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ABSTRACT

Most previous land-surface model calibration studies have defined global ranges for their parameters to
search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus
global ranges as well as model complexities on the calibration and uncertainty estimates. The primary
purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI)
to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of
land-surface energy balance representation within a common modeling framework that can be run from
a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty
estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing.
The model forcing data and surface flux data were collected at seven sites representing a wide range
of climate and vegetation conditions. For each site, four experiments were performed with simple and
complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments
were conducted and 50 000 parameter sets were used for each run. The results show that the use of global
and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to
produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows
that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and
model complexities have significant impacts on frequency distribution of parameters, marginal posterior
probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes.
Comparison between model complexity and parameter ranges shows that the former has more significant
impacts on parameter and uncertainty estimations.
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1. Introduction

The Project for Intercomparison of Land-surface
Parameterization Schemes (PILPS, Henderson-Sellers
et al., 1995, 1996) has led to the identification of large
differences in land surface schemes in the partitioning
of available water between runoff and evaporation and
in the partitioning of available energy between sensible
and latent heat fluxes (Henderson-Sellers, 1996; Shao

and Henderson-Sellers, 1996; Chen et al., 1997; Wood
et al., 1998; Dirmeyer et al., 1999; Schlosser et al.,
2000; Bowling et al., 2003). The differences among
model outputs mainly result from differences in model
structures (e.g., degree of model complexity in rep-
resenting biophysical and hydrological processes) and
inappropriate values of model parameters if errors in
forcing and calibrated data are assumed to be negligi-
ble. Although intercomparison efforts have attempted
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to remove differences resulting from parameters by as-
signing a common set of parameters for all schemes,
no effective mechanism existed to ensure that these
parameter values were optimal. One way to obtain
optimal parameter values among different schemes is
to use methods of parameter calibration.

Automated methods for identifying optimal pa-
rameter sets have been developed over the past two
decades. Sellers et al. (1989) used an iterative loop
driven by a least square reduction program and mi-
crometeorological measurements taken over the Ama-
zonian tropical forest to estimate and optimize phys-
iological parameters in the Simple Biosphere Model.
Their results showed that the specification of opti-
mal parameters improved the simulation of latent heat
fluxes. Franks and Beven (1997) used the gener-
alized likelihood uncertainty estimation technique to
estimate the uncertainty in the fluxes simulated by
a simple soil-vegetation-atmosphere transfer scheme.
Gupta et al. (1999) used a multi-criteria (MC) cal-
ibration method to estimate acceptable optimal pa-
rameter sets for the Biosphere Atmosphere Transfer
Scheme (BATS). The results showed that the BATS
performed better when its parameters were optimized
using the MC method. Xia et al. (2002) used the MC
method to investigate the relationship between model
complexity and simulation performance for one mea-
surement site (viz., Cabauw). Their results showed
that complex models performed better than the sim-
ple models when optimal model parameters were used.
Recently, Bayesian Stochastic Inversion (BSI) has also
been used to search for optimal parameters along
with their uncertainties for the Chameleon Surface
Model (CHASM) using data from Cabauw, Nether-
lands (Jackson et al., 2003).

More recently, Bastidas et al. (2004) used four
land surface models with different complexities at five
measurement sites to evaluate the ability of the MC
method for optimal parameter estimation. Xia et
al. (2004a) not only evaluated the ability of the BSI
method for estimating optimal parameters and uncer-
tainties of CHASM at seven sites but also made a com-
parison with the MC method. Their results showed
that both BSI and MC are effective methods to esti-
mate optimal parameters in terms of improving sim-
ulations of sensible and latent heat fluxes. Besides
estimating optimal parameters, BSI was also used to
estimate uncertainty of land surface parameters in the
previous study (Xia et al., 2004a).

However, most of the previous studies used a global
range set or an approximate global range to search for
optimal parameter sets. The global range includes the
largest possible scope of variations for a parameter. It
should be noted that the global optimization methods

(e.g., BSI, MC) are only mathematical tools for search-
ing a set of optimal parameters. This set of optimal
parameters is only mathematically optimal in that it
has a minimum error function or cost function. If a
land surface model were ‘perfect’ in representing the
‘real world’ land surface, and if the forcing data and
energy fluxes had no observational errors, these opti-
mization methods could find a set of optimal param-
eters which are physically reasonable (optimal), given
a global range. However, due to model defects and
observational errors, an arbitrary global range could
result in physically unreasonable or unrealistic opti-
mal parameter values although they are mathemati-
cally optimal. Parameter ranges are valuable only if
the values of a parameter set found for a specific case
are physically meaningful. At the Cabauw site, ob-
served vegetation cover is close to unity all year round
and vegetation roughness length is less than 0.2 m (see
Beljaars and Bosveld, 1997). However, calibrated op-
timal values are 0.3–0.7 for vegetation cover and 0.2
m–1.5 m for vegetation roughness length for the six
CHASM modes (Xia et al., 2002). These calibrated
values are obviously unrealistic at the Cabauw site.
Similar problems also existed in Gupta et al. (1999),
Jackson et al. (2003), Bastidas et al. (2004) and Xia
et al. (2004b) regardless of optimization methods and
land surface models. Therefore, obtaining these un-
reasonable optimal parameter values may be a result
of the improper selection of parameter ranges. In ad-
dition, model defect is another important source of
uncertainty which can influence the selection of opti-
mal parameters and their uncertainty estimates. In
this study we used different CHASM modes (viz. sim-
ple and complex) and different parameter ranges (viz.
realistic and global) to investigate their impacts on
optimal parameter and uncertainty estimates at seven
field observation sites.

2. Sites, model, method and experiment design

2.1 Sites

The model forcing data and surface flux data used
in this study were collected at seven sites. These sites
were chosen based upon data availability and different
climate and vegetation characteristics. They represent
mid-latitude grasslands, mid-latitude crops, tropical
grasslands, tropical forests and mid-latitude forests.
As suggested by Sen et al. (2001), these typical veg-
etations cover over 50% of the world’s land area. At
all sites, forcing data include downward longwave ra-
diation (DLR), air temperature (T ), relative humidity
(q), wind speed (V ), precipitation (P ) and incoming
solar radiation (ISR) or net radiation (Rnet). The en-
ergy flux data include sensible and latent heat fluxes.
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Table 1. Description of seven sites and observed data.

Site Site Location Observational Observational Vegetation Annual Mean Annual Mean Input

Name Lat Lon Period Interval Type Precipitation Temperature (K) Data

Elevation (m) (min) (mm)

Abracof 10◦5′S 61◦5′W Jun 1992– 60 Tropical rain 1990 298 ISR, Rnet,

120 m Dec 1993 forest T, q, V, P

Abracop 10◦45′S 62◦22′W Jun 1992– 60 Tropical rain 1985 297 ISR, Rnet,

220 m Dec 1993 pasture T, q, V, P

Amazon 2◦57′S 59◦57′W Jan 1997– 30 Tropical rain 1990 298 ISR, DIR,

80 m Dec 1998 forest T, q, V, P

Armcart 36◦36′N 97◦29′W Apr 1995– 30 Mid-latitude 884 284 ISR, Rnet,

318 m Aug 1995 crops T, q, V, P

Cabauw 51◦58′N 4◦56′E Jan 1987– 30 Mid-latitude 776 282 ISR, DLR,

–0.7 m Dec 1987 grassland T, q, V, P

Loobos 52◦10′N 5◦44′E Jan 1997– 30 Mid-latitude 786 283 ISR, DLR,

52 m Dec 1998 Scott pine T, q, V, P

Tucson 32◦13′N 111◦5′W May 1993– 20 Semi-arid grass 275 293 ISR, DLR,

730 m May 1994 and shrubs T, q, V, P

Detailed description of site locations, site climates and
site observations are given in Table 1. For more de-
tails, see Xia et al. (2004a, 2004b).

2.2 Model

The CHASM (Chamelon Surface Model, Desbor-
ough, 1999; Pitman et al., 2003) has been used for of-
fline intercomparison of the PILPS phase 2d (Schlosser
et al., 2000; Slater et al., 2001) and 2e (Bowling et al.,
2003) and simulations of the coupled general circula-
tion model (Desborough et al., 2001) and the limited
area model (Zhang et al., 2001). It was designed to
explore the general aspects of land-surface energy bal-
ance representation within a common modeling frame-
work (Desborough, 1999) that can be run in a variety
of surface energy balance modes ranging from the sim-
plest energy balance formulation (Manabe, 1969) to a
complex mosaic type structure (see Koster and Suarez,
1992). Two CHASM modes [Simple Land-Atmosphere
Mosaic (SLAM) and Surface Resistance (RS) ] used in
this study are shown in Table 2 and are described be-
low. Within the SLAM, the land-atmosphere interface
is divided into two tiles. The first tile is a combina-

tion of bare ground and exposed snow with the second
tile consisting of dense vegetation. The tiles may be
of different sizes and the energy fluxes of each tile are
area-weighted. Because a separate surface balance is
calculated for each tile, temperature variations may
exist across the land-atmosphere interface. A prog-
nostic bulk temperature for the storage of energy and
a diagnostic skin temperature for the computation of
surface energy fluxes are calculated for each tile. Snow
covering fractions for both ground and foliage surfaces
are calculated as functions of the snowpack depth, den-
sity, and the vegetation roughness length. The veg-
etation fraction is further divided into wet and dry
fractions if canopy interception is considered. This
model has explicit parameterizations including canopy
resistance, canopy interception, vegetation transpira-
tion and bare ground evaporation, but has no explicit
canopy-air space (see Pitman et al., 2003). The RS
mode is also designed as a two-tile CHASM model with
the simplest physical representation, such as the aero-
dynamic resistance to turbulent transport for heat and
moisture and a temporally invariant surface resistance.

Table 2. Summary of the two CHASM modes.

Surface Stability Surface Canopy Bare-ground Canopy Temperature

mode correction resistance interception evaporation resistance difference

RS yes yes no no no yes

SLAM yes yes yes yes yes yes
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CHASM uses a common hydrological module orig-
inally described by Manabe (1969) as the hydrologic
component of the land surface in which the root zone
is treated as a bucket with finite water holding capac-
ity. Any water accumulation beyond this capacity is
assumed to be runoff. Except for moisture in the root
zone, water can be stored as snow on the ground or on
the canopy. Soil temperature is calculated within four
soil layers using a finite difference method and zero-
flux boundary condition. Each tile has four evapora-
tion sources: canopy evaporation, transpiration, bare
ground evaporation, and snow sublimation.

2.3 Bayesian Stochastic Inversion (BSI )

The BSI methodology is based on Bayes theorem
and, usually, a stochastic method to select sets of pa-
rameter values from a distribution of realistic choices
for model parameters. It has been used in solid geo-
physics (Sen and Stoffa, 1995, 1996) and land surface
model simulations (Jackson et al., 2003; Xia et al.,
2004a). Its detailed description can be found in Jack-
son et al. (2004). Here we give a brief description
only. The basic idea of this method, based on very
fast simulated annealing, is to strike a balance between
identifying the optimal parameter set and mapping the
entire multi-dimensional parameter probability distri-
bution. Within the Bayesian nomenclature, the rel-
ative probability for each combination of parameter
values is expressed as a ‘posterior’ probability density
function (PPD) and is given mathematically as

σ(m | dobs) =
exp[−sE(m)]p(m)∫

exp[−sE(m)]p(m)dm
, (1)

where the domain of integration spans the entire model
parameter space m, σ(m | dobs) is the PPD, vector
dobs is the observational data, E(m) is the error
function, exp[−sE(m)] is the likelihood function, and
p(m) is the ‘prior’ probability density function for
m. The s is a shaping factor discussed in Xia et al.
(2004a). Because only the range for each model pa-
rameter in m is known, a uniform distribution within
the ranges is used as the ‘prior’ probability density
function. This selection provides a non-informative
constraint for any parameter values within the param-
eter search window.

Because the PPD calculated using Eq. (1) is mul-
tidimensional, it is difficult to visualize. Therefore, a
one-dimensional projection of the PPD is usually dis-
played (Sen and Stoffa, 1995, 1996). This projection
is called marginal PPD of a parameter. The marginal
PPD shape of a parameter (e.g., Fig. 10) is propor-
tional to the frequency distribution of the parameter
and the distribution of exp(−sE) when shaping factor
s is given. After the marginal PPD of a parameter

is calculated, the parameter range at different confi-
dence levels (e.g., 95%) can be used to estimate un-
certainty of the parameter, or one can directly use the
marginal PPD distribution to the discuss uncertainty
of the parameter according to the shape of the PPD (a
sharper-peaked PPD means smaller uncertainty, and
a wider-peaked PPD means larger uncertainty).

2.4 Experimental design

In their previous sensitivity analysis, Xia et al.
(2004a) identified ten sensitive CHASM parameters for
the seven sites. The relative importance of these 10 pa-
rameters and their descriptions are listed in Table 3.
The sensitivity of the CHASM parameters is closely
related to the sites studied. Table 4 gives a list of 10
parameters in CHASM as well as their global ranges
and realistic ranges for the seven sites based on the rel-
evant literature (Henderson-Sellers et al., 1986; Oke,
1987; Dorman and Sellers, 1989; Pitman, 1994; Gulf
et al., 1995; Bonan, 1996; Gulf et al., 1996; Sellers et
al., 1996a, 1996b; Unland et al., 1996; Wright et al.,
1996; Beljaars and Bosveld, 1997; Cash and Nobre,
1997; Chen et al., 1997; Yang et al., 1998; Desborough
et al., 1999; Gupta et al., 1999; Sen et al., 2001; Xia
et al., 2002; Dai et al., 2003; Xia et al., 2004a). Dif-
ferences of maximum and minimum air temperatures
at each site are used as realistic ranges of initial soil
temperature. Sensible and latent heat fluxes are used
as the ‘target’ observations for all seven sites. A ratio
of the variance of the errors (RVE) to the variance of
observations is used to define the mismatch between
observations and model simulations for the BSI selec-
tion process (Xia et al., 2004a). The RVE is defined
as

RVE =

N∑
n=1

(Dobs,n − Dsim,n)2

N∑
n=1

(Dobs,n − Dobs)2
, (2)

where N is the number of observational data, Dobs,n

is the observed data, Dsim,n is the simulated data,
and Dobs is mean value of the observed data. An
arithmetically-averaged error function for sensible and
latent heat fluxes is used in this study. BSI is used for
the seven sites to identify an optimal parameter set
which has a minimum RVE and to estimate parame-
ter uncertainty ranges for two CHASM modes (viz.,
SLAM and RS). Therefore, four basic experiments
were designed for each site and a total of 28 runs were
performed at the seven sites. 50 000 parameter sets
for each run were used to calculate marginal PPDs.
The four basic experiments were Expt 1 (SLAM with
global range), Expt 2 (SLAM with realistic range),
Expt 3 (RS with global range), and Expt 4 (RS with
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Table 3. Parameter description and the relative importance of CHASM parameters for seven sites [ticks indicate the
important parameters, taken from Xia et al. (2004a)].

Parameter Abracof Abracop Amazon Armcart Cabauw Loobos Tucson Description

ALBG
√ √

Bare ground albedo

ALBV
√ √ √ √ √ √

Vegetation albedo

LEFM
√

Maximum LAI

VEGM
√ √ √ √ √ √

Maximum fractional

vegetation cover

RCMIN
√ √ √ √ √ √ √

Maximum canopy

resistance (s m−1)

WRMAX
√ √ √ √

Available water hoding

capacity (mm)

Z0G
√ √ √ √ √

Bare ground roughness

length (m)

Z0V
√ √ √ √ √ √

Vegetation roughness

length (m)

TS
√ √

Initial surface

temperature (K)

WET
√ √ √ √ √ √ √

Initial soil wetness

Table 4. Realistic and global ranges of 10 CHASM parameters selected from different references.

Parameter Realistic ranges by site Global Ranges

Abracof Abracop Amazon Armcart Cabauw Loobos Tucson All Sites

ALBG 0.15–0.25 0.15–0.25 0.15–0.25 0.15–0.25 0.15–0.25 0.15–0.25 0.2–0.3 0.05–0.40

ALBV 0.10–0.25 0.10–0.25 0.10–0.25 0.20–0.30 0.20–0.30 0.15–0.25 0.15–0.35 0.05–0.40

LEFM 4.0–6.0 1.0–4.0 4.0–6.0 1.0–4.0 3.0–5.0 2.5–3.5 0.05–3.0 0.05–6.0

VEGM 0.9–1.0 0.8–0.9 0.9–1.0 0.80–1.0 0.9–1.0 0.9–1.0 0.2–0.6 0.0–1.0

RCMIN 40.00–200.0 40.0–200.0 40.0–200.0 40.0–200.0 40.0–200.0 40.0–200.0 40.0–200.0 40.0–300.0

WRMAX 200.0–300.0 100.0–200.0 200.0–300.0 100.0–200.0 100.0–200.0 100.0–200.0 100.0–200.0 40.0–400.0

Z0G 0.005–0.015 0.005–0.015 0.005–0.015 0.005–0.015 0.005–0.015 0.005–0.015 0.005–0.015 0.005–0.020

Z0V 2.0–2.5 0.01–0.20 2.0–2.5 0.01–0.20 0.01–0.20 2.0–2.5 0.01–0.20 0.01–2.5

TS 294.0–301.0 293.0–300.0 298.0–304.0 275.0–293.0 276.0–282.0 255.0–264.0 293.0–305.0 255.0–305.0

WET 0.7–1.0 0.7–1.0 0.7–1.0 0.5–0.8 0.7–1.0 0.7–1.0 0.3–0.6 0.0–1.0

realistic range).

3. Influence of parameter ranges and model
complexities on optimal parameter estima-
tion

Figure 1 shows the calculated root mean square
errors (RMSEs) and biases between simulated and ob-
served energy fluxes at the seven sites. These sim-
ulations were obtained by running the model with
the best parameter set identified by the BSI. For
the SLAM mode, use of global and realistic ranges
has similar RMSEs for both sensible and latent heat
fluxes simulations, although use of realistic ranges has
slightly larger RMSEs at all sites (Figs. 1a and 1b).
For the RS mode, use of realistic ranges results in sig-
nificantly larger RMSEs for sensible and latent heat

fluxes at the two tropical rainforest sites. At the other
sites, however, use of global and realistic ranges leads
to similar RMSEs. Therefore, use of global and realis-
tic ranges gives similar model outputs for both modes
for most sites.

The simple mode has larger RMSEs. When the
complex mode is used, RMSE errors for sensible heat
and latent heat fluxes are significantly reduced at the
tropical forest and pasture sites as well as the midlat-
itude crops site when compared to the simple mode.
This means that a complex model has better perfor-
mance than a simple model when both are optimized
for Abracof (ABF), Abracop (ABP), Amazon (AMA),
and Armcart (ARM) sites. It should be noted that
the same 10 parameters are calibrated for simple and
complex CHASM modes so that this comparison is re-
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Figure 1 

Fig. 1. Root mean square errors (RMSEs) and biases between observed and simulated fluxes at
seven measurement sites. (a) RMSEs of sensible heat flux (SH), (b) RMSEs of latent heat fluxes
(LH), (c) bias of sensible heat flux (SH), and (d) bias of latent heat flux (LH) when two parameter
ranges and CHASM modes are used.

latively fair. However, it is still debatable if this con-
clusion has a general sense because RMSEs for sensible
and latent heat fluxes are marginally reduced only for
the Cabauw, Loobos and Tucson sites when the use of
simple and complex modes is compared.

The analysis of bias for sensible and latent heat
fluxes shows that CHASM overestimates latent heat
flux and underestimates sensible heat flux. However,
the simple mode generates larger positive biases for
sensible heat fluxes, and larger negative biases for

latent heat fluxes at almost all sites than the com-
plex mode (Figs. 1c and 1d) regardless of the use of
parameter ranges. Therefore, the overall assessment
based on RMSE and bias shows that the complex
mode performs better than the simple mode. For both
the RMSE and bias analysis, the range of parameter
and model complexities have the least impacts at the
Cabauw site when compared to the other sites. The
reason for this will be discussed in Section 6.
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Fig. 2. Ten searched optimal parameter values for four experiments at the Abracof tropical forest site
(black cross (E1)=SLAM+global; black circle (E2)=SLAM+realistic; bold cross (E3)=RS+global; bold circle
(E4)=RS+realistic).

Although global and realistic ranges produced sim-
ilar RMSEs for the seven sites, optimal parameters
used in calculating RMSEs were relatively different.
Figure 2 shows optimal parameter values searched by
the BSI for four experiments at the Abracof tropical
forest.

When the global ranges were used, unreasonable
optimal parameter values were obtained for vegetation
albedo (ALBV), vegetation cover fraction (VEGM),
initial soil temperature (TS) and vegetation rough-
ness length (Z0V) for the RS mode, and vegetation
roughness length (Z0V) for the SLAM mode. These
optimal values are too small when compared to ob-
servational values. However, reasonable optimal val-
ues were searched for 10 CHASM parameters when
realistic ranges were used. Comparison of simple and
complex modes shows that the simple mode tends to
have more unreasonable optimal values. This state-
ment holds true for the other two forest sites (Figs.
3 and 4). Unreasonable optimal values also occurred

at the midlatitude grassland, midlatitude crops, trop-
ical pasture, and semi-arid sites (see Figs. 3 and 4)
when global ranges were used. However, use of realis-
tic ranges results in reasonable and consistent optimal
values for the two modes and 10 CHASM parameters
at all sites.

While the selection of parameter ranges impacts
estimation of optimal parameters, the use of global
ranges does not change the conclusion that a complex
model performs better than a simple model when op-
timal model parameters are used (Xia et al., 2002).
However, Xia et al.’s conclusion was drawn from us-
ing unreasonable optimal parameter values. These un-
reasonable optimal values do not necessarily lead to
unreasonable simulations of sensible and latent heat
fluxes because they are a result of minimizing differ-
ences between simulated and observed fluxes. Despite
the fact that the results from offline simulations are
usually reasonable during the calibration period, it is
not clear if the results are still reasonable from cou-
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ment sites.
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pled land-atmosphere simulations. Further research is
needed to examine how the use of unreasonable op-
timal values affects coupled land-atmosphere simula-
tions.

4. Influence of parameter ranges and model
complexities on frequency distribution of
parameters

Use of global ranges also leads to unreasonable fre-
quency distribution for some CHASM parameters, de-
pending on sites and CHASM modes. In contrast,
use of realistic ranges gives relatively consistent fre-
quency distributions for most CHASM parameters and
sites. Frequency distributions of vegetation roughness
length (Z0V) and vegetation cover fraction (VEGM) at
seven sites are two examples (Figs. 5–8). Comparison
of the results from using global and realistic ranges
shows that at all sites, the simulations with global
ranges have a much larger degree of uncertainty than
those with realistic ranges, which is obvious because
global ranges themselves are much larger than realistic
ranges. For tropical and midlatitude forests, the max-
imum frequency of Z0V for global range cases (Figs.
5a, 5c, and 5e) occurs between 0.0 and 0.5 m. This
is not reasonable because Z0V is usually between 2.0
and 2.5 at all forest sites. This unreasonable frequency
distribution is caused by the use of global ranges, be-
cause using realistic ranges results in consistent fre-
quency distributions (see Figs. 5a–f). At sites of trop-
ical pasture, midlatitude grassland, midlatitude crop,
and semi-arid shrubs, it is reasonable that the max-
imum frequency of Z0V appears near zero for both
global ranges and realistic ranges (see Figs. 6a–h). The
simple mode has larger uncertainty estimates than the
complex mode for six of the eight cases. For vegeta-
tion cover fraction, complexities of the CHASM model
result in large differences in frequency distributions
when global ranges are used (see Figs. 7 and 8), but
they give consistent frequency distributions at five of
the seven sites when realistic ranges are used. In the
case of global ranges, maximum frequencies appeared
on the right end of the parameter values for the com-
plex mode and on the left end for the simple mode at
six of the seven sites. Therefore, different frequency
distributions indicate that, at least, the result of one
mode (complex or simple) is not reasonable for this
study. The complex mode gives reasonable frequency
distributions at Abracof, Abracop, Amazon, and Arm-
cart, and the simple mode gives reasonable frequency
distributions at Tucson. In addition, at Cabauw when
global parameter ranges are used, both modes give un-
reasonable frequency distributions because the maxi-
mum frequency appears in the area with small veg-
etation cover fraction values. In practice, however,

observational vegetation cover is larger than 0.90 at
the site. Therefore, the complex mode is more often
likely to give reasonable frequency distributions than
does the simple mode even though global parameter
ranges are used. In this study, the simple mode gives
reasonable frequency distribution at Tucson, but we
believe that this result is less representative.

Figure 9 shows two-dimensional scatter plot dis-
tributions of vegetation roughness length and vegeta-
tion cover fraction at Abracof when global and real-
istic ranges are used. It should be noted that Figs.
9a–d have different scales for both x-axes and y-axes.
The results when global parameter ranges are used
show that, for a complex CHASM mode, the high
frequency area appears on the bottom right of Fig.
9a where the roughness length is small and vegeta-
tion fraction values are large. For a simple CHASM
mode, the high frequency area appears on the bot-
tom left of Fig. 9b where both the roughness length
and vegetation cover fraction are small. However, the
two high frequency areas searched are unreasonable for
both CHASM modes because they should be located
on the top-right of Figs. 9a and 9b where both vege-
tation cover fraction and roughness length are large.
However, when a realistic range was used, a high fre-
quency area appears on the left of Figs. 9c and 9d
where the parameter values are reasonable because re-
alistic ranges are used.

In summary, selection of parameter ranges has a
significant impact on frequency distributions of model
parameters for both modes. In contrast, selection of
model complexities has small effects on frequency dis-
tributions of model parameters.

5. Influence of parameter ranges and model
complexities on uncertainty estimates

5.1 Influence on uncertainty estimates of model
parameters

Uncertainties of model parameters can be repre-
sented by marginal PPD as discussed in section 2.3. As
an example, marginal PPD distributions of minimum
stomatal resistance for the two modes at the seven sites
are shown in Fig. 10. Comparison of four experiments
shows that for both modes, using global ranges leads to
larger uncertainties in estimates of model parameters
than using the realistic ranges at five of the seven sites.
However, a simple model had much larger uncertainty
than a complex model when the same parameter range
is used. It is also clear that two CHASM modes gener-
ate different PPD distributions at all of the seven sites
except for Cabauw. As discussed in our introduction,
uncertainties of land surface models mainly come from
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Fig. 5. Frequency distribution of vegetation roughness length at three forest sites
when two ranges and two CHASM modes are used (results of realistic ranges are
shown in the right column, and results of global ranges are shown in the left column.
Solid line represents SLAM mode, and dotted line represents RS mode).
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Fig. 6. Same as Fig. 5 but for vegetation cover fraction.
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Fig. 7. Same as Fig. 5 but for tropical pasture, mid-latitude crop, mid-latitude
grassland and semi-arid sites.
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Fig. 8. Same as Fig. 7 but for vegetation cover fraction.
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Fig. 9. Distributions of parameter points for four experiments at Abracof tropical forest site for (a) SLAM
with global range, (b) RS with global range, (c) SLAM with realistic range, and (d) RS with realistic range.

insufficient model complexity and inaccurate parame-
ter values if forcing data and calibration data are as-
sumed to be accurate. The comparison of four exper-
iments shows that the complexity of model structure
instead of the range of parameters dictates the degree
of uncertainty in the optimal values of parameters.

5.2 Influence on uncertainty estimates of sens-
ible and latent heat fluxes

Uncertainty ranges of simulated sensible and latent
fluxes are directly related to estimated error function
values when a percentage of total parameter sets (say
10%) is given. This error function value is an arith-
metic average of the error of latent heat and the error
of sensible heat. The larger the error function val-
ues, the greater the uncertainty ranges of sensible and
latent heat fluxes. Figure 11 shows the cumulated dis-
tribution function for the seven sites. The results show
that insufficient model complexities result in large er-
ror function values at six of the seven sites if a given
percentage of the best parameter sets (e.g., 10%) is

used to estimate the uncertainty range of sensible and
latent heat fluxes as in Frank and Beven (1997). Use
of parameter ranges results in certain differences for
error functions. However, these results are mixed so
that it is difficult to draw a conclusion.

Overall, it is clear that the selection of parameter
ranges and model complexities has significant impacts
on frequencies of model parameters, distributions of
error functions, marginal PPDs, and uncertainty esti-
mates of simulated energy fluxes at some sites. Com-
parison of parameter ranges and model complexities
shows that the latter has larger effects on model opti-
mization and uncertainty analysis.

6. Discussion

Although most calibration studies in land sur-
face schemes have used global parameter ranges, lit-
tle study has been conducted to discuss the impacts of
parameter ranges. It is widely recognized that calibra-
tion algorithms are just “blind” computer programs
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Fig. 10. Marginal posterior probability density function (PPD) at (a) Abracof tropical forest site,
(b) Abracop tropical pasture site, (c) Amazon tropical forest site, (d) Armcart mid-latitude crop
site, (e) Cabauw mid-latitude grassland site, (f) Loobos pine forest site, and (g) Tucson semi-
arid site (thin solid line=SLAM+global range; thin dashed line=SLAM+realistic range; thick solid
line=RS+global range; and thick dashed line=RS+realistic ranges. An arithmetic average of error
functions for sensible and latent heat fluxes is used in this study).

and that there is a chance that an unrealistic global
optimum will be found when a wide search space is
specified because of multiple uncertainty sources. In
the land surface research community, it is a common
practice that global parameter ranges and calibration
algorithms are used to search for optimal parameters.
The use of global ranges can result in some unrealistic
physical parameters. The reasons for choosing global
ranges are as follows. First, the model parameters are
usually dependent on climate, vegetation type, and soil
type so that the ranges are difficult to define accurately
for most model parameters. Second, researchers tend
to consider that a small range, although safer, may
miss a “true” global optimum that a calibration run
should be targeted at. The selection process of pa-
rameter ranges is sometimes a trail-and-error process
and there is a trade-off between the risk of missing a
global optimum and the risk of unrealistic physical pa-
rameters. As suggested in this study, a cautious and
careful selection of physical parameter ranges by re-

viewing a wide range of references and reports may be
an important step before a land surface scheme is cal-
ibrated. The reason is that only a global optimum in
a realistic model parameter space is meaningful, par-
ticularly when we want to use these calibrated model
parameters to drive general circulation models as done
by Sen et al. (2001).

It should be noted that the impacts of parame-
ter ranges and model complexities on optimal param-
eter and uncertainty estimates are the smallest for the
Cabauw site in most cases when compared to the other
sites. This may be a result of the interaction between
the data quality of atmospheric forcing and energy
fluxes, site vegetation and climate. As suggested by
Beljaars and Bosveld (1997), the atmospheric forcing
data are well controlled and checked. Few missing
values exist at Cabauw for energy flux observations.
At the other data sites, 30%–70% of observed energy
fluxes are missing, and thus only part of the energy
flux observations can be used for calibration. There-
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Fig. 11. Same as Fig. 10 but for empirical cumulative distribution functions (CDF) of error
functions (an arithmetic average of error functions for sensible and latent heat fluxes) for the top
10%–20% of the results simulated with all parameter sets.

fore, small calibration samples are more sensitive to
model parameter ranges and model complexities. In
addition, the Cabauw vegetation and climate well con-
strain the sensitivity of model complexities. The PPD
distribution of minimum stomatal resistance is a good
example. As shown in Fig. 10, the PPD of minimum
stomatal resistance is significantly sensitive to model
complexities for all sites except for Cabauw.

7. Conclusions

The analysis presented in this paper demonstrates
that the use of parameter ranges and complexities of
the land surface model has a significant impact on the
selection of optimal parameters, frequency distribution
of the parameters, the marginal posterior probability
density, and estimates of uncertainty of simulated sen-
sible and latent heat fluxes. Care must be taken when
referencing previous work where the global ranges or
approximate global ranges were used because some un-
reasonable optimal parameter values might result. Al-
though this analysis does not change the conclusion of
Xia et al. (2002) that a complex land surface model

performed better than a simple model when optimal
parameters were used, it is unknown whether these un-
reasonable optimal values have an impact on other pre-
vious optimization studies. For uncertainty estimates,
it is obvious that Jackson et al. (2003) and Xia et al.
(2004a) may have amplified uncertainty estimates of
the CHASM model parameters because they used an
approximate global range. This study also suggests
that realistic rather than global ranges should be used
in the intercomparison of land surface models in the
ongoing optimization studies such as PILPS San Pe-
dro (see www.sahra.arizona.edu/pilpssanpedro), in the
estimation of parameter uncertainties in offline simu-
lations, and in the search for optimal parameters for
GCMs.

Model complexities show larger effects on model
optimization and uncertainty analysis, which is not
surprising. It is well known that any model, regard-
less of its degree of complexity, is a simplification of
the real world. However, insufficient model complexi-
ties would result in large uncertainties in both optimal
parameters and heat fluxes, as shown in this study.
Although model parameters can compensate for some
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deficiencies in model complexities (Xia et al., 2002),
this compensation is not enough so that simulations
of energy fluxes using a simple model with insufficient
complexity still has larger simulation errors than those
from a complex model, even though optimal parame-
ters are used.
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