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[1] We introduce three metrics for rigorous evaluation of
land-surface models (LSMs). This framework explicitly
acknowledges perennial sources of uncertainty in LSM
output. The model performance score (z) quantifies the
likelihood that a representative model ensemble will bracket
most observations and be highly skilled with low spread.
The robustness score (r) quantifies the sensitivity of
performance to parameter and/or data error. The fitness
score (8) combines performance and robustness, ranking
models’ suitability for broad application. We demonstrate
the use of the metrics by comparing three versions of the
Noah LSM. Using time-varying z for hypothesis testing and
model development, we show that representing short-term
phenological change improves Noah’s simulation of surface
energy partitioning and subsurface water dynamics at a
semi-humid site. The least complex version of Noah is most
fit for broad application. The framework and metrics
presented here can significantly improve the confidence
that can be placed in LSM predictions. Citation: Gulden,

L. E., E. Rosero, Z.-L. Yang, T. Wagener, and G.-Y. Niu (2008),

Model performance, model robustness, and model fitness scores:

A new method for identifying good land-surface models,

Geophys. Res. Lett., 35, L11404, doi:10.1029/2008GL033721.

1. Introduction

[2] The increasing reliance of scientists, engineers, and
policymakers on the predictions of land-surface models
(LSMs) demands more rigorous evaluation of LSM param-
eterizations. Most LSMs are assessed using limited, local-
ized, often semi-quantitative approaches [e.g., Chen et al.,
2007]. With few exceptions, model intercomparisons and
evaluations of modified parameterizations neglect an as-
sessment of uncertainty that extends beyond simple end-
member sensitivity analyses [e.g., Niu et al., 2005]. This
incomplete approach is due in part to a dearth of observa-
tions and in part to evaluation procedures that are no longer
state-of-the-art with respect to available computing resour-
ces. The development of robust metrics for comprehensive
model evaluation is in its infancy [Randall et al., 2007].
Here, we present a simple method for increasing the rigor of
LSM assessment.
[3] The simplest way to assess an LSM is to evaluate

performance at a single site using default parameters [e.g.,

Henderson-Sellers et al., 1996]. LSM performance varies
widely when parameters are shifted within reasonable
ranges [e.g., Gulden et al., 2007]. At a given site, the
parameter set resulting in the best performance may signif-
icantly differ from the default. That one model equipped
with default parameters does better than another is likely
fortuitous. Parameters tend to be effective values, not
physical quantities [Wagener and Gupta, 2005]. A more
thorough evaluation method is to first minimize parameter
error by calibrating all models and to then compare model
output generated with the best parameter set [e.g., Nijseen
and Bastidas, 2005]. Using optimal parameters does not
represent the way in which LSMs are generally applied;
calibration against certain criteria may worsen the simulation
of other, equally important criteria [Leplastrier et al., 2002].
After calibration, most equivalently complexmodels perform
equivalently well [e.g., Beven, 2006]. Additional methods for
LSM evaluation (e.g., the use of neural networks to bench-
mark LSMs [Abramowitz, 2005]) show promise, but to our
knowledge, none has been widely adopted.
[4] Even in the rare case when we can estimate individual

parameter ranges, parameter interaction and discontinuous
model responses to even small shifts in parameter values
undercut confidence in the realism of simulations [e.g.,
Gulden et al., 2007; E. Rosero et al., Evaluating enhanced
hydrological representations in Noah-LSM over transition
zones: Part 1. Traditional model intercomparison, submitted
to Journal of Hydrometeorology, 2008a]. The dearth of
extensive validation datasets makes this limitation unlikely
to soon change. To assess model performance in ‘real life’
settings, evaluation frameworks such as the one we present
here must explicitly acknowledge these sources of uncer-
tainty. Here we treat only parameter uncertainty, but we
stress that our framework can and should be applied to
incorporate uncertainty in observations. The dependence of
model performance on parameter and forcing error supports
the use of a probabilistic approach to evaluate LSMs. To
evaluate LSMs, we propose three metrics that harness the
information contained in ensemble runs of an individual
model. This paper introduces the metrics themselves; E.
Rosero et al. (Evaluating enhanced hydrological represen-
tations in Noah-LSM over transition zones: Part 2. Ensem-
ble-based model evaluation, submitted to Journal of
Hydrometeorology, 2008b) apply the metrics presented here
as part of an in-depth model intercomparison.

2. Example Application

[5] To demonstrate the new framework for LSM evalu-
ation, we use an example application. We run three versions
of the Noah LSM [Ek et al., 2003] using meteorological
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forcing data from the 2002 International H2O Project
(IHOP) [LeMone et al., 2007] at sites covered by dry
grassland (site 2), semi-arid pasture (site 4) and semi-humid
grassland (site 8) (mean annual precipitation [MAP] = 540,
740, 880 mm y�1, respectively). The standard version of
Noah (‘STD’) is the benchmark against which we evaluate
two newer versions: one augmented with a lumped, uncon-
fined aquifer model (‘GW’) [Niu et al., 2007] and a second
augmented with a short-term dynamic phenology module
(‘DP’) that allows leaf area to change in response to
environmental variation on daily to seasonal time scales
[Dickinson et al., 1998].
[6] We evaluate model performance against independent

objectives: 3-hour-running mean evaporative fraction (EF);
top 30-cm soil wetness (W30); and 24-hour change in
wetness (DW30). We define EF as:

EFt ¼ LEt= LEt þ Htð Þ ð1Þ

where LEt and Ht, are, respectively, the latent, and sensible
heat flux, averaged over 30-minute time interval t. We
compute W30 as:

W30 ¼
XNlayers

i¼1

qizi

, XNlayers

i¼1

wizi ð2Þ

where qi, zi, and wi are, respectively, the volumetric soil
moisture, thickness, and porosity of the ith layer of the soil
column, which has Nlayers layers (for the observations,
Nlayers = 4; for the models, Nlayers = 2). We represent the
24-hour change in soil-moisture as:

DW30;t ¼ W30;t �W30;t�47: ð3Þ

[7] For each site, we generate two 150-member ensem-
bles: (1) a ‘calibrated ensemble,’ generated using parame-
ters defined by the Markov Chain Monte Carlo sampler of
Vrugt et al. [2003] while simultaneously minimizing five
RMSE objectives (LE, H, ground heat flux, 5-cm soil
temperature and moisture); and (2) an ‘uncalibrated ensem-
ble,’ composed of runs from a subset of 15,000 generated
by random sampling of uniform independent parameter
distributions; the subset was defined as the group that
obtained scores within one standard deviation of the mode
for each RMSE (i.e., the most frequent error) (Figure 1). In
this example, model performance varies widely when
parameters are selected within reasonable ranges (Figure
1a); after calibration, STD, DP, and GW perform equiva-
lently well (Figure 1b). When generating ensembles, for
simplicity, we neglected data uncertainty. All realizations
used a 30-minute time step to simulate 01/01/2000–06/25/
2002. We treated the first 2.5 years of simulation as model
spin-up; only the last 45 days of each simulation were
scored.

3. Performance, Robustness, and Fitness Scores

[8] To define a metric that identifies the ‘best’ model or
‘best’ parameterization, we first define a good model. Given
a representative ensemble, when the LSM is good:
[9] 1. The ensemble brackets most of the observations.
[10] 2. The ensemble is centered on the observations.
[11] 3. The ensemble has low spread when bracketing

observations but high spread when not (i.e., the ensemble
does not resolutely cling to an incorrect value).
[12] 4. The model is relatively insensitive to parameters

that are not observable and is also not significantly affected
by errors in meteorological forcing data.

Figure 1. The range of scores obtained by varying effective parameters. (a) RMSE for 5-cm volumetric soil moisture and
LE for 15,000 runs of STD at IHOP site 4. Each simulation used unique parameter sets randomly selected from uniform
distributions. Also shown are calibrated-model scores. (b) Taylor diagram of LE simulated by DP, STD, and GW at 3 IHOP
sites (2, 4, 8). ‘Best’ is the set that minimizes the L2 norm of the 5 objectives.
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[13] 5. The model performance is consistently good (as
defined by Descriptors 1–3) across sites.
[14] Descriptors 1–3 describe a model that is well suited

to a given location; 4 and 5 describe a model that is robust
[Carlson and Doyle, 2002]. The ideal model for use over
regional and global domains will match all five Descriptors.
[15] At time step t, the ensemble of the best-scoring

model minimizes the performance score, z t:

& t ¼ CDFens;t � CDFobs;t

� �
= 1� CDF

obsþc

� �� �
ð4aÞ

where CDFens,t, CDFobs,t, and CDFobs+c are, respectively,
the cumulative distribution functions of the variable
simulated by the ensemble of models, of the observation
at time t, and of all values of �ot, shifted by arbitrary constant
c (to prevent division by zero). �ot is the mean of all
realizations of the observation at time step t. When
observational uncertainty is unknown, for simplicity, z t
can be expressed in deterministic form as:

& t ¼
XNens

i¼1

jxi;t � otj
,XNens

i¼1

j�o� cj ð4bÞ

where xi,t is ensemble member i at time t, ot is the
observation at time t, Nens is the number of ensemble
members, c is an arbitrary constant that is less than all
values ot, and �o is the mean of the observations. z t is lowest
(best) when the ensemble brackets most observations, has
low spread, and is centered on the observations (Figure 2).
Figure 3 shows the ensemble’s time-varying performance
and the corresponding z t. Table 1 demonstrates that z t
encompasses both the commonly used ensemble spread and
skill [e.g., Talagrand et al., 1997].
[16] Overall insensitivity to factors that may significantly

alter performance (e.g., poorly known parameters or errors
in meteorological forcing data) can be expressed as:

r ¼ j�&e1 � �&e2j
�Ve1 þ �Ve2

ð5Þ

where �Ve1 and �Ve2 are the time means of the performance
scores for the first and second ensembles, respectively. The
two ensembles should significantly differ in the way(s) in
which modelers wish to assess robustness. For example, to
test robustness with respect to parameter variation, the
ensemble members should use parameter sets that come

Figure 2. Distribution of EF simulated for Site 2 at 2:00 PM on Julian day 161 (2002). (a) CDFs of the calibrated and
uncalibrated ensembles. (b)–(d) Performance scores. The performance score improves as the model is better described by
Descriptors 1–3 (see text).
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Figure 3. Relation between time-varying ensemble simulations of EF and time-varying performance score (z). EF
simulated by each ensemble is shown for Site 2 for Julian day 161 (2002). Black circles are observations; gray lines are
individual ensemble members; white bars are ensemble mean; gray bars are the ensemble interquartile range.

Table 1. Ensemble Spread, Skill, and Performance Score for EF Simulation at IHOP Site 2 at 2:00 PM Local Time on Julian Day 161 of

2002a

Spreadb Skillc Performance Score (z)

Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated

STD 0.00207 0.00370 0.00226 0.00470 0.114 0.154
DP 0.0105 0.0113 0.0109 6.07e–7 0.232 0.183
GW 0.00291 0.00504 9.22e–6 0.00293 0.0815 0.152

aSee also Figure 2.
bEnsemble spread (pt) is pt =

1
Nens�1

PNens

i¼1

(xi,t � �xt)
2, where �xt is the ensemble mean at time t, xi,t is the ith ensemble member at time t, and Nens is the

number of ensembles.
cEnsemble skill (kt) is kt = (�xt � ot)

2, where ot is the observed value at time t.
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from distinct distributions (as described above); to test
robustness with respect to data error, the ensembles should
differ in the type or level of noise by which their input data
is perturbed.
[17] Given the assumption that spatially varying charac-

teristics of the land surface shape surface-to-atmosphere
fluxes and near-surface states [e.g., Dickinson, 1995], we
note that there is an inherent contradiction between Descrip-
tors 4 and 5 above. A tradeoff exists between a model that is
completely insensitive to parameter variation and one that
consistently does well across sites. A ‘compromise ideal’
model is insensitive to the parameters that cannot be easily
identified; it is at least somewhat sensitive to parameters
that are physically realistic (e.g., vegetation type) and when
model and measurement scales are similar.
[18] For a given site and criterion, a model’s overall

fitness score, f, quantifies its suitability for broad applica-
tion. We define f as:

f ¼ �Vr ð6Þ

where �V is the mean performance score (Equation 4) of
the most representative ensemble and r is robustness
(Equation 5). The more sites and criteria used, the more
confident we can be of model performance (Descriptor 5).
The best model (m) from a set of M models tested across N

sites minimizes 1
N

PN
i¼1

fi,m. For fair cross-criterion compar-

ison, modelers should first rank f for a given criterion and
should then compare average fitness rankings of the models.
[19] Figures 4a and 4b show the utility of this framework

for improving LSM physical structure. DP, which is differ-
ent from benchmark model STD only in that it allows leaf
area index to vary over short time scales in response to
environmental variation, consistently better simulates EF at
semi-humid site 8 (Figure 4a), a result that is consistent with
the hypothesis that short-term phenology can alter surface
energy partitioning (see Rosero et al. (submitted manuscript,
2008b) for detailed analysis). DP tends to have the best z t
when simulating 24-hour change in wetness (Figure 4b and
Table 2). When used with other model output characteristics
(e.g., anomalies, bias), z t helps determine when and where
the model is most likely to succeed or fail. It can also be
used across criteria (Figure 4c); the combination of z and r
yields an assessment of overall model fitness (Figure 4d and
Table 2). Overall, GW performs best but is less robust than
STD. STD is the fittest model, but tradeoffs in fitness
between criteria make all models equivalently fit at the
most-humid site 8 (Table 2).

4. Summary and Implications

[20] We introduce three metrics for rigorous and realistic
evaluation of LSM performance within a framework that
explicitly acknowledges perennial sources of LSM output
uncertainty (e.g., sensitivity of output to parameters that are

Figure 4. Utility of metrics. Time-varying performance score (z) of STD, DP, and GW for (a) EF and (b) 24-hour change
in wetness (DW30). (c) Model performance when simulating EF, DW30, and DW30; change between the calibrated and
uncalibrated ensemble performance scores indicates model robustness. (d) Model fitness scores for each model, criterion,
and site.
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impossible to specify and to errors in meteorological forcing
data). The model performance score (z) quantifies the
likelihood that a representative model ensemble will be
highly skilled with low spread; the robustness score (r)
quantifies the sensitivity of model performance to changes
in parameters (as shown in the example here) and/or
perturbations to meteorological forcing. Our framework
treats the relative insensitivity of an LSM to both parameter
variability and to forcing error as beneficial characteristics
in the face of the less-than-perfect settings in which LSMs
are applied. The fitness score (f) combines the concepts of
good performance and robustness and is used to rank
models’ suitability for broad application.
[21] We demonstrate the use of the metrics using three

versions of the Noah LSM to simulate summer in Okla-
homa. Our example shows that the least complex version of
Noah is most fit for broad application. We use the time-
varying z (a tool for model evaluation and development) to
show that allowing leaf area index to vary on short time
scales improves Noah’s simulation of surface energy parti-
tioning and subsurface water dynamics at the semi-humid
site. Standard computational resources are now such that the
presented framework can be applied to several models (or a
single model with candidate parameterizations) and numer-
ous flux tower sites as a means for more thorough and
informative model evaluation: on a single 2.66 GHz pro-
cessor, to run one model for 2.5 years 15,000 times (as we
did for each Monte Carlo sampling) required less than
2 hours of computing time.
[22] Researchers are often quick to assume that the model

is performing well because it is more complex (i.e., has
more parameters), a characteristic often equated with in-
creased physical realism. This method for evaluation should
not be used to ‘prove’ that one representation is more
physically realistic than another. Although it is likely that
improved conceptual realism will improve model perfor-
mance, the converse is not necessarily valid. Regardless, the
models examined here have so many degrees of freedom
that it is difficult to parse whether strong model perfor-
mance is the result of cancelling errors or the result of

physical correctness; however, the performance and fitness
scores presented here allow for hypothesis testing and
model development that gives a realistic treatment to
uncertainty. Because the results are obtained using ensemble
simulations, we can be more confident that this improve-
ment is indeed the result of the altered model structure and
is not the simple result of a lucky guess of parameters.
[23] Land-surface modelers are unlikely to ever know the

‘right’ parameters for any site on which their models are
applied; they will not be able to eliminate error in meteo-
rological forcing data. Evaluation of LSM performance
must take a realistic view of these limitations. The metrics
proposed here enable more objective comparison of LSM
performance in a framework that more accurately represents
the ways in which LSMs are applied. Use of this framework
and metrics will strengthen modelers’ conclusions and will
improve confidence in LSM predictions.
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