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Abstract

We evaluate the sensitivity of biogenic emissions simulated by a land-surface model (LSM) to different representations

of land-cover vegetation. We drive the community land model on a 0.11 grid over Texas, USA, from 1993 to 1998 using

bilinearly interpolated North American Regional Reanalysis data. Two land-cover datasets provide the starting point for

analysis: (1) a satellite-derived vegetation and soil-color database and (2) a vegetation-distribution dataset derived from

ground surveys. These datasets help us to qualitatively characterize the uncertainty in land-cover representations. We

systematically vary the datasets to examine the sensitivity of modeled emissions to variation in representation of bare-soil

fraction, vegetation-type distribution, and phenology.

Different datasets’ representation of vegetation-type distribution leads to simulated mean statewide total biogenic

emissions that vary by a factor of 3. Variation in specified bare-soil fraction causes simulated statewide average emissions

that vary by a factor of 1.7. Scaling leaf area index values within reasonable bounds causes a near-linear change in

simulated emissions. Differences in simulated values are the largest for major metropolitan regions and for eastern and

central Texas, where biogenic emissions are the highest and where tropospheric ozone pollution is a significant concern.

Changing bare-soil fraction alters simulated vegetation temperature and consequently indirectly affects modeled emissions

(p16% of inherent emissions capacity). Our estimates of the model sensitivity to land-cover representation are consistent

with those for other regions.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Realistic simulation of biogenic emissions is a
shared goal of climate scientists, the environmental
engineering community, and air-quality policy-
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makers. Biogenic volatile organic compounds
(BVOCs) were first recognized as a key contributor
to the formation of photochemical smog and were
subsequently identified as actors in diverse climatic
processes. In addition to their role in the production
of tropospheric ozone, BVOCs condense to form
secondary organic aerosols, which alter Earth’s
radiative balance (Kavouras et al., 1998; Claeys
et al., 2004, Kroll et al., 2006) and serve as cloud
.
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condensation nuclei (Andreae and Crutzen, 1997).
BVOCs are a non-negligible component of the
global carbon cycle (e.g., Altshuller, 1991;
Guenther, 2002).

Realistic representation of biogenic emissions
within land-surface models (LSMs) is important
for numerical weather forecasts, climate simula-
tions, and the generation of accurate air-quality
forecasts. Because BVOCs transmit information
about surface conditions between the land surface
and the atmosphere, realistic simulation of the
spatial distribution and magnitude of BVOC fluxes
to the atmosphere likely improves the quality of
simulated atmospheric conditions. Most research
addressing how environmental change alters bio-
genic emissions and air quality has used meteor-
ological model output to drive free-standing, task-
specific biogenic emissions models and air-quality
models (e.g., Tao et al., 2003). Synchronous
coupling of consistent meteorological models, atmo-
spheric-chemistry models, and LSMs (e.g., Grell et
al., 2005) has recently provided geoscientists with an
improved capacity to simulate feedbacks between
BVOC fluxes and other environmental components
(Levis et al., 2003). LSM-simulated biogenic emis-
sions such as those used within synchronously
coupled systems inherit all sources of uncertainty
associated with traditional biogenic emissions mod-
els (e.g., GloBEIS [Yarwood et al., 1999]) as well as
additional sources of uncertainty unique to LSMs
(e.g., coarse horizontal grid resolution and simplis-
tic representation of vegetation [Gulden and Yang,
2006; Gulden et al., 2007]).

Regardless of the type of model used, simulated
BVOC flux estimates are notoriously uncertain.
Guenther (1997) used six land-cover datasets to
estimate the emission potential (units: mgCm�2 h�1

at 30 1C and 1000 mmol photonsm�2 h�1) of the
contiguous United States and found a 3–5-fold
difference in estimated inherent emission capacity.
Other researchers, looking at sources of uncertainty
ranging from meteorological inputs to vegetation-
species distribution, have asserted that uncertainty
in BVOC flux estimates ranges from a factor of 1.5
to more than 10, depending on the species of BVOC
(e.g., Simpson et al., 1999; Smiatek and Bogacki,
2005). Such uncertainty compromises air-quality
simulations that depend on biogenic emissions
estimates. Byun et al. (2005) used a satellite-derived
dataset and the parent dataset of the ground-survey-
derived dataset used here (Wiedinmyer et al., 2001)
to show that selection of land-cover dataset can lead
to a 10 ppb difference in simulated ozone concen-
trations for the metropolitan area surrounding
Houston and Galveston, Texas, USA.

Although the true level of uncertainty in LSM
land-cover datasets is difficult to quantify because
of a dearth of observations (e.g., Simpson et al.,
1999; Wiedinmyer et al., 2001), cursory examination
of peer-reviewed literature introducing LSM-for-
matted land-cover datasets highlights the range of
representations that have been deemed reasonable
by the community (e.g., Bonan et al., 2002a;
Wiedinmyer et al., 2001; Lawrence and Chase,
2007).

In models that employ the Guenther et al., 1995
biogenic emissions algorithm or a close derivative
(e.g., Levis et al., 2003), BVOC flux is a function of
biomass, vegetation type, and environmental varia-
tion. A land-cover dataset’s specified percentage of
bare soil and the prescribed phenological variation
determine the quantity of biomass on the modeled
land surface. The land-cover dataset also determines
both the types and percent composition of vegeta-
tion in a grid cell.

From all potential sources of uncertainty (Beck,
1987; Wagener and Gupta, 2005) in LSM-simulated
biogenic emissions (e.g., lack of process under-
standing, oversimplification of physical processes,
representation of heterogeneous vegetation with a
limited number of plant functional types, model
parameter uncertainty, uncertainty in meteorologi-
cal forcing data, etc.), we focus here only on
uncertainty that results from variation between
datasets that specify land-cover characteristics. We
perform a simple sensitivity analysis (Saltelli et al.,
2000) to quantitatively and qualitatively attribute
variation in LSM-simulated BVOC flux to different
land-cover datasets.

We created several ‘‘cross-pollinated’’ land-cover
datasets for the state of Texas, USA. Starting with a
satellite-derived land-cover dataset (Lawrence and
Chase, 2007) and a ground-survey-derived land-
cover dataset (Wiedinmyer et al., 2001; Gulden and
Yang, 2006), we systematically varied, at each grid
point in our model domain, the percent vegetated
area, the vegetation distribution, and the magnitude
of the specified phenology. To assess the sensitivity
of LSM-simulated biogenic emissions to the repre-
sentation of surface vegetation, we used the hybrid
datasets to initialize offline LSM runs. We examined
the relative importance of the direct and indirect
means by which divergent land-cover representa-
tions change simulated BVOCs.
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We employ the National Center for Atmospheric
Research’s community land model version 3 (CLM)
(Oleson et al., 2004; Bonan et al., 2002b). CLM is a
land-surface model (LSM) that incorporates a
BVOC-flux module (Levis et al., 2003) founded on
the work of Guenther et al. (1995). CLM is
representative of LSMs commonly used in climate
modeling. This research contributes to efforts to
quantify the uncertainty associated with LSM-
simulated biogenic emissions that is directly attri-
butable to land-cover dataset (e.g., Guenther et al.,
2006).

2. Model, datasets, and methods

2.1. Representation of vegetation and biogenic

emissions in CLM

CLM represents land cover as a mosaic of plant
functional types (PFTs) (Bonan et al., 2002a). Each
grid cell in the model domain is assigned a
percentage of vegetated area; the vegetated area is
further subdivided into four or fewer PFTs. The
standard CLM, which uses static ecosystem dy-
namics, calculates daily variation in leaf area index
(LAI) by linearly interpolating between prescribed
monthly LAI values. Each PFT within model grid
cell is assigned a unique LAI value for each month.
Foliar density (the weight of dry leaf matter per unit
area of ground covered by the PFT) is the product
of LAI and specific leaf area (m2 leaf g�1 dry leaf
matter). Although the static ecosystem dynamics of
CLM allow LAI and stem area index (SAI) to vary
seasonally, their seasonal cycle remains constant
year to year.

CLM represents emission of isoprene, monoter-
pene, other volatile organic compounds, other
reactive volatile organic compounds, and biogenic
carbon monoxide (Levis et al., 2003; Guenther
et al., 1995). For a given PFT, CLM simulates the
flux of BVOC type i as

Fi ¼ �iDgPARgT (1)

where Fi is the flux to the atmosphere of BVOC type
i (units: mgCm�2 h�1); D is the foliar density (units:
g dry leaf matter (gdlm)m�2 of ground covered by
the PFT), which is a scalar function of LAI; ei is a
PFT-specific emission capacity for BVOC type i

(units: mgC gdlm�1 h�1); gT is a dimensionless,
nonlinear function of canopy temperature that
modulates BVOC emissions; and gPAR is a dimen-
sionless, nonlinear function of photosynthetically
active radiation reaching the leaf surface that
modulates isoprene emissions (for non-isoprene
BVOCs, we assume gPAR ¼ 1).
2.2. Baseline land-cover datasets

Two source datasets provided the starting point
for our analysis. The first is a 1-km PFT-distribu-
tion dataset developed from a ground-referenced,
species-based dataset in which each grid cell
contained between 1 and 115 of approximately 300
possible vegetation species (henceforth the ‘‘survey-
derived dataset’’). Wiedinmyer et al. (2001) describe
the original species-based dataset; Gulden and
Yang (2006) describe the conversion of the dataset
to CLM format. The second raw dataset was
derived from moderate resolution imaging spectro-
radiometer (MODIS) and advanced very high
resolution radiometer (AVHRR) satellite images
(Lawrence and Chase, 2007) and contains 5-km
resolution PFT distribution, plant phenological and
structural parameters (LAI, SAI, height of canopy
top and bottom), and soil-color information (hen-
ceforth the ‘‘satellite-derived dataset’’). We inter-
polated both datasets to a uniform 0.11 grid. We
used the two original datasets as parents from which
we derived five unique, hybridized land-cover
datasets. We used the hybridized datasets in lieu
of the two originals such that we could more
rigorously examine the sensitivity of the model to
specific aspects of land-cover representation (i.e.,
PFT distribution, bare-soil fraction, magnitude of
specified phenology).

Fig. 1 shows that the survey-derived dataset
identifies 44.5% of the area of Texas as bare soil;
the satellite-derived dataset labels 20.0% of Texas as
bare soil. The difference in bare-soil fraction is
especially pronounced in central and eastern Texas.
Trees cover 20.3% of Texas in the survey-derived
dataset; in the satellite-derived dataset trees
cover 10.7%. Introduced in the peer-reviewed
literature, both datasets have been deemed reason-
able representations of reality by the scientific
community and are used for both scientific and
engineering purposes (P. Lawrence, personal com-
munication; e.g., Junquera et al., 2005). Variations
in simulated biogenic emissions that result from the
use of these two datasets help us to qualitatively
characterize the uncertainty in LSM-simulated
emissions that stem from uncertain land-cover
representations.
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Fig. 1. Summary of the biogenic emissions—relevant differences between the satellite-derived land-cover dataset and the survey-derived

land-cover dataset.
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2.3. Modified datasets

The original survey-derived dataset specifies only
PFT fraction; it contains no phenological informa-
tion. Before creating the hybrid datasets, we
transformed the satellite-derived phenological para-
meters for use with the survey-derived PFT frac-
tions. For a given grid cell, the satellite-derived
dataset contains LAI and stem area index (SAI)
information only for the PFTs identified as being
present in that location. Because the specified
vegetation distributions differ between the satellite-
and survey-derived datasets, we could not directly
combine the satellite-derived LAI and SAI with the
survey-derived PFT distribution data. To ensure
that LAI and SAI were defined at all model grid
points for all PFTs (as required by CLM), we used
the area-weighted, longitudinal average of the
satellite-derived PFT parameters. Vegetation bio-
mass in the state of Texas exhibits a very strong
west–east gradient: an area-weighted average along
lines of longitude was deemed more appropriate
than a statewide average, a latitudinal average, or
another averaging method.

The satellite-derived dataset does not identify
broadleaf evergreen trees (BETs) or broadleaf
evergreen shrubs (BESs) in Texas; it contains
neither LAI nor SAI information for BET and
BES. We defined the LAI and SAI of BET for all
months as the June–July–August (JJA) average of
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the longitudinally averaged LAI and SAI for
broadleaf deciduous trees. We defined LAI and
SAI for BES for all months as the JJA average of
broadleaf deciduous shrubs. Needleleaf evergreen
shrubs (NESs) and temperate needleleaf deciduous
trees (NDTs) do not exist in the standard CLM,
but they do exist in the survey-derived dataset
(Gulden and Yang, 2006). We defined the LAI
and SAI of NES as identical to those of BES.
LAI and SAI for NDT were defined using the LAI
and SAI of needleleaf evergreen tree. Because there
are so few NDTs in Texas, we neglected any error
caused by spuriously high NDT biomass in
wintertime. Our method for defining LAI and SAI
for each PFT, for each site, and for each month for
the survey-based dataset did not introduce signifi-
cant error: statewide BVOC flux estimates derived
using the dataset with the satellite-derived PFTs,
satellite-derived bare soil, and the longitudinally
averaged, satellite-derived phenological parameters
were consistently within 1% of estimates derived
using the original satellite-derived dataset (results
not shown).

We created three pairs of hybrid datasets,
designing them to facilitate a clean comparison of
the effect on biogenic emissions of two different
realizations of a single descriptor of land-surface
vegetation.

2.3.1. Dataset pair 1: PFT-SURVEY and

PFT-SATELLITE

The fraction of the vegetated area covered by
each PFT controls the spatial distribution and
magnitude of a dataset’s inherent BVOC flux: trees
emit BVOCs at a rate often an order of magnitude
greater than the emission rate of grasses and crops.
The first pair of hybrid datasets isolated the effect of
uncertainty in PFT distribution on simulated BVOC
flux. The pair differed only in its PFT distribution.
Derivative dataset PFT-SURVEY represents vege-
tation composition with the survey-derived PFT
distribution. PFT-SATELLITE uses the satellite-
derived PFT distribution. Both use the satellite-
derived, longitudinally averaged phenological para-
meters and the percent bare soil specified in the
satellite-derived dataset.

2.3.2. Dataset pair 2: BARE-SURVEY and

BARE-SATELLITE

The partitioning of a grid cell between vegetated
area and bare soil helps determine a grid cell’s
biomass density and affects the modeled energy and
water balances. When all else is equal, a greater
amount of biomass increases BVOC flux. The
second set of derivative datasets allowed us to
examine the sensitivity of modeled biogenic emis-
sions to the range of realistic assessments of bare-
soil fraction. The pair differed only in its bare-soil
fraction. Dataset BARE-SURVEY uses the percent
bare-soil specified in the survey-derived dataset;
BARE-SATELLITE uses the percent bare-soil
specified by the satellite-derived dataset. Both use
the satellite-derived, longitudinally averaged pheno-
logical parameters; both use the survey-derived PFT
distribution. (It is important to note that, although
their bare-soil fraction differs, the percent of the
vegetated area covered by a given PFT remains
constant between the two datasets.) BARE-SATEL-
LITE is more densely vegetated than BARE-
SURVEY, especially in central and eastern Texas.
Note that BARE-SATELLITE and PFT-SURVEY
are identical.

2.3.3. Dataset pair 3: LAI� 0.5 and LAI� 1.5

CLM calculates BVOC flux as a linear function of
biomass density, which is a scalar multiple of the
PFT’s LAI. To simulate uncertainty in the magni-
tude of phenological parameters, we modified the
LAI and SAI values in the original satellite-derived
dataset to create artificial datasets with under-
estimated and overestimated LAI and SAI values.
We uniformly scaled the satellite-derived LAI and
SAI values by 0.5 to create the derived dataset
LAI� 0.5 and multiplied the satellite-derived LAI
and SAI values by 1.5 to create LAI� 1.5. Both
datasets used the satellite-derived PFT distribution
and the satellite-derived vegetation fraction infor-
mation. LAI� 0.5 approximates the lower bound of
realistic LAI values, and LAI� 1.5 is an estimate of
a reasonable upper bound for realistic LAI values.
These bounds are consistent with the range of LAI
values presented in the literature (e.g., Tian et al.,
2004). Because the satellite-derived PFT distribu-
tion was used for all three datasets, the phenological
parameters in both LAI� 0.5 and LAI� 1.5 were
taken directly from the original satellite-derived
phenological data (i.e., they were not longitudinally
averaged).

Table 1 summarizes the characteristics of the
three pairs of datasets. Hereafter, model runs will be
referred according to their land-surface dataset
name (e.g., ‘‘PFT-SATELLITE’’ will be used to
mean ‘‘the model run that employed PFT-SATEL-
LITE as its input land-cover dataset’’).
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Table 1

Summary of source data used to create derivative dataset pairs

Pair 1 Pair 2 Pair 3

PFT-SURVEY PFT-

SATELLITE

BARE-SURVEY BARE-

SATELLITE

LAI� 1.5 LAI� 0.5

PFT distribution Survey-derived Satellite-derived Survey-derived Survey-derived Satellite-derived Satellite-derived

Bare soil fraction Satellite-derived Satellite-derived Survey-derived Satellite-derived Satellite-derived Satellite-derived

Phenology Satellite-derived;

longitudinally

averaged

Satellite-derived;

longitudinally

averaged

Satellite-derived;

longitudinally

averaged

Satellite-derived;

longitudinally

averaged

Original satellite-

derived,

uniformly scaled

by 1.5

Original satellite-

derived,

uniformly scaled

by 0.5
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2.4. Model run parameters

North American Regional Reanalysis (NARR)
data (Mesinger et al., 2006) provided meteorological
input forcing. We used bilinear interpolation to
convert the NARR data from their original 32 km
grid to a 0.11 grid coincident with the land-surface
datasets. All runs represented the period from 1
January 1993, to 1 January 1999. We analyzed
model output from 1 January 1995 to 1 January
1999, a period spanning both a weak La Niña event
and a strong El Niño event.

For all experiments, we used region-specific, PFT-
specific emissions capacities. The emissions capa-
cities were developed using a ground-referenced,
species-based dataset (Wiedinmyer et al., 2001) and
its CLM-compatible counterpart (Gulden and
Yang, 2006). The CLM-compatible dataset is the
survey-based dataset used as one of the two ‘‘raw’’
datasets.

All runs employed static ecosystem dynamics and
used CLM-standard values for top and bottom
heights of the canopy, both of which are spatially
and temporally constant and vary only between
PFTs. The satellite-derived dataset provided soil
color for all simulations; soil texture was defined
using the 5-min CLM-standard soil texture data.
3. Results

As expected, LSM-simulated biogenic emissions are
sensitive to land cover: significant variation in model
output can be directly attributed to uncertainty in
land-cover dataset. We use the mean scale factor to
measure change in model response that is directly
attributable to a change in a specific vegetation
parameter (e.g., PFT distribution). The scale factor
for a given grid cell is time average ratio of BVOC flux
estimates for a pair of runs. The mean scale factor is
the domain average scale factor. Table 2 summarizes
the results described in the following Sections 3.1–3.3
and provides additional information regarding regio-
nal differences in scale factors.

3.1. Sensitivity to representation of PFT distribution

Estimates of the statewide mean monthly BVOC
flux derived from PFT-SURVEY were on average 3
times as great as those derived by PFT-SATEL-
LITE (Fig. 2) (i.e., the mean scale factor is 3.0). This
difference is the greatest during summer, when the
difference between tree biomass and herbaceous
biomass is the greatest.

Fig. 3 shows the spatial distribution of the
differences in monthly mean JJA BVOC emissions,
averaged over the period of analysis. The mean
scale factor varies considerably between regions:
in west Texas, where biogenic emissions are
relatively low, the mean scale factor is 2; in
central Texas (including San Antonio and Austin)
it is �6.

Because the survey-derived dataset was created
using a suite of smaller, ground-referenced datasets,
the survey-derived PFT distribution (used in
PFT-SURVEY) may better represent reality than
does the PFT distribution used in PFT-SATEL-
LITE. However, the survey-derived dataset
likely overestimates the percentage of trees in
central Texas (Gulden and Yang, 2006). ‘‘Reality’’
probably lies somewhere between the two represen-
tations.



ARTICLE IN PRESS

S
ta

te
w

id
e 

to
ta

l B
V

O
C

 fl
ux

(k
g 

C
 k

m
-2

 d
ay

-1
)

40

30

20

10

0
1995.0

PFT-SURVEYPFT-SATELLITE

1996.0 1997.0 1998.0 1999.0

Fig. 2. Time series of BVOC flux generated by the run using PFT-SATELLITE and the run using PFT-SURVEY (flux is the monthly
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Table 2

Regional variation in the mean emission scale factora

Pairs of land-cover datasetsb

PFT-SURVEY/

PFT-SATELLITE

BARE-SATELLITE/

BARE-SURVEY

LAI� 1.5/Baseline satellite-derived Baseline satellite-derived/LAI� 0.5

Entire state of Texas

Mean 3.0 1.7 1.5 2.0

Range 2.6–3.2 1.6–1.7 1.5–1.5 1.9–2.0

East Texas (east of �99.51E)

Mean 3.2 1.7 1.5 2.0

Range 2.7–3.5 1.6–1.7 1.5 1.9–2.0

West Texas (west of �99.51E)

Mean 2.0 1.7 1.5 2.0

Range 1.7–2.3 1.6–1.7 1.4–1.5 1.9–2.1

Houstonc

Mean 3.3 1.9 1.4 2.0

Range 2.4–3.8 1.8–1.9 1.4–1.5 1.9–2.0

Dallas/Fort Worthd

Mean 4.6 3.3 1.5 2.0

Range 3.5–5.3 3.1–3.5 1.4–1.5 1.9–2.0

Central Texas (San Antonio, Austin)e

Mean 5.9 1.9 1.5 2.0

Range 5.1–6.3 1.8–1.9 1.5 1.9–2.0

aThe ‘‘scale factor’’ is the regional average ratio of BVOC flux estimates for a pair of runs. Monthly mean total BVOC flux estimates

were calculated for each 0.11� 0.11 model grid cell for each month of the simulation period (1995–1998). For instance, in the PFT-

SURVEY/PFT-SATELLITE column, the model run that used the PFT-SURVEY dataset produced monthly mean flux estimates that

were on average 3.0 times as great as those produced by the run using the PFT-SATELLITE data.
bColumn headings are the land-cover datasets used in each of the two paired runs.
cHouston metropolitan area defined as �94.61E to �96.01E and 29.151N to 30.351N.
dDallas/Fort Worth metropolitan area defined 32.401N to 33.401N and �96.351E to �97.71E.
e‘‘Central Texas’’ (spanning both the approximate Austin and San Antonio metropolitan areas) defined as the land between �97.451E to

�99.01E and 29.151N to 30.751N.
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3.2. Sensitivity to representation of bare-soil fraction

The statewide total BVOC flux simulated by
BARE-SATELLITE is on average 1.7 times as
large as that simulated by BARE-SURVEY. Fig. 4
provides the time series of the monthly statewide
total BVOC flux over the period of analysis.
Fig. 5 shows the differences in the spatial
distribution of the mean JJA BVOC flux over the
study period. The mean scale factor associated
with bare-soil fraction does not vary by region as
much as does the mean scale factor associated
with PFT distribution; however, the Dallas–Fort
Worth metropolitan area has a considerably higher
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uncertainty associated with bare-soil fraction than
do other regions (mean scale factor ¼ 3.3).

The satellite data gathers bare-soil fraction from a
near-nadir perspective and is therefore arguably
more in agreement with the ‘‘viewpoint’’ of the
LSM. It is reasonable to assume that the bare-soil
fraction derived from the satellite images is closer to
reality, but this assertion is difficult to validate.

3.3. Sensitivity to magnitude of specified phenology

We expect that, as biomass increases, light-
activated biogenic emissions decrease in increasingly
shaded regions of the canopy. However, when LAI
increases, a larger area of leaves receives solar
radiation. When shading effects are combined with
nonlinear canopy-temperature controls on emis-
sions, it is not clear whether increasing biomass
causes a corresponding linear increase in biogenic
emissions.

CLM represents canopy temperature (as func-
tions of sensible and latent heating and cooling
processes) and canopy shading processes (as a
function of LAI and SAI), both of which may vary
nonlinearly as LAI increases. Biogenic emissions in
CLM depend on environmental modulation factors
gPAR and gT, which are nonlinear functions of
radiation reaching the canopy and canopy tempera-
ture (Fig. 6). Because of these process representa-
tions, CLM has the potential to help us identify
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whether changing canopy shading and changing
canopy temperature are significant controls on
biogenic emissions as LAI varies.

The mean scale factor for the dataset pair made
up of the LAI� 1.5 and the ‘‘raw’’ original satellite-
derived dataset is �1.5. The baseline dataset
produces an estimate that is on average 2 times
that of LAI� 0.5. Fig. 7 compares estimates
obtained from LAI� 0.5 and LAI� 1.5 to the
baseline run. Regional differences in mean scale
factor are negligible (Table 2). The linear functional
relationship between model biomass and modeled
BVOC flux (Eq. (1)) causes a coincident, nearly
linear scaling of the model-simulated BVOC flux
when LAI and SAI are scaled. In the model
(although perhaps not in nature), biogenic emis-
sions are more sensitive to changes in biomass than
to consequent changes in canopy-shaded fraction or
canopy temperature.

In the case of LAI indirect effects on biogenic
emissions modulated by the environmental modula-
tion factors gT and gPAR are relatively insignificant.
Monthly average values of gT remained stable; gPAR

did change slightly between LAI runs, but that
change was not significant (results not shown).
Whether CLM adequately represents canopy tem-
perature and canopy shading processes as functions
of changing LAI remains an open research question:
to our knowledge, relatively little evaluation of
these parameterizations has been done.

3.4. Indirect effect of land-cover representation on

biogenic emissions

PFT distribution, bare-soil fraction, and magni-
tude of phenological parameters all exert indirect
control on the actual CLM3-simulated BVOC
flux; however, the magnitude of each effect varies.
Fig. 8a shows the time series of gT for isoprene for
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BARE-SURVEY and BARE-SATELLITE; Fig. 8b
shows the corresponding time series for gT for non-
isoprene BVOCs. Bare-soil fraction has the greatest
impact on modeled leaf-surface temperature (and
hence on gT). The higher mean leaf-surface tem-
perature simulated by BARE-SATELLITE caused
an increase in total modeled isoprene flux of up
to 5% of inherent BVOC flux when compared
to BARE-SURVEY. The difference in simulated
vegetation temperature was responsible for an
increase in total non-isoprene flux of up to 16%
of the inherent BVOC flux. This is particularly
important in the needleleaf evergreen forests of
eastern Texas, where nonmethane biogenic hydro-
carbon emissions are, at least in the model,
dominated by non-isoprene BVOCs. Whether such
indirect variation is representative of natural
processes remains an open question.

The difference between the gT modulation factors
for both isoprene and non-isoprene BVOCs that
were calculated by LAI� 0.5 and LAI� 1.5 was in
all cases o1% (results not shown). PFT-SURVEY
tended to simulate slightly higher vegetation tem-
peratures that PFT-SATELLITE. Model gT values
were correspondingly higher: PFT-SATELLITE gT

for non-isoprene BVOCs ranged from 1% greater to
4% less than the corresponding gT calculated by
PFT-SURVEY. Differences between gT for isoprene
between PFT-SATELLITE and PFT-SURVEY
were between 1% and 2%.

4. Discussion

The representation of vegetation characteristics is
by no means the only source of uncertainty in LSM-
simulated biogenic emissions. Even if a land-cover
dataset perfectly describes the ‘‘true’’ land-cover
distribution and biomass density of a landscape,
in nature, spatial variation of the species composi-
tion of can vastly alter the landscape’s inherent
biogenic emission flux (e.g., Guenther et al., 1994;
Guenther, 1997). LSMs, including CLM, may fail to
accurately simulate canopy temperature or the PAR
reaching the leaf surface. Even if LSMs were to
represent the ‘‘true’’ grid-cell average state vari-
ables, the nonlinearity of the response of BVOCs to
environmental variation makes model error sensi-
tive to subgrid-scale variation. Error in leaf-level
species-based emission capacity measurements,
interspecies and intraspecies variation (e.g., Funk
et al., 2005) in biogenic emissions, the unproven
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universal applicability of the Guenther et al. (1995)
algorithm (e.g., Schuh et al., 1997), and the
omission from the CLM version of the emission
algorithm of factors important to emissions (such
as leaf age [e.g., Zhang et al., 2000; Guenther
et al., 2006]) all contribute additional uncertainty
to LSM-generated BVOC fluxes. Consequently,
any projection of future biogenic emissions derived
from LSMs, either offline or coupled to climate
models, should be viewed only as a very rough
estimate.

The statewide total BVOC flux estimates that
results from variation in the three vegetation
descriptors examined varies by up to a factor of 3;
however, the range of estimates varies significantly
by region. Sensitivity of simulated emissions to the
use of different land-cover datasets is the highest in
regions where BVOC emissions are of the greatest
concern: mean scale factors are the largest in central
and eastern Texas (east of �99.51E), where wooded
and forested landscapes ensure that BVOC flux is
relatively high and where tropospheric ozone
pollution is a primary concern for air-quality
managers. It is also worth noting that a mean scale
factor of 3.2 in eastern Texas corresponds to a much
larger actual difference in the mass of BVOCs
emitted than would a mean scale factor of 3.2 in
western Texas, where biomass density is low and
tree cover is sparse. On first-order examination,
range of simulated emissions values is particularly
large in the major metropolitan regions of the state
(see Table 2).

Uncertainty in PFT distribution is the largest
source of land-cover-related variation in LSM-
simulated biogenic emissions. BVOC emissions
estimates within LSMs and their coupled models
of the atmosphere will benefit if future land-cover
data acquisition projects focus their efforts on
precisely quantifying the bare-soil fraction and on
the partitioning of the vegetated area between trees
and grass. Of secondary—but certainly non-negli-
gible—importance is to improve our confidence in
observed estimates of the quantity of biomass
present on the ground, which is determined by the
percent vegetated area and by the magnitude and
seasonality of leaf phenology, the latter of which we
did not examine here (see Gulden et al., 2007).

This study examines only the monthly mean
variation in BVOC flux, emission modulation factors,
and model state variables. Divergent representations
of the land surface may significantly alter estimates of
the diurnal cycles of emission modulation factors,
canopy state variables, and, consequently, BVOC
emissions. Examination of uncertainty at a finer
temporal resolution is warranted.

Use of static ecosystem dynamics, as is done in
this study, considerably underestimates the true
variation in biogenic emissions (Gulden et al.,
2007). When employing a dynamic vegetation
module that updates changes in maximum LAI
once a year and allows daily variation in the
fraction of the maximum LAI in response to
environmental conditions, Levis et al. (2003) found
that interannual variation in the total BVOC flux
exceeded 29% during a 10 yr fully coupled climate
simulation. Gulden et al. (2007) showed that, the
absolute average departure from the monthly mean
(max) BVOC flux was 22.4% (137%) when phenol-
ogy was allowed to respond to the short-term
environmental variation.

Our estimates of the sensitivity of simulated
biogenic emissions, which focus on only one source
of potential error in LSM-simulated BVOC flux and
which we derived from observations-based land-
cover datasets, are of the same order of magnitude
as previous estimates (e.g., Simpson et al., 1999;
Hanna et al., 2005).

5. Summary and conclusions

We conclude the following: (1) Differences in the
representation of land-surface vegetation in the
state of Texas, USA, can result in estimated
monthly mean total biogenic emissions that differ
by up to a factor of 3. (2) Distribution of PFTs
contributes most to this variation. The ground-
survey-derived PFT distribution resulted in state-
wide monthly mean BVOC fluxes that were an
average of 3 times as large as the estimates produced
by a run using a satellite-derived PFT distribution.
(3) Divergent representations of bare-soil fraction
significantly contribute to variation in simulated
BVOC flux: a run using satellite-derived bare-soil
fraction produced BVOC estimates 1.7 times as
great as a run using the bare-soil fraction from the
less-densely vegetated ground-survey-derived data-
set. (4) Scaling LAI within reasonable bounds
(50–150% of the satellite-derived estimates) caused
a nearly linear decrease and increase, respectively, of
simulated biogenic emissions. (5) Sensitivity to land-
cover dataset is the highest in central and eastern
Texas (east of �99.51E), where there is up to a 6.3-
fold difference between the modeled BVOC flux
when different datasets are used. (6) Variation
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between emissions estimates is especially pro-
nounced in major metropolitan areas, where ozone
pollution significantly degrades urban air quality.
(7) Different specifications of bare-soil fraction can
have a significant indirect effect on modeled actual
BVOC flux (up to 16% of inherent BVOC flux)
through modification of state variables that control
vegetation temperature; however, we do not know
whether the modeled indirect effects are model
artifacts or representations of reality.

Urban planners and air-quality managers who
make use of LSM-based model predictions of
BVOC emissions should be aware of the significant
sensitivity of modeled BVOC flux estimates to
uncertainty in the land-cover dataset used. When
LSMs are linked to climate models, this sensitivity
may propagate uncertainty to all BVOC-related
radiative, carbon cycle, and atmospheric-chemistry
processes. Although our results focus specifically on
the simulation of biogenic emissions within LSMs,
they apply broadly to any application of an LSM in
which the variable of interest depends in part on
land-cover dataset used.
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