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Abstract. Attempts to model surface-atmosphere interactions with greater physical
realism have resulted in complex land surface schemes (LSS) with large numbers of
parameters. A companion paper describes a multicriteria calibration procedure for
extracting plot-scale estimates of the preferred ranges of these parameters from the
various observational data sets that are now available. A complementary procedure is
presented in this paper that provides an objective determination of the multicriteria
sensitivity of the modeled variables to the parameters, thereby allowing the number of
calibration parameters and hence the computational effort to be reduced. Two case
studies are reported for the BATS model using data sets of typical quality but very
different location and climatological regime (ARM-CART and Tucson). The sensitivity
results were found to be consistent with the physical properties of the different
environments, thereby supporting the reasonableness of the model formulation. Further,
when the insensitive parameters are omitted from the calibration process, there is little
degradation in the quality of the model description and little change in the preferred
range of the remaining parameters.

1. Introduction and Scope

This paper is one of three that discuss the usefulness of
multicriteria methods for the evaluation and improvement of
land surface schemes (LSS). A companion paper [Gupta et al.,
this issue] shows how multicriteria methods can be used to
improve the estimates of LSS parameters by simultaneously
constraining the model to measurements of several observed
system responses such as heat fluxes, ground temperature, and
surface soil moisture. This paper develops that study by intro-
ducing a robust multicriteria approach to parameter sensitivity
analysis for LSS models and by showing how the methodology
provides a way to reduce the dimensionality of the parameter
estimation problem. In both papers, the methodology is illus-
trated using the Biosphere-Atmosphere Transfer Scheme
(BATS) [Dickinson et al., 1993] and two data sets, one from the
ARM-CART grassland site and the other from a semiarid site
in the Sonoran Desert, Arizona. A third paper (in preparation)
will discuss the power and applicability of multicriteria meth-
ods for the evaluation of model performance and for model
intercomparison.

The paper is organized as follows: Section 2 discusses the
background and context for this work and presents a review of
the literature. Section 3 introduces the theoretical and practi-
cal basis for applying multicriteria methods to the generalized
sensitivity analysis of LSS model parameters. In Section 4, the
sensitive parameters of the BATS model for two study sites are
identified, and it is shown that only the reduced set of sensitive
parameters need to be calibrated to obtain good model per-
formance. Section 5 discusses the results and future extensions.

2. Background
LSS models differ from classical hydrologic watershed mod-

els in that they are concerned with both water and energy
balance, they are driven by multiple input variables (e.g., pre-
cipitation, shortwave and longwave radiation, wind speed, air
temperature, and humidity), and they predict the evolution of
several observable state variables (e.g., soil skin temperature,
surface soil moisture) and output fluxes (e.g., latent heat, sen-
sible heat, runoff). Such models often have a large number of
parameters that must be specified. The Biosphere-Atmosphere
Transfer Scheme (BATS) [Dickinson et al., 1993], for example,
has 27 parameters to be estimated, including 16 related to
vegetation properties and eight related to soil properties, to-
gether with three initial moisture conditions. While the param-
eterizations of LSS models have been designed with the notion
that it should be possible to estimate reasonable values for the
parameter from measurable characteristics of the land surface,
recent studies such as the PILPS 2c workshop [Lettenmaier et
al., 1996] have demonstrated that even simple manual (subjec-
tive) adjustment of a few model parameters can result in sig-
nificant improvements in model performance. However, as
long as the performance of an LSS model remains dependent
on subjective human expertise for the specification of its pa-
rameters, it will remain difficult to conduct an objective eval-
uation of the relative merits of alternative parameterizations.
It is useful therefore to explore the utility (objectivity and
efficiency) of automated methods [Sorooshian et al., 1993;
Gupta et al., 1998] for improving the parameter estimates used
by LSS models; in a companion paper [Gupta et al., this issue],
we demonstrate how this can be done by applying multicriteria
calibration methods.

As LSS models have become more complex, the number of
parameters that must be estimated has significantly increased.
While the typical conceptual watershed hydrology model may
have only 10–15 parameters, the BATS 1e model has 27 pa-
rameters, and the current SiB2 model has 52 parameters that
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must be specified. Many of these are “conceptual” parameters
that are not directly measurable at the GCM-LSS scales and
for which all that might reasonably be specified are the ap-
proximate ranges for the parameter values, based on some
approximate understanding of the regional hydrogeology. If
the input-state-output response of the LSS is not essentially
sensitive to parameter variations within these ranges, it will be
reasonable to use some nominal estimates (such as the mid-
points of the parameter uncertainty ranges). However, if the
LSS input-state-output response is sensitive to finer specifica-
tion of these parameters, the only remaining recourse is to
adjust the parameter so that model responses are constrained
to closely match available observations via calibration [Gupta
et al., this issue]. It is important therefore to identify which of
the parameters within the model are sensitive (for each hydro-
climatic regime) and should be refined further via calibration.

A number of different methods have been proposed in the
literature for the sensitivity analysis of LSS schemes. These
include the most commonly used “one parameter at a time”
approach [e.g., Wilson et al., 1987a, b; Pitman, 1994; Gao et al.,
1996], the factorial method [e.g., Henderson-Sellers, 1992; Let-
tenmaier et al., 1996], the Fourier amplitude sensitivity test
(FAST) [Collins and Avissar, 1994], and the regionalized sen-
sitivity analysis (RSA) methodology [Franks et al., 1997]. Most
studies assumed parameter independence and explored the
individual impacts of each parameter on each system response
taken one-at-a-time. None of the methods accounts for the
joint multiparameter and multiresponse interactions. Although
the factorial method allows (in principle) the exploration of
multiparameter interactions, a simple two-level factorial exper-
iment for a 25 parameter model would require an unreason-
able number of model runs (225 5 33,554,432). While this
number can be reduced by a fractional factorial experiment
that only considers second- or third-order interdependence,
the effects of large numbers of possible interactions would
then be ignored. The FAST method would only require about
6000 model runs for the same problem (extrapolating from
Cukier et al. [1978]), but it again ignores interdependence
among the parameters or requires an a priori estimate of the
parameter covariance structure.

Another common feature of past studies is that they were
directed not only at finding the influence of the model param-
eters but also at how this influence varies under different
climatic forcing conditions. The studies were therefore con-
ducted using artificially constructed atmospheric forcing data
for different environments [e.g., Henderson-Sellers, 1992; Gao
et al., 1996]. Further, the impacts were typically evaluated in
terms of integrated response statistics such as average or cu-
mulative values over monthly or yearly time spans (e.g., total
evapotranspiration, total runoff, and minimum upper layer soil
temperature for a year [Henderson-Sellers, 1992]; mean of the
annual heat fluxes, ground temperature, and soil moisture [Pit-
man, 1994]; annual cumulative monthly runoff, annual cumu-
lative monthly accumulated absolute differences between soil
moisture and porosity for perturbed and nominal parameters
[Lettenmaier et al., 1996]; and annual average variation of
model responses, [Gao et al., 1996]). To our knowledge, only
Franks et al. [1997] used real system response data for their
sensitivity analysis. However, they studied a time span of only
10 days and only considered the latent heat flux.

In general, these studies have reported that the latent and
sensible heat fluxes are sensitive to the same parameters. One
parameter that seems to be universally important for different

LSS formulations is that related to the stomatal resistance of
the vegetation. However, the results of different studies using
BATS are inconsistent; for example, Lettenmaier et al. [1996]
report high sensitivities to the Clapp and Hornberger param-
eter B, while Gao et al. [1996] and Henderson-Sellers [1992] did
not. An important finding by Gao et al. [1996] is that the
influence of errors in the initial soil layer water conditions may
persist for several years beyond the end of the spin-up period.

The work presented here builds on the multicriteria frame-
work presented by Gupta et al. [1998] and Gupta et al. [this
issue]. The major aim of this paper is to demonstrate a robust,
practical, and efficient approach for the parameter sensitivity
analysis of LSS models, in a manner that properly accounts for
the joint multiparameter/multiresponse interactions, and to
illustrate the consequent benefits that can accrue. We show
that the approach provides a parameter sensitivity classifica-
tion which is consistent with physical understanding. We also
show how this classification can be used effectively to reduce
the dimensionality of the parameter estimation problem,
thereby significantly reducing the computer time required to
conduct a model calibration.

3. Multicriteria Sensitivity Analysis

3.1. Problem Formulation

A theoretical basis for the application of multicriteria theory
to the calibration of conceptual multiparameter physically
based models was presented by Gupta et al. [1998], and this is
extended to LSS models by Gupta et al. [this issue]. The char-
acteristic of LSS models is that they have a relatively large
number ( p) of parameters u 5 {u1, z z z up}, which influence
the time evolution behavior of several (m) different modeled
variables (Zj (u , t j), t j 5 taj, z z z , tbj, j 5 1, z z z m). We
define a single criterion f j(u ) for each separate ( jth) model
response to measure the distance between the set of modeled
responses Zj(u ) and some benchmark responses Xj (Notes:
(1) it is trivial to extend the methodology to allow more than
one complementary criterion to be defined on each modeled
response; (2) without loss of generality, we assume that f j(u )
. 0). The benchmark responses could either be model simu-
lations Zj(u*) performed at some nominal point u* in the
parameter space or a set of observations Oj made at a study
site. The specification of the mathematical form of these cri-
teria depends on the problem and the goals of the user; in this
work we adopt the commonly used root-mean-square error
measure of the deviation between two time series
(RMSEj (u) 5 sqrt {(1/n) ¥ t51, z z z n (Zj(u , t) 2 Xj(t))2}).
The multicriteria response of the model as a function of the
parameters can then be defined on the feasible parameter
space Q as

F~u ! 5 $ f1~u ! , z z z, fm~u !% (1)

where u , Q. The primary objective of parameter sensitivity
analysis is to determine which of the parameters u give rise to
significant variations in the multicriteria response function
F(u ) as they are allowed to vary jointly over Q and to deter-
mine the nature of those variations. A secondary objective is to
classify the sensitivity of the parameters into some order of
relative importance.

The above-stated goal of deriving multicriteria parameter
sensitivity can be addressed by extending and improving the
“regional sensitivity analysis” (RSA) single-criterion method
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[Spear and Hornberger, 1980; Hornberger and Spear, 1981]. The
latter method begins with a uniform random sampling of n
distinct points in the feasible parameter space Q (we shall call
this set of points R) and proceeds by partitioning Q into a
region B (called the “behavioral” region), which is character-
ized by a desirable modeled behavior, and its complement B
(called the “nonbehavioral” region). The behavioral region can
be defined either in terms of the parameter space that pro-
duces desired trajectories of the modeled responses or state
variables [Spear and Hornberger, 1980], or in terms of the (sub-
jectively assessed) desirable values of a summarizing criterion
[Hornberger et al., 1985; Beven and Binley, 1992; Chang and
Delleur, 1992; Spear et al., 1994; Ohte and Bales, 1995; Franks et
al., 1997]. In the context of (1) the behavioral region must be
defined in terms of a multicriteria threshold applied to the
function F(u ). A simple way to do this is to select a T 5
{T1, z z z , Tm} and define B(T) such that F(u ) , T (where ,
denotes component-by-component superiority). However, this
requires the subjective selection of m threshold values and,
further, does not guarantee multicriteria superiority [Bastidas,
1998]. An alternative approach is to transform the multicriteria
formulation (equation (1)) into a single-criterion form by some
mapping such as

g~u ! 5 O
j51,· · ·,m

wjf j~u ! (2)

where the wj are user-selected weights defining the relative
importance of the individual criteria and to apply a single
threshold to g(u ). However, this still requires the subjective
selection of the m weights. These problems can be avoided
largely by adopting the notion of Pareto Ranking, this being a
scale-independent and truly multiobjective way to achieve a
partition of the feasible space.

3.2. Pareto Ranking

A defining characteristic of the multicriteria response func-
tion F(u ) is that there is not, in general, a unique minimizing
point in the parameter space. That is, because of errors in the
model structure and other possible sources, it is usually impos-
sible to find a single point u at which all the criteria have their

minima. Instead, it is common to have a set of solutions, with
the property that moving from one solution to another results
in the improvement of one criterion while causing deteriora-
tion of another. Figure 1a illustrates a simple case with two
parameters (u1, u2) and a two-criteria response function { f1,
f2}. Figure 1a shows the feasible parameter space Q, and
Figure 1b shows the projection of the parameter space into the
function space. The points a and b indicate the solutions that
minimize each of the individual criteria. The thick line indi-
cates the set S of multicriteria minimizing points to the func-
tion { f1, f2}. If g and d are points arbitrarily selected from
inside and outside S , respectively, then every point g is supe-
rior to every point d in a multicriteria sense because it has the
property that f j(g) , f j(d), for j 5 1, 2. However, it is not
possible to find another point g* in S such that g is superior to
g*; instead, g will be superior to g* for one criterion but
inferior for at least one other criterion. The set S of solutions
is variously called the trade-off set, noninferior set, nondomi-
nated set, or efficient set. However, we here call it the Pareto
set.

The notion of Pareto Ranking [Goldberg, 1989] can be es-
tablished using the set R as a sample approximation to Q as
follows: First, the Pareto set R1 of the sample R is assigned
rank 1 and set aside. Next the Pareto set R2 of the remaining
parameter space is identified, assigned rank 2, and also set
aside. In this way the procedure is to assign progressively
higher ranks until the entire sample R has been processed.
Note that all the points belonging to a set Ri are not inferior to
each other, but that each set Ri is superior to Rj ( j . i) in a
multicriteria sense. The above ranking procedure imposes an
order such that lower-ranked points are closer to the Pareto
set. Thus the requirement to partition Q into behavioral and
nonbehavioral regions reduces to the need to select an appro-
priate Pareto rank R* as a threshold.

3.3. Testing for Sensitivity: MOGSA Algorithm

Once Q has been partitioned into behavioral and nonbehav-
ioral sets (i.e., R is partitioned into RB and RB) by selecting a
threshold Pareto rank, the degree of difference between those
two sets of parameters forms the basis for conclusions regard-
ing the relative sensitivities of the parameters. Following Spear
and Hornberger [1980] and the nomenclature therein, we can
test whether the individual a priori marginal parameter distri-
butions of the two sets separate under the classification. If
an individual marginal distribution does not separate
(i.e., p(u i) 5 p(u i/RB) 5 p(u i/RB)), this is because the
parameter u i taken alone does not have a significant effect on
the occurrence or nonoccurrence of the behavior; that is, the
behavior is insensitive to u i over the multidimensional region
of the parameter space.

In practice, and because they are simpler to compute, we
actually use the Kolmogorov-Smirnov (K-S) two-sample test
to establish whether the two cumulative marginal distributions
are different. The K-S test is based on the statistic

dm,n 5 sup
x

uPB~ x! 2 PB~ x! u (3)

where PB and PB are the sample cumulative distributions
functions corresponding to p(u i/B) and p(u i/B) for n behav-
iors and m nonbehaviors, respectively. The statistic represents
the maximum distance between the two cumulative distribu-
tion function curves and can be associated with a particular
significance level or probability value, thereby allowing a rela-

Figure 1. Example showing the Pareto solution set for a
problem having two parameters (u1, u2) and two criteria ( f1,
f2): (a) parameter space and (b) criterion space. The points a
and b indicate the solutions that minimize each of the individ-
ual criteria f1 and f2. The thick line indicates the set S of
multicriteria minimizing points to the function { f1, f2}; g is an
element of the solution set S which is superior in the multicri-
teria sense to any point d not contained in it.
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tive ranking of parameter sensitivities. In this study, signifi-
cance levels below 1%, from 1 to 5%, and above 5% are used
to define “high,” “medium,” and “low” parameter sensitivities,
respectively.

The results of the sensitivity test described above will vary
both with sample size and across samples, particularly for small
sample sizes. Therefore we ensure statistical robustness by
bootstrapping the sample (resampling 50–200 times with re-
placement) [Efron, 1979a, b; Mooney and Duval, 1993] and by
using the median of the K-S statistics so obtained [Rousseeuw,
1991]. Further, we employ a procedure of successively increas-
ing the sample size until the number of “sensitive” parameters
stabilizes. The results could also be dependent on the choice of
the thresholding Pareto rank R*. Our computer implementa-
tion permits simultaneous analysis for several threshold values
to test for such dependence. The methodology, named mul-
tiobjective generalized sensitivity analysis (MOGSA), is pre-
sented in Figure 2.

4. Case Studies
The above-described MOGSA procedure was used to esti-

mate the parameter sensitivity of a typical, complex land sur-
face scheme using two different data sets, one from a Sonoran
Desert semiarid site near Tucson, Arizona [Unland et al.,
1996], and the other from the ARM-CART (atmospheric ra-
diation measurement—cloud and radiation testbed) project
E13 grassland site within the southern Great Plains GCIP
study area. The LSS used for this study was the off-line version
of the Biosphere-Atmosphere Transfer Scheme (BATS 1e)
[Dickinson et al., 1993] which has 24 independent parameters
and three initial soil moisture conditions that must be specified
(see Table 1). For a description of the BATS model and both

data sets, please refer to the companion paper [Gupta et al.,
this issue].

The Tucson data were collected at 20 min time intervals and
cover an entire year from May 1993 to April 1994. The mea-
sured atmospheric forcings are net radiation, incoming radia-
tion, air temperature, precipitation, specific humidity, and
wind speed. The observed model response variables are sensi-
ble heat (H), latent heat (lE), and ground temperature (Tg).
The measured heat fluxes were flagged at certain times by
Unland et al. [1996] as being of dubious quality, and these data
were therefore not used in this study. The remaining observa-
tional data were available at 5219 time steps.

The ARM-CART data set covers the 5 month period from
April 1 to August 25, 1995, with a sampling interval of 30 min.
The observed forcing values are net radiation (Rn in W/m2),
surface temperature (Ta in Kelvins (K)), atmospheric pressure
( pa in kPa), relative humidity (rh in percent), wind velocity
(Va in m/s), and precipitation (P in millimeters (mm)). Several
gaps in the data were filled via interpolation by taking account
of the diurnal cycle and the occurrence of precipitation [see
Gupta et al., this issue]. The data set also contains time series
observations for four variables that correspond with two model
outputs, sensible heat (H in watts per square meter (W/m2))
and latent heat (lE in W/m2), and two model state variables
(ground temperature (Tg in K) and soil moisture (Sw in mm)).
Because of problems with the Bowen ratio system measure-
ments, all H and lE data corresponding to Bowen ratio be-
tween 0.75 and 1.25 were discarded. The resulting number of
time steps at which values of H , lE , Tg, and Sw are available
is 4237.

4.1. Sensitivity Analysis Results

The MOGSA methodology was used to estimate the param-
eter sensitivity of BATS for each site using the RMSE between
the observed and the model-simulated time series values of
each observed system response as a different system response
criterion: {H}, {lE}, {Tg}, and {Sw} for ARM-CART and
{H}, {lE}, and {Tg} for Tucson. The parameters were al-
lowed to vary between minimum and maximum values corre-
sponding approximately to the full range of possible values for
all locations on the Earth, except for the parameters rough and
displa that do not include the rainforest vegetation type and
parameter xmohyd for which the range was somewhat more
restricted (see Table 1). Note that proper feasibility constraints
were imposed on the allowable values for the parameters to
preserve the physical realism of the parameterization. For ex-
ample, the thicknesses of the shallower soil layers are con-
strained to be less than the deeper soil layers, the initial water
contents are less than the corresponding soil layer depths, and
the season variability of vegetation cover and leaf area index
are smaller than their maximum values.

The algorithm stabilized for a minimum sample size of 750
for the Tucson data and for a minimum sample size of 3000 for
the ARM-CART data. The Pareto rank 10 was chosen as the
threshold value R* because (1) it was found to achieve a higher
number of sensitive parameters with a smaller sample size (for
both the mean and the median of the K-S probability value and
for both sensitivity thresholds 0.01 and 0.05); and (2) because
it gave stable results regardless of sample sizes. The results are
presented in Figure 3 for the Tucson site and Figure 4 for the
ARM-CART site. The top subplots show the results for the 16
vegetation parameters and the bottom subplots show the re-

Figure 2. Flowchart of the MOGSA parameter sensitivity
analysis method.
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sults for the eight soil parameters and the three initial soil-
moisture conditions.

The top part of each subplot shows the “global” sensitivity of
the model, i.e., the sensitivity obtained using the Pareto rank-
ing 10 as threshold. The bottom part of each subplot shows the
single-criteria sensitivity of the model to each modeled vari-
able. For consistency, the single-criterion thresholds were cho-
sen to partition the sample populations into fractions similar to
those achieved by the Pareto ranking threshold. In the bottom
part of each subplot, each group of vertical bars corresponds to
the sensitivity of a different parameter; the longer the bar, the
more sensitive the parameter. Also indicated in the plots are
the 1 and 5% significance levels. If a sensitivity bar crosses the
1% level, the parameter is considered to have high sensitivity;
if it crosses the 5% level, it is considered to have medium
sensitivity. Otherwise, it is considered to be relatively insensi-
tive.

Considering first the Tucson site (Figure 3), the joint mul-
ticriteria analysis (top bars) indicates 15 sensitive parameters,
specifically 12 parameters with high sensitivity, of which 5 are
related to vegetation (vegc, rough, rsmin, depuv, and deprv), 5
are related to soil (xmopor, xmosuc, bee, and skrat); and 2 are
the initial top and total water contents (ssw and tsw); and 3
parameters have medium sensitivity, of which 2 are related to
vegetation (displa and xla), and 1 is related to soil (solour). The
single-criterion analyses (bottom bars in Figure 3) reveal fur-

ther details about the relationships between different modeled
variables and individual parameters. Note, for example, that
the heat fluxes are sensitive to the roughness length and to the
depths of the top and root soil layers but that the ground
temperature is not. In particular, it is significant that none of
the modeled variables are sensitive to the seasonal variation of
the vegetation cover (seasf) and the minimum leaf area index
(xlai0) which is consistent with the properties of the Tucson
semiarid environment.

In the case of the ARM-CART site (Figure 4), the joint
multicriteria analysis (top bars) indicates 16 sensitive parame-
ters, specifically 14 parameters with high sensitivity, of which 8
are related to vegetation (vegc, seasf, rsmin, xla, xlai0, depuv,
deprv, and rootf), 4 are related to soil (xmosuc, xmohyd, bee,
and skrat), and 1 is the initial water content of the top soil layer
(ssw); and 2 parameters with medium sensitivity, 1 related to
soil porosity (xmopor), and 1 being the initial water content of
the root layer (rsw). Note that the initial total soil layer water
content (tsw) might also be considered of “medium” sensitiv-
ity. The single-criterion analyses (bottom bars in Figure 4)
reveal that the heat fluxes are very sensitive to stomatal resis-
tance but that the state variables (ground temperature and soil
moisture) are not. Further, in contrast with the Tucson site, the
modeled variables are all sensitive to the seasonal variation of
the vegetation cover (seasf), and the heat fluxes are both sen-
sitive to minimum leaf area index (xlai0). This is plausible,

Table 1. Parameters Considered in BATS Sensitivity Analysis

Name Description (units) Range
Tucson

Reasonable Range
ARM-CART

Reasonable Range

Parameters Associated With Vegetation (18 Vegetation Types)
1 vegc vegetation cover 0.0–0.95 0.10–0.70 0.40–0.95
2 seasf difference between vegc and fractional cover at 269 K 0.0–0.60 0.00–0.60 0.00–0.80
3 rough aerodynamic roughness length (m)a 0.0024–1.0 0.01–0.84 0.01–0.35
4 displa displacement height (m)a 0.0–5.0 0.05–1.50 0.05–1.50
5 rsmin minimum stomatal resistance (s/m) 5.0–200.0 50.0–200.0 50.0–200.0
6 xla maximum leaf area index 0.0–6.0 0.05–3.00 0.05–6.00
7 xlai0 minimum leaf area index 0.0–5.0 0.05–3.00 0.05–4.00
8 sai stem area index 0.5–4.0 1.00–4.00 1.00–3.00
9 sqrtdi inverse sqrt of leaf dimension (mm^20.5) 5.0–10.0 5.00–10.00 5.00–10.00
10 fc light dependence of stomatal resistance (m2/w) 0.02–0.06 0.02–0.06 0.02–0.06
11 depuv depth of top soil layer (m) 0.05–0.5 0.01–0.20 0.01–0.20
12 deprv depth of root zone layer (m) 0.5–2.0 0.50–2.00 0.50–2.00
13 deptv depth of total zone layer (m) 5.0–10.0 5.00–10.00 5.00–10.00
14 albvgs vegetation albedo for shortwave , 0.7 mm 0.04–0.20 0.10–0.20 0.10–0.20
15 albvgl vegetation albedo for longwave . 0.7 mm 0.18–0.40 0.20–0.40 0.20–0.40
16 rootf ratio of roots in upper layer to roots in root layer 0.30–0.90 0.10–0.90 0.10–0.90

Parameters Associated With Soil Texture (12 Textures)
17 xmopor porosity 0.33–0.66 0.33–0.66 0.33–0.66
18 xmosuc minimum soil suction (mm) 30.0–200.0 30.0–200.0 30.0–200.0
19 xmohyd maximum hydraulic conductivity (mm/s)b 0.0008–0.01 0.0008–0.01 0.0008–0.01
20 xmowil water content at which permanent wilting point occursc 0.088–0.542
21 xmofc ratio of field capacity to saturated water contentc 0.404–0.866
22 bee Clapp and Hornberger “b” parameter 3.5–10.8 3.5–10.8 3.5–10.8
23 skrat ratio of soil thermal conductivity to that of loam 0.7–1.7 0.7–1.7 0.7–1.7

Parameters Associated With Soil Color (8 Colors)
24 solour soil albedo for different colored soils 0.05–0.12 0.05–0.12 0.05–0.12

Initial Conditions
25 ssw surface zone water content (m) 0.0–depuv 0.0–0.2 0.0–0.2
26 rsw root zone water content (m) 0.0–deprv 0.0–5.0 0.0–5.0
27 tsw total zone water content (m) 0.0–deptv 0.0–10.0 0.0–10.0

Global and reasonable ranges.
aRange does not include tropical rain forest.
bRange restricted.
cParameters not considered in the analysis.
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considering that the period for which data are available is from
April to August, and the vegetation over which measurements
are made is irrigated crop.

Thus both sites show relatively high sensitivity to 11 param-
eters, 5 related to vegetation (vegc, rsmin, xla, depuv, and
deprv), 6 related to soil (xmopor, xmosuc, xmohyd, bee, and
skrat), and 1 being the initial water content of the surface soil
layer (ssw). Both sites show relatively low sensitivity to 6 of the
vegetation parameters, 3 related to stem and leaf properties
(sai, sqrtdi, and fc), the depth of the total soil layer (deptv), and
the vegetation albedos (albvgs, and albvgl).

However, the vegetation-related parameters (rough and dis-
pla) and the soil color parameter (solour) show high sensitivity
at the Tucson site but low sensitivity at the ARM-CART site,
while the vegetation-related parameters (seasf, xlaio, and
rootf) and the soil parameter (xmotc) show low sensitivity at
the Tucson site but high sensitivity for ARM-CART. Further,
the vegetation-related roughness length (rough) is the most
sensitive parameter for the Tucson site but is the least sensitive
parameter for the ARM-CART site. In contrast, the difference
between vegetation and fractional cover (seasf) is a very highly
sensitive parameter for the ARM-CART site but a parameter
with very low sensitivity at the Tucson site.

The sensitivity results for both sites are consistent with the
model formulation and the physical properties of the different
environments. For the semiarid Tucson site, 6 of the 8 most
sensitive parameters are related to the soil storages and tex-
ture, while for the ARM-CART site, 5 of the 8 most sensitive
parameters are related to vegetation properties. Moreover, the
results generally agree with Gao et al. [1996], Wilson et al.
[1987a, b], and Lettenmaier et al. [1996]. Note that at both sites
in this study, there is low sensitivity to the light dependence of
stomatal resistance (fc) and to the vegetation albedos (albvgs,

albvgl) in marked contrast to the results of Henderson-Sellers
[1992] for tropical forest.

4.2. Application of the Sensitivity Results to Model
Calibration

An important aim of the parameter sensitivity analysis is to
allow the possible reduction in the number of parameters that
must be estimated, thereby reducing the computational time
required for model calibration. Gupta et al. [this issue] con-
ducted a multicriteria calibration run for the Tucson site in
which they estimated 25 parameters using the latent heat (H),
sensible heat (lE), and ground temperature (Tg) system re-
sponses. This 25 parameter calibration run required ;20,000
iterations (model simulations) to converge to a solution. To
illustrate the usefulness of parameter sensitivity analysis in
reducing the computational effort associated with calibration,
a similar multicriteria calibration run was made in which only
18 parameters were estimated, including the 15 sensitive pa-
rameters (vegc, rough, displa, rsmin, xla, depuv, deprv, xmo-
por, xmosuc, xmohyd, bee, skrat, solour, ssw, and tsw) and the
three marginally sensitive parameters (fc, rootf, and rsw).
(Note that in BATS the parameter xmowil is derived from
other parameters and was therefore not included). In this run,
the insensitive parameters (seasf, xlai0, sai, sqrtdi, deptv, alb-
vgs, and albvgl) were prescribed to be at the BATS default
values for semiarid regions [see Gupta et al., this issue, Table
1]. The goal is to demonstrate that if the parameters diagnosed
as being insensitive using the MOGSA methodology are not
calibrated, there is only a marginal degradation in the quality
of the calibrated model performance, and the preferred range
of parameters is changed only slightly.

The results of these two runs are compared in Figure 5. The
results shown in light shade correspond to the Pareto set ob-

Figure 3. Parameter sensitivity analysis results for the BATS model applied to the Tucson semiarid site.
Multicriteria results are indicated by upward pointing bars and individual-criterion results are indicated by
downward pointing bars; the longer the bar, the more sensitive the parameter. Sensitivity bars crossing the 1%
(0.01) and 5% (0.05) levels indicate parameters having high and medium sensitivity, respectively. The top
subplot shows results for the vegetation-related parameters, and the bottom subplot shows results for the soil
parameters and initial conditions. Parameters xmowil and xmofc were not included in the analysis.
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tained by the 25 parameter multicriteria calibration run and
the results shown in black correspond to the Pareto set ob-
tained by the 18 parameter multicriteria calibration run. The
parameter estimates are shown on a normalized parameter
plot (Figure 5a); the parameters and the three initial soil mois-
ture contents are listed along the x axis, and the y axis corre-
sponds to the parameter values plotted on a range normalized
by the allowable maximum and minimum values for the pa-
rameters (Table 1). Each line from left to right across the plot
corresponds to a different parameter estimate. The lightly
shaded area in the background corresponds to the parameter
ranges considered to be reasonable for the Sonoran Desert
semiarid Tucson site (see Table 1); these reasonable ranges
were not used to constrain the calibration runs but were in-
stead used as postcalibration checks on the reliability and
power of the calibration procedure: that is, a successful cali-
bration run should converge to estimates that fall within these
ranges. Figure 5b shows the trade-offs between the different
criteria in the multicriteria space; the three response criteria
are listed along the x axis, while the y axis corresponds to the
criterion values (RMSEs) with preferred values toward the
bottom of the plot. Each line going from left to right across the
plot corresponds to a calibration result (and hence a different
set of parameter values). Note that if a calibration result plots
as a line, which falls entirely below (or above) that of a differ-
ent result, the former can be said to be absolutely superior
(inferior) in a multicriteria sense. However, if the two lines
cross each other, then the results are noninferior to each other
in a multicriteria sense.

It is important to note that all the solutions for both the 25
and the 18 parameter calibration runs fall within the reason-
able bounds (Figure 5a). In the case of the 25 parameter
calibration, some of the insensitive parameters (sqrtdi, deptv,
albvgs, and albvgl) tend toward different locations from the
fixed default values used in the 18 parameter calibration, and
to be poorly constrained (i.e., they have a relatively wide
spread). Highly sensitive parameters (e.g., vegc and xmopor)

tend to be tightly constrained and have similar values in both
calibration runs, while the less sensitive parameters (e.g., bee
and fc) tend to be less constrained and vary more. This is
entirely consistent with the expectation that the less sensitive
parameters will have a less well defined optimal region.

Figure 5b shows that the 25 parameter calibration run is
superior to the 18 parameter calibration run in a multicriteria
sense; but only marginally so, the improvement in the RMSEs
for the three system responses is less than 10%. However, the
18 parameter calibration run required only 4000 iterations
(model simulations) to converge to a solution, a fivefold re-
duction from the 25 parameter calibration. These results sug-
gest that the parameter sensitivity analysis using MOGSA is a
sensible and viable way to reduce the dimensionality of the
parameter estimation problem, thereby reducing the compu-
tational time required for calibration. The left column of Fig-
ure 6 shows a typical 10 day portion of the time series match
obtained by the 18 parameter calibration run. For each system
response, the dots indicate the observed data and the lightly
shaded area represents the range of variation at each time step
corresponding to the Pareto set of parameter estimates. The
relative uncertainty of the daytime lE trajectory is a conse-
quence of the high degree of noise in the data. The statistics
computed for each of the responses, as well as the scatterplots,
are defined for the middle point of the trajectory set and are
calculated for the entire year of data. The correlation between
the simulated and the observed values is gratifying.

5. Summary and Conclusions
A companion paper [Gupta et al., this issue] describes the

development of a multicriteria calibration procedure for de-
termining the preferred range of the many parameters re-
quired in a complex, present-day LSS and illustrates the ap-
plication of that procedure using the BATS model with data
from two field sites. In practice, it is desirable to restrict the
number of parameters to be calibrated in order to reduce the

Figure 4. Parameter sensitivity analysis results for the BATS model applied to the ARM-CART grassland
site E13. See explanation on caption for Figure 3.
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computational effort. Further, the ability to make objective
determination of the relative sensitivity of modeled variables to
the specific parameters used in an LSS at a particular site has
a broader value as a basis for specifying the relative importance
of the physical processes represented in the model. Thus a
methodology is required which is consistent with multicriteria
parameter estimation methods and which is capable of deter-
mining the extent to which the modeled variables given by an
LSS are sensitive to the value of the individual parameters
used in it.

This need is addressed directly in this paper, by describing
the development of a novel, multicriteria approach to evaluate
parameter sensitivity, the MOGSA algorithm, which extends
and improves the regional sensitivity analysis single-criterion
method of Spear and Hornberger [1980] to multicriteria by
sorting the possible parameter sets via the notion of Pareto
ranking and by applying bootstrapping and sequential sam-
pling to ensure statistical robustness of the results. The method
enables the parameters to be ranked in terms of both absolute
and relative sensitivity. This procedure is then applied in the
context of the parameter estimation studies described in the
companion paper. First, the parameters that have significant
influence on the values of the modeled variables at the two
sites are determined and are distinguished from the parame-
ters that have little influence and which might therefore be
safely omitted from the calibration run. The consequences of
omitting these parameters from the multicriteria calibration
were then investigated.

For both field sites considered in this study, the MOGSA

algorithm was effective in specifying the sensitivity of BATS-
calculated variables to the parameters used in the model. The
results provide insight into important parameters and associ-
ated processes in BATS at the two field sites. In both cases the
modeled variables were found to be sensitive to 12 parameters.
Five are related to vegetation, specifically vegetation cover,
aerodynamic roughness, minimum stomatal resistance, depth
of upper soil layer, and depth of root zone soil layer; six are
related to soil, specifically porosity, minimum soil suction, max-
imum hydraulic conductivity, Clapp and Hornberger “b” pa-
rameter, and ratio of soil thermal conductivity to that of loam;
and one is the initial water content of the surface layer. In both
cases the modeled variables were found to be insensitive to six
vegetation-related parameters, specifically stem area index, in-
verse square root of leaf dimension, light dependence of sto-
matal resistance, depth of the total soil layer, and the vegeta-
tion albedos for both shortwaves and longwaves.

However, important differences were found in the model
sensitivities at the two sites. These presumably reflect the prev-
alent climate and the nature of the vegetation at the sites.
Specifically, the parameters aerodynamic roughness, displace-
ment height, and soil color show high sensitivity at the semiarid
Tucson site but low sensitivity at the ARM-CART grassland
site, while the parameters difference between vegc and frac-
tional cover at 269 K, minimum leaf area index, ratio of roots
in the upper layer to roots in the lower layer, and ratio of field
capacity to saturated water content show low sensitivity at the
Tucson site but high sensitivity for ARM-CART. In general,
the sensitivity results for both sites are consistent with the

Figure 5. Results showing the benefits of using multicriteria parameter sensitivity analysis to reduce pa-
rameter dimensionality before calibration of the BATS model to the Tucson semiarid site. The full 25
parameter calibration results are shown in black and the reduced 18 parameter calibration results are shown
in light shade. (a) Parameter estimates plot: each horizontal line represents a member of the Pareto solution
set. The medium shade area indicates the reasonable range of parameter variability for semiarid regions. (b)
Criterion values plot: each horizontal line represents a member of the Pareto solution set. Lines closer to the
base of the plot indicate superior solutions.
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model formulation and the physical properties of the different
environments. For the Tucson site, six of the eight most sen-
sitive parameters are related to soil properties, while for the
ARM-CART site, five of the eight most sensitive parameters
are related to vegetation properties.

Comparison between the results of calibration runs for the
Tucson semiarid site, in which all the parameters were opti-
mized and in which only a subset of sensitive parameters were
optimized, was consistent with expectations. There was only
limited degradation in the quality of the correspondence be-
tween modeled and observed values (the RMSE for the three
criteria increased by less than 10%), and the ranges of pre-
ferred values for the parameters that were optimized in both
runs were mutually consistent. However, the calibration run
for the sensitive parameter subset required only 4000 iterations
(model simulations) to converge to a solution, a fivefold re-
duction over the full parameter calibration.

Thus in summary, the multicriteria methodology MOGSA
developed in this study proved successful when applied to
evaluate the sensitivity of model-calculated variables to indi-
vidual parameters for a complex LSS at two distinctly different
field sites. The sensitivity results for both sites were found to be
consistent with the physical properties of the different envi-
ronments, thereby supporting the reasonableness of the model
formulation. Further, the analysis provided evidence on the
importance of parameters (and the associated processes) op-
erating at the two sites, and when the parameters it identified
as insensitive were omitted from the optimization process,
there was little degradation in the quality of the model
description and little change in the preferred range of the
remaining parameters. The MOGSA algorithm has been
written to be generally applicable to any model, and the
code is available from the authors on request (e-mail:
hoshin@hwr.arizona.edu).

Figure 6. Model performance with the 18 parameter multicriteria calibration parameter estimates com-
pared to the observed data. The time series plots on the left show a typical 10 day period; the lightly shaded
region represents the range of output simulations corresponding to the range of the Pareto parameter
estimates, and the dots represent the observed data. The scatterplots on the right compare the entire period
of data with the midpoints of the model-simulated ranges.
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