of com-
paring the similarity of parameter distributions across sites
by complementing the approach with unsupervised,
agglomerative hierarchical clustering methods [Rosero and
Bastidas, 2007].
[69] For each IHOP site, we obtained a stable, multivar-

iate posterior probability distribution c of behavioral
parameter sets X = {x1, x2, . . ., xi, . . .xk} using multi-
objective parameter estimation. The marginal probability
distribution for the ith parameter is ci. To circumvent
comparing each site to every other, two at a time (similar
to section 6.1), we define a triangular probability distribu-
tion Di as a reference distribution for each parameter. Di = 1
when the value of parameter xi is the ‘‘default’’ for the site.
Di = 0 when xi is at either edge of the feasible range. This

Figure 9. For the selected, sensitive vegetation parameters
(a) rcmin, (b) lai, and (c) sbeta, (left) the difference between
the marginal posterior parameter distributions (PPD)
obtained at sites with the same vegetation but different
climate (sites 2 and 8) (continuous, bright lines) and the
difference between the marginal posterior parameter
distributions obtained at sites with similar climate but
different vegetation (sites 1 and 2) (dashed, dark lines) are
shown. (right) Bar graphs; note that the total difference
between parameter distributions at sites with the same
vegetation but different climate (brightly colored bars) is
generally not smaller than the difference of distributions of
the same parameters between contiguous sites with similar
climate but different vegetation (dark colored bars).

Figure 10. Clustering of sites using (a) only the vegetation parameters of STD, (b) only the soil
parameters of GW, and (c) both soil and vegetation parameters of GW. The similarity between marginal
distributions of behavioral parameters at all sites is compared using different distances. Figures 10a–10c
report the distance that maximizes the cophenetic correlation coefficient of the linkage. Note that neither
soil nor vegetation parameters render groups solely based on soil or vegetation type. The clusters of all
parameters seem to have a strong relationship with the three climatic zones.

D03106 ROSERO ET AL.: SENSITIVITY AND INTERACTIONS IN NOAH LSM

17 of 21

D03106



step allows us to introduce the assumption that the
parameters relate to soil and vegetation types.
[70] For each parameter, and at each site, we quantify the

closeness between the cumulative distribution of the ‘‘opti-
mal’’ values of xi (i.e., the marginal ci) and the reference
distribution Di. We use the Hausdorff norm to quantify the
difference ci – Di. For each model, the matrix of similarity
of the marginal distributions of k parameters at all the n
evaluation sites is

S ¼
c11 � D11 . . . ck1 � Dk1

. . . . . . . . .
ck1 � Dk1 . . . ckn � Dkn

2
4

3
5: ð15Þ

S can be used to identify groups of parameters that are
similar between locations or to identify locations where
groups of parameters behave alike. We use the unsuper-
vised, agglomerative hierarchical clustering algorithm
(described in section 3.8) to find these groups without
making any further assumptions about the number of
groups.
[71] If the previously described assumption of parameter

transferability based on site characteristics holds (and if
IHOP vegetation classifications are correct), then, given the
set of similarity vectors created using the set of vegetation
parameter distributions S(xveg,1..n), a clustering procedure
should be able to classify similar sites in groups that
resemble the IHOP vegetation type groupings (Table 1).
Similarly, clustering of S(xsoil,1..n) would result in sites
grouped according to the IHOP soil texture classification
(Table 1).

[72] Applying a suite of distance metrics (e.g., Manhat-
tan, Euclidean, Cosine), neither soil nor vegetation param-
eters render groups of sites that partition solely based on the
expected soil or vegetation classifications. Figure 10a shows
the classification tree (dendrogram) for STD using the
Euclidean distance, which maximizes the cophenetic corre-
lation coefficient of the linkage (also shown). None of the
distance metrics allowed us to classify S(xveg,1..n) by loca-
tion in a way that matched the IHOP vegetation classifica-
tions. Given the subset S(xsoil,1..n), composed of the
similarity vectors of the 10 soil parameters at all sites,
classification of the IHOP sites according to soil character-
istics was also not feasible (Figure 10b). Using similarity
vectors for STD, GW, and DV, some (but not all) of the
distances identified sites 7, 8, and 9 as having the same soil
and same vegetation type (although, because they also share
the same climate type, we are unable to definitively attribute
such classification to shared vegetation type). The rest of the
sites do not strongly coalesce according to physical prop-
erties. For example, the pasture sites are not distinctively
grouped; sites 5 and 6 (wheat crops) are never grouped
according to vegetation (Figure 10a). Sites 1 and 2 (sandy
clay loam) and sites 4 and 5 (loam) do not cluster together
using soil parameters (Figure 10b). These results are con-
sistent with earlier findings presented here, which suggest
that interaction between soil and vegetation parameters is
significant (section 4), to the point that it shapes the
posterior parameter distributions (section 5). These results
also suggest that soil and vegetation type are not, by
themselves, good physical characteristics by which to
transfer parameters.
[73] To account for interdependence between soil and

vegetation parameters, we classified the entire matrix
S(xsoil,xveg). If parameters can be transferred based on
shared vegetation and soil type, then the clustering of the
entire matrix should identify groups of sites with the same
vegetation and soil type (e.g., sites 7–9). Figure 10c shows
a pattern (found with several distances) that is consistent
across models: sites 7–9 cluster together. Sites 7, 8, and 9
also have similar climates, and the classification of the sites
shows strong resemblance to the climatic gradient. Given
this data set, we cannot disprove the contention that
parameters can be transferred between sites that have both
the same vegetation and soil type.
[74] If we instead cluster S looking for groups of param-

eters, we expect that xsoil will as a whole behave in a similar
way across sites. In other words, one can produce a map of
sensitivity to characterize which parameters are most similar
to their default (prior distribution) and which are not.
Figure 11 shows representative groupings of the behavioral,
marginal posterior distributions of STD and GW parameters
at all sites. Using a suite of distance measures, we were
unable to identify definitive clusters of soil and vegetation
parameters within the set of similarity vectors S, meaning
that individual parameters are not sensitive in groups that
primarily relate to soil alone or to vegetation alone. The new
GW parameters do behave in a way that is similar to other
soil parameters (Figure 11b), which informs the estimation
of GW parameters for distributed applications.
[75] We conclude that the primary site-to-site control on

parameters values is not a site’s soil or vegetation type
alone. This result is consistent with the notion that LSM

Figure 11. Clustering of soil (black), vegetation (gray),
and GW parameters for the behavioral, marginal posterior
distributions of (a) STD and (b) GW at all sites. The
cophenetic correlation coefficient for the complete linkage
for the parameters of STD and GW is 0.87 and 0.90,
respectively. GW parameters seem to behave in a similar
way as the soil parameters do.
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parameters, which must represent physical processes across
multiple scales, are ‘‘effective’’ values rather than physical-
ly derived quantities [Wagener and Gupta, 2005]. It is also
consistent with the assertion that interaction between classes
of parameters (e.g., ‘‘soil’’ parameters and ‘‘vegetation’’
parameters) is very important. Our clustering analysis
suggests that climate is a major control of site-to-site
variation in parameter values and supports recommenda-
tions that climate be considered when transferring parameter
values between sites [Liang and Guo, 2003; Demaria et al.,
2007; van Werkhoven et al., 2008].

7. Summary and Conclusion

[76] Sensitivity analysis allows us to draw conclusions
regarding land surface model (LSM) development and
model assessment practices, the functioning of three ver-
sions of the widely used versions of the Noah LSM, and the
a priori estimation of parameter values. Our work yields
several conclusions that can be generalized to LSM and
other environmental models in general, and several con-
clusions that are specific to the Noah LSM.
[77] We show that the clear patterns of parameter impor-

tance identified by variance-based sensitivity analysis
(VSA) are consistent with site-to-site variation in climate
and with model-to-model changes in physical parameteri-
zation. VSA shows that parameter interactions within models
exert significant control on the model output variance.
Shifts in parametric control on variance and covariance hint
at whether a model represents the water and energy cycles in
a way that is consistent with the assumptions underlying the
models. Although the optimal value of a parameter is useful
information, the change in the functional relationship
between parameters is more likely to be relevant for model
development and hypothesis testing.
[78] Transfer of parameters based solely on similarity in

vegetation type or soil texture is not a viable method for a
priori parameter estimation. The work presented here shows
that vegetation type and soil texture are not the most
significant contributors to site-to-site variation in optimal
parameter values. Interaction between soil and vegetation
parameters is significant and varies between sites; and
explains at least partially why the transfer of parameters
based solely on shared vegetation type or soil texture does
not work. The primary factor controlling site-to-site varia-
tion in parameters is likely to be climate, although, given the
relatively small data set used here, the combination of a
site’s vegetation type and soil texture or some unidentified
factor cannot be ruled out as the dominant controlling
factor. The lack of viability of parameter transfer based
solely on soil and vegetation type is a conclusion that has
significant implications for the field of regional and global
land surface modeling, which depends on parameter transfer
based on stand-alone vegetation type and soil texture as a
means for a priori parameter estimation.
[79] Looking specifically at the performance of the three

versions of the Noah LSM used in this study (STD, GW,
and DV), we make several nonsite-specific conclusions
regarding model behavior. All three models exhibit signif-
icant parameter interaction, indicating that the models are
overparameterized and/or underconstrained. All three show
the least parameter interaction at the middling moisture and

wet sites and the most parameter interaction at the three
driest sites. This difference suggests a need for reformula-
tion of Noah LSM such that semiarid regions are more
realistically represented. On the whole, GW has less
parameter interaction than STD (except at dry sites), indi-
cating that it represents land surface system with the most
realism of any of the three models. GW is also least sensitive
to errant parameters at the wettest sites (where groundwater
is likely the most influential). DV has much more parameter
interaction than STD, which provides evidence that the
model is not performing as its developers intended, does
not add value to STD, and/or requires additional constraint.
Specific to site 7, we make the following observations:
(1) STD and DV tend to underestimate direct evaporation
from the soil and (2) GW does not (maybe because of wet
soil). The assumption that vegetation decreases the thermal
conductivity of the top layer of the soil is not well supported
by the data (this conclusion can be roughly generalized to
other sites, especially the wet sites). At site 7, GW functions
in one of two modes – the slightly preferred mode works in
a way that mirrors what the developers likely intended; the
second mode makes GW function as one might expect STD
to work. Constraining runoff may isolate the more realistic
mode. GW has less spurious parameter interaction in part
because it decouples direct evaporation and subsurface
runoff (which are coupled via porosity in STD and DV).
This decoupling appears to make the model function more
realistically, with less trade-off between the simulation of
soil moisture and LE. Adding modules (DV, GW) decreases
the identifiability of minimum stomatal resistance, although
all three models prefer low minimum stomatal resistance
(thus increasing LE for a given set of conditions). Across
several sites, DV functions in one of two modes (1) the first
emphasizes direct soil and canopy evaporation over tran-
spiration and (2) the second emphasizes transpiration over
direct evaporation from the soil and canopy.
[80] Our approach to sensitivity analysis complements

new methods for characterizing typical modes of LSM
behavior [Gulden et al., 2008b; Rosero et al., 2009] within
a model diagnostic framework [Gupta et al., 2008] that
helps bridge the gap between model identification and
development. We encourage other modeling groups to
perform similar analyses with their models as a way to
ensure rapid, continued improvement of our understanding
and modeling of environmental processes.
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Stöckli, R., D. M. Lawrence, G.-Y. Niu, K. W. Oleson, P. E. Thornton,
Z.-L. Yang, G. B. Bonan, A. S. Denning, and S. W. Running (2008), Use
of FLUXNET in the Community Land Model development, J. Geophys.
Res., 113, G01025, doi:10.1029/2007JG000562.

Tang, Y., P. Reed, T. Wagener, and K. van Werkhoven (2006), Comparing
sensitivity analysis methods to advance lumped watershed model identi-
fication and evaluation, Hydrol. Earth Syst. Sci. Discuss., 3, 3333–3395.

Tang, Y., P. Reed, K. van Werkhoven, and T. Wagener (2007), Advancing
the identification and evaluation of distributed rainfall-runoff models
using global sensitivity analysis, Water Resour. Res., 43, W06415,
doi:10.1029/2006WR005813.

Trier, S. B., F. Chen, K. W. Manning, M. A. LeMone, and C. A. Davis
(2008), Sensitivity of the PBL and precipitation in 12-day simulations of
warm-season convection using different land surface models and soil
wetness conditions, Mon. Weather Rev., 136, 2321–2343, doi:10.1175/
2007MWR2289.1.

Unland, H., P. Houser, W. J. Shuttleworth, and Z.-L. Yang (1996), Surface
flux measurement and modeling at a semi-arid Sonoran Desert site, Agric.
For. Meteorol., 82, 119–153, doi:10.1016/0168-1923(96)02330-1.

van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (2008), Character-
ization of watershed model behavior across a hydroclimatic gradient,
Water Resour. Res., 44, W01429, doi:10.1029/2007WR006271.

van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (2009), Sensitivity-
guided reduction of parametric dimensionality for multiobjective calibra-
tion of watershed models, Adv. Water Resour., 32(8), 1154–1169.

Vrugt, J. A., H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian
(2003), Effective and efficient algorithm for multiobjective optimization
of hydrologic models, Water Resour. Res., 39(8), 1214, doi:10.1029/
2002WR001746.

Wagener, T., and H. V. Gupta (2005), Model identification for hydrological
forecasting under uncertainty, Stochastic Environ. Res. Risk Assess.,
19(6), 378–387, doi:10.1007/s00477-005-0006-5.

Wagener, T., and J. Kollat (2007), Numerical and visual evaluation of
hydrological and environmental models using the Monte Carlo analysis
toolbox, Environ. Modell. Software, 22, 1021–1033, doi:10.1016/j.envsoft.
2006.06.017.

Wagener, T., D. P. Boyle, M. J. Lees, H. S. Wheater, H. V. Gupta, and
S. Sorooshian (2001), A framework for development and application
of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26.

Weckwerth, T. M., et al. (2004), An overview of the International H2O
Project (IHOP_2002) and some preliminary highlights, Bull. Am. Meteorol.
Soc., 85, 253–277, doi:10.1175/BAMS-85-2-253.

Yang, Z.-L., and G.-Y. Niu (2003), Versatile integrator of surface and atmo-
sphere processes: Part 1. Model description, Global Planet. Change, 38,
175–189, doi:10.1016/S0921-8181(03)00028-6.

Yatheendradas, S., T. Wagener, H. Gupta, C. Unkrich, D. Goodrich,
M. Schaffner, and A. Stewart (2008), Understanding uncertainty in dis-
tributed flash flood forecasting for semiarid regions, Water Resour. Res.,
44, W05S19, doi:10.1029/2007WR005940.

�����������������������
L. E. Gulden and E. Rosero, ExxonMobil Upstream Research Company,

PO Box 2189, Houston, TX 77252, USA. (erosero@mail.utexas.edu)
G.-Y. Niu, Biosphere 2 Earthscience, University of Arizona, PO Box

8746, Tucson, AZ 85738, USA.
T. Wagener, Department of Civil and Environmental Engineering,

Pennsylvania State University, 226B Sackett Bldg., University Park, PA
16802, USA.
Z.-L. Yang, Department of Geological Sciences, Jackson School of

Geosciences, University of Texas at Austin, 1 University Station C1100,
Austin, TX 78712, USA. (liang@jsg.utexas.edu)
S. Yatheendradas, Hydrological Sciences Branch, NASA Goddard Space

Flight Center, Code 614.3, Greenbelt, MD 20771, USA.

D03106 ROSERO ET AL.: SENSITIVITY AND INTERACTIONS IN NOAH LSM

21 of 21

D03106



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


