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[1] Interannual variation in biogenic emissions is not well quantified, especially on
regional scales. We use a land surface model augmented with a short-term dynamic
phenology scheme to estimate the interannual variation in the emission of biogenic
volatile organic compounds (BVOCs) between 1982 and 2004. We use North American
Regional Reanalysis data to drive two versions of the National Center for Atmospheric
Research Community Land Model (CLM) on a 0.1� grid over eastern Texas. The first
version is the standard CLM with prescribed leaf area index (LAI) (i.e., LAI varies
seasonally but not interannually); the second version is the standard CLM augmented with
a dynamic phenology scheme (CLM-DP) that allows LAI to respond to environmental
variation. We calibrate CLM-DP using satellite-derived LAI as our visual constraint.
When phenology is prescribed, the domain-mean (domain-maximum) average absolute
departure from the monthly mean BVOC flux is 11.7% (70.6%); when phenology is
allowed to vary with environmental conditions, it is 22.4% (137.7%). The domain-mean
(domain-maximum) average absolute departure from the monthly mean flux is
lower during summer: using CLM-DP, it is 15.7% (35.3%); using the standard CLM,
it is 7.0% (23.0%). The domain-average, mean-normalized standard deviation of the
June-July-August mean BVOC flux is 0.0619 when LAI is prescribed and 0.183 when
LAI varies with environmental conditions. Our results imply that interannual variation
of leaf biomass density, which is primarily driven by interannual variability of
precipitation, is a significant contributor to year-to-year differences in BVOC flux on a
regional scale, of at least equal importance to interannual variation of temperature and
shortwave radiation. Phenology-driven biogenic emission variability is most pronounced in
regions with relatively low emissions: as a grid cell’s mean BVOC flux decreases, the
mean-normalized standard deviation of BVOC flux tends to increase. BVOC flux is most
variable between years in subhumid, sparsely wooded regions where interannual
variability of precipitation is relatively large.
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1. Introduction

[2] Biogenic volatile organic compounds (BVOCs) are
involved in a suite of environmental processes. BVOCs
condense to form secondary organic aerosols [Kavouras et
al., 1998; Claeys et al., 2004], which often become cloud
condensation nuclei [Novakov and Penner, 1993] and which
alter the radiative balance at Earth’s surface [Andreae and
Crutzen, 1997]. BVOCs react in the presence of nitrogen
oxides to increase the concentration of tropospheric ozone,
which is a respiratory irritant and a primary constituent of
photochemical smog [Chameides et al., 1988]. High con-
centrations of ozone adversely affect plant photosynthesis
and growth [Ashmore, 2005]. The ultimate reaction product
of most BVOCs is carbon dioxide [Guenther, 2002], and the
presence of isoprene may increase the lifetime of methane

[Poisson et al., 2000], a potent greenhouse gas. Because a
diverse set of environmental processes responds to forcing
by biogenic emissions, year-to-year variation in the flux of
BVOCs has the potential to influence interannual climate
variability.
[3] A range of factors affect the rate of biogenic emis-

sions. The vegetation species composition of a landscape,
which is controlled in large part by local climate, exerts
primary control on the flux of BVOCs from the land
surface. The rate of biogenic emissions also has been shown
to vary as a function of leaf biomass density, the amount of
photosynthetically active radiation (PAR) reaching the leaf
surface, the canopy temperature, leaf age [Guenther et al.,
1991; Monson et al., 1994; Fuentes et al., 1995], soil
nutrient availability, ambient carbon dioxide concentration
[Possell et al., 2004], drought stress, and the leaf-to-air
vapor-pressure deficit [Pegoraro et al., 2005]. Multiple
researchers have examined factors controlling seasonal
variation in biogenic emissions [e.g., Monson et al., 1994;
Fuentes and Wang, 1999]. Here we focus on interannual
variation.
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[4] Year-to-year variation in BVOC flux is likely consid-
erable. Levis et al. [2003] used a biogenic emissions module
[Guenther et al., 1995] and a dynamic global vegetation
module (DGVM) within a climate model to show that the
interannual variation in the total global flux of BVOCs in a
given month exceeded 18% during a 10-year fully coupled
climate simulation. Naik et al. [2004] drove the Integrated
Biosphere Simulator (IBIS), a DGVM, from 1971–1990
and found that modeled seasonal variability of total global
biogenic emissions ranged from 17–25%. Tao and Jain
[2005] used a terrestrial biosphere model to represent
1981–2000 and found that, when they represented both
carbon dioxide fertilization of the biosphere and monthly-
scale climate variability, global total isoprene emissions for
a given month varied up to 31% between years. These
estimates of interannual variation in monthly BVOC flux
are lower than the satellite-derived estimate of 40% provid-
ed by Palmer et al. [2006], who used a combination of six
years of satellite observations (40 km � 320 km) and model
simulations (2� � 2.5�) to estimate the interannual variabil-
ity of isoprene emissions in the southeastern United States.
Presumably, interannual variation in biogenic emissions on
a regional scale is larger than that on a global scale, where
estimates are effectively smoothed by averaging across all
land.
[5] Less attention has been paid to providing high-

resolution, regional-scale assessments of biogenic emissions
variability. The effects of BVOCs and their reaction prod-
ucts on cloud formation and atmospheric radiative transfer
make them an important constituent to represent within
future generations of regional climate models. Regional-
scale climate impact assessments are of value to policy-
makers (e.g., air quality managers, urban planners), who
design regulations and resource management plans for
localities and regions.
[6] Regardless of the size of the modeling domain, most

efforts to model BVOC emissions employ the empirical
algorithm of Guenther et al. [1995], which simulates
emission of isoprene (the most dominant BVOC species),
monoterpene, other volatile organic compounds (VOCs),
other reactive VOCs, and carbon monoxide (which it treats
as if it were emitted from vegetation). The 1995 Guenther
algorithm represents BVOC flux as a function only of plant
species, PAR, canopy temperature, and leaf biomass density:

FBVOC ¼ egPARgTD ð1Þ

where FBVOC is the land surface-to-atmosphere flux of
BVOCs (units: mg C m�2 h�1); e is a vegetation-type-
specific emission capacity (units: mg C gdlm�1 h�1, where
gdlm is g dry leaf matter); gPAR is a dimensionless scalar
that is a nonlinear function of PAR reaching the canopy
surface (for nonisoprene BVOCs, gPAR = 1); gT is a
dimensionless scalar that adjusts BVOC flux in response to
changes in canopy temperature; and D is the leaf biomass
density (units: g dry leaf matter [gdlm] m�2 of ground
covered by the vegetation type). More recent modifications
to the algorithm consider seasonal variation in plant
emitting capacities and explicitly account for variation in
soil moisture as a source of variability in BVOC emission
rates [Guenther et al., 2006]. For the research presented
here, we assume that the Guenther et al. [1995] algorithm

captures the key environmental drivers of emission
variability.
[7] Even if the Guenther et al. [1995] algorithm is

assumed to perfectly represent the emissions processes,
realistic simulation of BVOC flux also requires accurate
representation of each of the three component sources of
variation in the Guenther et al. [1995] algorithm: (1) short-
term environmental variation (i.e., PAR reaching the leaf
surface and canopy temperature); (2) seasonal and interan-
nual changes in leaf biomass density (phenology), which
vary with changing environmental conditions (e.g., spring
soil temperatures, plant-available soil moisture in the early
summer); and (3) the species composition of a landscape.
[8] Previous researchers’ model-derived estimates of

BVOC flux variability lay the foundation for future work
[Levis et al., 2003; Naik et al., 2004; Tao and Jain, 2005],
but their model frameworks do not realistically represent all
three component sources of variation listed above. Naik et
al. [2004] and Tao and Jain [2005] used monthly mean
climate data to drive their models. Because biogenic emis-
sions are a highly nonlinear function of PAR and canopy
temperature, use of monthly mean climate data to drive a
model likely underestimates total emissions and the vari-
ability of emissions. Naik et al. [2004] and Levis et al.
[2003] used dynamic global vegetation models (DGVMs) to
represent interannual phenological variation. The rate at
which most species of trees emit biogenic emissions is
one to two orders of magnitude higher than the rate at
which grasses emit BVOCs. Accurate specification of the
tree-to-grass ratio on the model domain landscape is con-
sequently of critical importance when modeling biogenic
emissions, but the skill of DGVMs to reproduce vegetation
type composition at high resolutions has not been demon-
strated. For example, the DGVM used by Levis et al. [2003]
overestimates the ratio of grass to trees, most likely because
of a dry bias in the coupled land surface model (LSM) soil
profile [Bonan and Levis, 2006]. Furthermore, DGVMs
may not accurately represent vegetation dynamics, phenol-
ogy, or carbon and water fluxes at high model resolutions
[Kucharik et al., 2006].
[9] When designing the model framework for the re-

search described here, we sought to use the most realistic
currently available representations of the processes to which
biogenic emissions estimates are most sensitive on time-
scales of years to decades (i.e., meteorological variation,
seasonal and interannual variation in leaf biomass density,
vegetation composition of the model landscape). We
employed a process-based, short-term dynamic phenology
module within the National Center for Atmospheric
Research’s Community Land Model (CLM) [Bonan et al.,
2002a, 2002b; Levis et al., 2004; Oleson et al., 2004,
available at http://www.cgd.ucar.edu/tss/clm/distribution/
clm3.0/TechNote/CLM_Tech_Note.pdf], a current-genera-
tion land surface model (LSM) that contains a biogenic
emissions module [Levis et al., 2003]. LSMs allow biomass
density, PAR, and canopy temperature to vary within a
physically consistent framework and can be used for both
retrospective analysis and predictive research. Gulden and
Yang [2006] showed that when equipped with species-based
regional emissions capacities for LSM land cover types,
regional LSMs adequately reproduce the spatial distribution
and magnitude of BVOC flux when compared to species-
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based emissions modules. Our framework realistically rep-
resents meteorological forcing, updating model state varia-
bles with new meteorological input every hour. After
preliminary model calibration, the simulated phenology is
consistent with observed phenological variation. The spe-
cies distribution of the model landscape is also realistic: to
initialize the model, we used land cover data and biogenic
emissions factors that were derived from the same high-
resolution, ground-survey-derived, species-based land cover
data set [Wiedinmyer et al., 2001; Gulden and Yang, 2006].
Although climate-driven vegetation composition change
over many centuries can result in a several-fold change in
biogenic emissions [Lathière et al., 2005], we assume that
over the course of years to decades, the relative plant-type
distribution of a landscape can be considered effectively
constant.

[10] We use the augmented CLM (as described above) to
address the following questions: (1) On a regional scale,
how much do biogenic emissions for a given month vary
from year to year? (2) Approximately what portion of this
variation is due to direct climate variation (e.g., changes in
PAR reaching the canopy, changes in leaf surface temper-
ature)? (3) Approximately what portion of this variation can
be attributed to interannual changes in the amount of leaf
biomass resulting from short-term variation in environmen-
tal conditions (e.g., more rain, warmer spring tempera-
tures)? We present a model framework that can be used to
represent the response of biogenic emissions to changing
climate conditions on a regional scale. Our method is
demonstrated for eastern Texas, but it can be readily applied
elsewhere.

2. Models and Methods

[11] We coupled a short-term dynamic phenology model
[Dickinson et al., 1998] to CLM and used the biogenic
emissions module added by Levis et al. [2003] (see equation
(1)) [Guenther et al., 1995]. Estimates of total BVOCs
emitted globally using CLM with Levis et al.’s BVOC
emissions module are consistent with numerous other esti-
mates [e.g., Guenther et al., 1995; Wang and Shallcross,
2000].
[12] We simulated biogenic emissions on a 0.1� grid over

eastern Texas (28�N to 33.5�N; �99.5�E to �94.5�E)
(Figure 1) using a 10-km, species-based land cover data
set [Gulden and Yang, 2006]. Vegetation composition varies
considerably across the domain: a mixed broadleaf and
needleleaf evergreen forest covers far eastern Texas; a
mosaic of woody savannas, grassland, and cropland covers
the rest of the domain. There is a strong west–east gradient
in mean annual precipitation (Figure 2), which is reflected
in the prominent west–east gradient in biomass density
(Figure 3).

Figure 1. Model domain. Quadrant-mean LAI values
were used as an additional visual constraint when calibrat-
ing the dynamic phenology module within CLM (see
description of calibration in text).

Figure 2. Annual rainfall characteristics of meteorological forcing used to drive model. Data are
bilinearly interpolated to 0.1� from North American Regional Reanalysis (NARR) data [Mesinger et al.,
2006] for years 1982–2004. Note the dry bias of the NARR data along coastal Texas; resulting LAI
values simulated with the dynamic phenology module are correspondingly spuriously small.
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2.1. Community Land Model

[13] CLM is representative of a current-generation LSM
used in climate and weather research. It simulates the flow
of mass, energy, and momentum between different reser-
voirs of the land surface. CLM represents canopy radiative
transfer [Dickinson, 1983; Sellers, 1985; Bonan, 1996],
photosynthesis and stomatal conductance [Farquhar et al.,
1980; Collatz et al., 1991, 1992; Dougherty et al., 1994],
and transpiration [Oleson et al., 2004, available at http://
www.cgd.ucar.edu/tss/clm/distribution/clm3.0/TechNote/
CLM_Tech_Note.pdf]. CLM can be driven as part of a fully
coupled climate system model or ‘‘offline’’ using preexist-
ing, high-resolution meteorological forcing data. Model
time steps are short (minutes to hours).

2.2. Dynamic Phenology Module

[14] So that we could still simulate interannual variation
in leaf biomass density without having our model results
depend on CLM-DGVM’s spuriously high ratio of grass to
trees [Bonan and Levis, 2006], we replaced CLM’s DGVM
with a dynamic phenology module [Dickinson et al., 1998].
Unlike CLM-DGVM, the augmented LSM (CLM-DP)
keeps the plant functional type (PFT) fraction of a grid cell
equal to that specified at model initialization, but it allows
leaf biomass density to vary as a function of soil moisture,
soil temperature, canopy temperature, and vegetation type.
[15] The dynamic phenology module allocates carbon

assimilated during photosynthesis to leaves, roots, and
stems; the fraction of photosynthate allocated to each
reservoir is a function of the existing LAI. LAI is a linear
function of leaf biomass density of the landscape; we used
PFT-specific leaf biomass densities derived in concert with
the initialization data set [Gulden and Yang, 2006]. The
model tracks growth and maintenance respiration, repre-
sents slow-turnover and fast-turnover carbon reservoirs, and
simulates vegetation response to cold stress and drought
stress. Because the dynamic phenology module represents
LAI as a nonlinear function of multiple environmental
variables, the relationship between climate and LAI is not

straightforward: in general, wetter soil, higher rates of
photosynthesis, warm soil, and temperate canopy air result
in increased LAI. Dickinson et al. [1998] provides a detailed
description of the model.
[16] The adequacy of the Dickinson et al. [1998] or an

equivalent dynamic phenology model to realistically repre-
sent changes in leaf biomass is not well established [Kim
and Wang, 2005]. Our review of the ecological literature
leads us to believe that there is not yet firm consensus in the
ecological research community regarding the quantification
of factors that control short-term variation in biomass [e.g.,
Grier and Running, 1977; Gholz, 1982; Leuschner et al.,
2006]. The Dickinson et al. [1998] scheme was based on the
best available understanding of carbon allocation between
vegetation reservoirs and is therefore a reasonable choice
for representing short-term phenological variation. The
Dickinson et al. [1998] model does not represent long-term
competition between vegetation types and is not susceptible
to model-produced errors in vegetation-type distribution,
which pose a potentially significant source of error for
biogenic emissions estimates.

2.3. Modifications to Model Processes and Parameters

[17] So that timing and shape of the seasonal cycle of the
dynamically simulated LAI would better match those of the
satellite-observed LAI, we changed the shape of the func-
tion allocating assimilated carbon to leaves (Figure 4) and
recoded the model so that leaves receive no assimilated
carbon outside of the model growing season. Our selection
of carbon allocation function was guided by the function’s
influence on the shape of the seasonal cycle of the modeled
LAI. Following CLM-DGVM, we treated the stem area
index (SAI) as a constant fraction of LAI. SAI represents
nonwoody, nonleaf biomass above ground; as SAI
increases, the shaded fraction of the canopy also increases.
[18] To ensure that modeled seasonal cycle and magni-

tude of seasonal variation in LAI were consistent with
observations, we manually calibrated the parameters of
CLM-DP. We used two satellite-derived monthly time series

Figure 3. Percent of land area covered by trees. Data
shown were derived from the ground-survey-derived,
vegetation-species-based land cover data set of Wiedinmyer
et al. [2001] by Gulden and Yang [2006].

Figure 4. Fraction of assimilated carbon devoted to leaves
as a function of leaf area index. Comparison of the original
function used by Dickinson et al. [1998] with that used in
CLM-DP.
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as visual constraints (Figure 5): (1) the domain-averaged
LAI for 1982–2000, which we calculated from 0.5� � 0.5�
Advanced Very High Resolution Radiometer (AVHRR) data
and (2) the domain-averaged climatological LAI (i.e., the
mean annual cycle averaged from data spanning 2001–
2003) obtained from Moderate Resolution Imaging Spec-
troradiometer (MODIS) and AVHRR data [Lawrence and
Chase, 2007].
[19] The MODIS climatological LAI provides no infor-

mation about interannual variability. AVHRR LAI data for
1982–2000 provided us with a lengthy, continuously vary-
ing time series. However, AVHRR-derived LAI data likely
overestimates the magnitude of the mean LAI in eastern
Texas [Tian et al., 2004; Lawrence and Chase, 2007] and
underestimates interannual variation in LAI because it is
based on the Normalized Difference Vegetation Index,
which saturates quickly, especially in forested regions such
as eastern Texas [e.g., Wang et al., 2005]. We used the
MODIS climatological LAI time series as the target for the
mean magnitude and amplitude of the seasonal cycle; we
used the AVHRR LAI data to inform our understanding of
the variability of LAI in the model domain.
[20] We adjusted parameters until the shape of the sea-

sonal cycle of LAI and the timing of leaf-on and leaf-off
roughly matched the satellite-derived data. We uniformly
scaled the specific leaf area values for PFTs calculated by
Gulden and Yang [2006] by 1.5. For each PFT, we increased
the minimum LAI from 0.05 m2 m�2 to one half of the
domain-wide minimum values reported in the MODIS-
derived land cover data set [Lawrence and Chase, 2007].
For woody vegetation, we set SAI equal to 0.25 � LAI; for
grasses, we set SAI equal to 0.05 � LAI. CLM uses SAI to
calculate the shaded fraction of the canopy; the dependence
of the rate of photosynthesis on the shaded fraction makes
the modeled LAI particularly sensitive to the SAI fraction.
Other slight adjustments to parameters were used if they
improved the visual match of the data sets to the satellite-

derived data; however, model output was insensitive to most
parameters.
[21] Figure 5 shows observed, uncalibrated, and calibrated

domain-average LAI. The average absolute percent depar-
ture from the mean LAI (see Appendix A for definition)
provides a measure of variability that is not directly tied to
the magnitude of LAI. Table 1 provides the average and
maximum absolute percent deviation from the monthly
mean domain-average LAI. Calibration of the dynamic
phenology module decreased the average absolute percent
deviation from the monthly mean LAI from 15.2% to
12.9%, which made the variability of the simulated LAI
more consistent with that of the AVHRR data set. Manual
calibration improved simulated LAI across the domain: the
calibrated, quadrant-averaged LAI for each of the four
quadrants of the domain (see Figure 1) is consistent with

Table 1. Observed and Model-Simulated Leaf Area Index (LAI):

Average and Maximum Absolute Percent Departure From the

Domain-Averaged Monthly Meana

Whole
Domain

Quadrant
1

Quadrant
2

Quadrant
3

Quadrant
4

AVHRRb

Average 9.0% 6.1% 15.0% 18.0% 8.7%
Maximum 30.7% 29.3% 68.1% 109.4% 30.4%

Uncalibrated CLM-DP
Average 15.2% 9.3% 10.4% 23.3% 29.3%
Maximum 49.6% 57.9% 49.4% 90.8% 90.2%

Calibrated CLM-DP
Average 12.9% 9.7% 11.4% 18.4% 22.9%
Maximum 59.3% 62.8% 61.3% 78.3% 59.9%
aThe average and maximum absolute percent departure from the monthly

mean is defined in Appendix A.
bThe AVHRR LAI series, which is on a 0.5� grid, extends only from

1982–2000; the model_simulated LAI series, which are simulated on a 0.1�
grid, extend from 1982–2004.

Figure 5. Comparison observed and simulated domain-average monthly leaf area index (LAI) for
1982–2004. The MODIS-based climatology varies seasonally but not interannually. The ‘‘Calibrated
CLM-DP’’ series is the LAI simulated by CLM-DP after manual calibration to the satellite-derived LAI
and our modifications to the code (both of which are described in text). The ‘‘Uncalibrated CLM-DP’’
series is the LAI simulated by CLM-DP without any modifications to the parameterizations or the
parameters.
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the quadrant-averaged satellite observations (data not
shown). Anomalies of the calibrated LAI are consistent in
both sign and magnitude with those of the satellite-derived
data (results not shown).
[22] Figure 6 shows the relationship between CLM-DP-

simulated LAI and domain-average precipitation and tem-
perature anomalies. As expected, LAI is lowest in hot, dry
years and highest in wet, temperate years. Year-to-year
differences in precipitation appear more important in deter-
mining LAI variation than do year-to-year differences in
temperature.

2.4. Model Runs

[23] We report the results of two model runs: (1) One
run used the standard version of CLM (CLM-PRESC); it
prescribed the MODIS climatological LAI for each model
year. (2) The second run used CLM-DP; it simulated LAI
variation in response to changing meteorological condi-
tions. For both runs, we specified the plant functional type
(PFT) composition of the landscape using a 0.1�, land
cover data set that Gulden and Yang [2006] derived from a
1-km species-based data set that was compiled from
extensive ground surveys [Wiedinmyer et al., 2001].
Gulden and Yang [2006] used the species-based data set
to calculate species-based, region-specific biogenic emis-
sions factors for each PFT (e in equation (1)), which we
used in both runs.
[24] Bilinearly interpolated North American Regional

Reanalysis (NARR) data [Mesinger et al., 2006] provided
0.1� meteorological forcing. We simulated the period
1979–2004, using a 1-hour model time step. Simulation
years 1979–1981 served as the spin-up period. We ana-
lyzed monthly mean model output from model years

1982–2004. The meteorological forcing was the same
for both runs.

3. Results and Discussion

[25] A time series of simulated domain-mean BVOC flux
is shown in Figure 7. Because the uncertainty in the
magnitude of BVOC emissions probably exceeds a full
order of magnitude [e.g., Guenther, 1997; Simpson et al.,
1999; Smiatek and Bogacki, 2005], we report simulated
variability using the average absolute percent departure
from the monthly mean, a measure of variability that is

Figure 6. Domain-averaged temperature anomaly, precipitation anomaly, and leaf area index (LAI).
Temperature and precipitation anomalies were derived from the North American Regional Reanalysis
(NARR) data [Mesinger et al., 2006] used to drive the offline models.

Figure 7. Time series of domain-averaged BVOC flux.
BVOC flux is the sum of the fluxes of isoprene,
monoterpene, other reactive volatile organic compounds,
other volatile organic compounds, and carbon monoxide
(which CLM treats as if it were emitted by vegetation).
Although both the CLM-PRESC and CLM-DP runs used
the same ground-survey-based PFT distribution, CLM-
PRESC relied on PFT-specific LAI values obtained from the
MODIS-derived land cover data set [Lawrence and Chase,
2007]. The ground-survey-based data set has, on average, a
higher area fraction of bare soil than the Lawrence and
Chase [2007] data set; consequently, CLM-PRESC mean
LAI is smaller than the MODIS climatological observations.
The magnitude of the BVOC flux simulated using CLM-
PRESC is correspondingly lower.
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not directly tied to the magnitude of the simulated flux (see
definition in Appendix A). To provide information about
absolute flux, we also report the standard deviation and its
mean-normalized counterpart, the coefficient of variation
(CV).
[26] The domain-mean average absolute departure from

the monthly mean BVOC flux was 22.4% when we used
CLM-DP and 11.7% when we used CLM-PRESC (Figure 8
and Table 2); the domain-maximum average absolute de-
parture from the monthly mean BVOC flux increased from
70.6% (using CLM-PRESC) to 137.7% (using CLM-DP)
(Table 2). When only the BVOC fluxes from June, July, and
August (JJA) were considered, the domain-mean (domain-
maximum) average absolute departure from the monthly
mean BVOC flux fell to 15.7% (35.3%) when we employed
CLM-DP and to 7.0% (23.0%) when we used CLM-
PRESC. A similar decrease was observed in each of the
four quadrants (Figure 1) of the domain (results not shown).
[27] We present detailed results for JJA because biogenic

emissions peak in the summer months, concurrent with the
summer ozone season in Texas. This is the time period
when the biogenic emissions may play the most important
role in the regional atmospheric chemistry. It is important to
note that some BVOC-related climatic processes may be
most sensitive to relative variability during other seasons;
however, because such processes are poorly understood, we
focus on the period of the year when absolute BVOC flux is
greatest.
[28] Leaf biomass density variation is a significant source

of interannual variation in JJA mean BVOC flux: the
domain-average standard deviation of the seasonal (JJA)
mean BVOC flux for the period 1982–2004 is 123 mg C
m�2 h�1 when phenology is prescribed and 401 mg C m�2

h�1 when phenology is allowed to vary with environmental
conditions. Use of dynamic phenology results in threefold
increase in the domain-average CV of JJA mean BVOC
flux: the CV is 0.183 when CLM-DP is used and 0.0619
when CLM-PRESC is used.
[29] Figures 9a and Figure 9d show the spatial distribu-

tion of the simulation mean JJA BVOC flux. Model results

are qualitatively consistent with expectations: biogenic
emissions peak in the evergreen-deciduous mixed forests
of eastern Texas, where biomass density is highest and
where the dominant vegetation species have high emission
capacities. Figures 9b and Figure 9e show the spatial
distribution of the average absolute departure from the
JJA mean flux; Figures 9c and Figure 9f show the spatial
distribution of the standard deviation of the JJA mean flux.

Figure 8. Percent departure from the monthly mean BVOC emissions. Average absolute percent
departure from the monthly mean is in parentheses. BVOC flux is the sum of the fluxes of isoprene,
monoterpene, other volatile organic compounds, other reactive volatile organic compounds, and carbon
monoxide (which CLM treats as if it were emitted by vegetation). See Appendix A for definition of
average absolute percent departure from the monthly mean.

Table 2. VOC Flux Simulated Using Prescribed Phenology and

Dynamic Phenology: Average and Maximum Absolute Percent

Departure From Monthly Mean BVOC Fluxa

Whole
Domain

Quadrant
1

Quadrant
2

Quadrant
3

Quadrant
4

Totalb BVOC Flux
Prescribed phenology
Average 11.7% 1.32% 13.5% 12.6% 7.3%
Maximum 70.6% 74.9% 105.6% 78.9% 26.4%

Dynamic phenology
Average 22.4% 20.9% 19.4% 27.6% 21.7%
Maximum 137.7% 225.1% 159.9% 129.1% 70.7%

Isoprene
Prescribed phenology
Average 12.7% 14.8% 13.2% 13.2% 8.2%
Maximum 89.3% 97.7% 139.4% 91.1% 29.6%

Dynamic phenology
Average 25.5% 25.0% 24.1% 30.6% 22.4%
Maximum 203.7% 331.4% 288.0% 150.2% 80.6%

Monoterpene
Prescribed phenology
Average 9.9% 10.5% 12.4% 11.1% 5.3%
Maximum 42.3% 49.9% 67.9% 54.5% 21.1%

Dynamic phenology
Average 19.2% 15.9% 16.0% 25.2% 19.9%
Maximum 79.0% 120.2% 80.7% 91.6% 50.9%
aSee Appendix A for explanation of average and maximum absolute

departure from the monthly mean.
bTotal VOC flux is the sum of the fluxes of isoprene, monoterpene, other

volatile organic compounds, other reactive volatile organic compounds, and
carbon monoxide (which CLM treats as if it were emitted by vegetation).
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Grid cells where variability is largest are often grid cells in
which there are relatively few trees (e.g., in the northwest
corner of the domain) (Figure 3) and where annual precip-
itation is relatively low but also highly variable between
years (Figure 2). It logically follows that interannual vari-
ation in BVOC flux is highest in areas where the absolute
BVOC flux is relatively low: as the JJA mean BVOC flux
increases, the grid cell’s CV of JJA mean BVOC flux
becomes less sensitive to interannual variation in LAI
(Figure 10).
[30] Modeled isoprene emissions are more sensitive than

modeled monoterpene emissions to use of dynamic phenol-
ogy (Table 2). Modeled isoprene flux is a nonlinear function
of both PAR and canopy temperature (both of which are
altered by changing LAI), whereas monoterpene flux
responds only to changes in canopy temperature.
[31] Even though BVOC flux is a linear function of

biomass density (equation (1)), there is not a one-to-one

correspondence between the CV of the JJA mean LAI and
the CV of the JJA mean BVOC flux (Figure 11). LAI
nonlinearly alters both PAR and canopy temperature. In-
creasing LAI increases light attenuation through the canopy,
which decreases the amount of PAR reaching the lower
levels of the canopy and consequently decreases the PAR-
dependent emission scaling factor, gPAR. Using CLM-DP
instead of CLM-PRESC increases the standard deviation of
canopy temperature (Figure 12), which augments variability
of the temperature-dependence emission scaling factor, gT.
The relationship between variation in LAI and canopy
temperature is not straightforward: increasing leaf area
increases the latent cooling capacity of the canopy; however,
increasing leaf area also increases the canopy radiative
absorption capacity. Because the simulated canopy temper-
ature during June, July, and August was, on average, 0.19 K
cooler when dynamic phenology was employed than when
phenology was prescribed, we surmise that the increased

Figure 9. Summer BVOC flux (1982–2004). (a–c) Results for prescribed phenology runs and (d–f)
results when dynamic phenology is employed. Figures 9a and 9d show the mean total BVOC flux,
Figures 9b and 9e show the average absolute departure from the monthly mean total BVOC flux, and
Figures 9c and 9f map the standard deviation of JJA monthly total BVOC flux. The standard deviation
quantifies the interannual variation in the mean seasonal (mean of June, July, and August emissions)
average BVOC flux. BVOC flux is the sum of the fluxes of isoprene, monoterpene, other reactive volatile
organic compounds, other volatile organic compounds, and carbon monoxide. Appendix A explains the
calculation of the average absolute departure from the monthly mean.
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latent cooling capacity of the canopy is the dominant source
of increased variability in canopy temperature and, conse-
quently, in biogenic emissions.
[32] A quantitative assessment of the relative contribution

of short-term environmental variation (e.g., shifts of canopy
temperature) and the relative contribution of interannual
variation in LAI to year-to-year differences in the magni-
tude of BVOC flux requires parameter substitution experi-
ments within simulations using a coupled land-atmosphere
model that allows changes in albedo, transpiration, and
surface roughness to feed back to affect regional meteoro-
logical conditions. However, we can approximate the rela-
tive importance of variation in temperature, radiation, and
biomass to the interannual variability of BVOC flux by
comparing the component sources of variability from CLM-

PRESC to those from CLM-DP run. Figure 13 shows the
domain-average percent departure from the monthly mean
for isoprene and the corresponding domain-average percent
departure from the monthly mean for the dimensionless
emission-modulating factors gPAR and gT and for LAI. We
see in Figure 13 that LAI is a source of variability that is at
least of equal importance to PAR and temperature. When
seeking accurate assessments of interannual variation in
nonisoprene BVOC emissions, which (at least in the model)
respond only to variation in temperature, simulating dy-
namic phenology is at least as important.
[33] Our results, in conjunction with the findings of

others [Levis et al., 2003; Naik et al., 2004; Tao and Jain,
2005], reinforce the assertion that total biogenic emissions
vary significantly between years, by up to a factor of two.
Results presented here demonstrate the importance of rep-
resenting of year-to-year change in leaf biomass density
when modeling biogenic emissions and demonstrate the
need for improved empirical quantification of interannual
variation in leaf biomass density. In Texas, year-to-year
variation in precipitation is more important than temperature
in controlling the interannual variation of leaf biomass
density: our results also provide additional justification for
studies that predict future changes to interannual variability
of precipitation.
[34] Even small changes in the concentrations of BVOCs

can shift the tropospheric ozone production of a region from
being NOx-limited to being VOC-limited, a chemical shift
that changes the relative utility of air pollution control
policies [X. M. Wang et al., 2005]. For the sake of
simplicity, air quality modeling studies often assume that
the annual phenological cycle is constant between years and
thereby likely underestimate interannual differences in bio-
genic emissions and air quality.
[35] The preliminary calibration used here provides im-

proved estimates of the magnitude and spatial distribution
of year-to-year variation of biogenic emissions in eastern
Texas. Such information is immediately useful to Texas air
quality managers and policymakers; however, automated
multicriteria calibration [e.g., Bastidas et al., 1999] of
model parameters will further improve the realism of

Figure 10. Relation of each grid cell’s mean BVOC flux
with its coefficient of variation (CV) for 1982–2004. Only
BVOC fluxes from June, July, and August are considered in
the calculation of mean and CV. CV is the standard
deviation divided by the mean.

Figure 11. Relation between the coefficient of variation
(CV) of leaf area index (LAI) and the CV of BVOC flux.
Results are from the simulation that used CLM-DP.

Figure 12. Relation between the standard deviation (SD)
of canopy temperature in the CLM-DP run the CLM-
PRESC run.
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simulated emissions, will provide uncertainty estimates, and
will improve the model’s suitability for practical and policy
applications.
[36] The biogenic emissions module within CLM

depends on the premise that biogenic emissions are a linear
function of leaf biomass density. During our preliminary
calibration, when we treated the satellite-derived LAI data
as truth, we implicitly assumed that leaf biomass density is a
linear function of satellite-observed spectral reflectance.
The combination of these two assumptions implies that
BVOC flux and leaf pigmentation are correlated, which is
consistent with empirical studies [Lehning et al., 2001] but
which may not be completely accurate.
[37] Our model framework neglects many sources of

interannual variation in biogenic emissions. Geron et al.
[2000] showed that emissions factors for white oak vary
seasonally; Funk et al. [2003] found evidence for large
variation in emission factors over the daily cycle. CLM does
not represent the detrimental effect of ozone on plant
growth [Ashmore, 2005], and it does not account for recent
observations showing a decrease in the emission of some
chemical species of BVOCs when ambient carbon dioxide
concentrations increase [e.g., Rosenstiel et al., 2003]. The
BVOC emissions module in CLM does not represent the
uptake of atmospheric isoprene from soil microorganisms
[Cleveland and Yavitt, 1998], the rate of which appears to
decrease as soil moisture decreases [Pegoraro et al., 2005].
At least in some plant species, isoprene emissions increase
under mild drought stress and then decrease when drought
stress becomes severe [Pegoraro et al., 2005; Funk et al.,
2005]. In CLM-DP, LAI begins to decrease as soon as
photosynthesis falls below the maintenance respiration rate;
all else being equal, modeled isoprene flux begins to
decrease as soon as maintenance respiration demands more
energy than is captured by photosynthesis. CLM-DP there-
fore likely underestimates BVOC flux in periods of mild
water scarcity.
[38] Why go to the effort of augmenting an LSM with a

dynamic phenology model when high-resolution satellite-
derived observations of LAI are available? Assimilating

high-resolution satellite-derived LAI variation is indeed a
viable option for retrospective applications. The work of
Guenther et al. [2006] provides a ready framework for such
assimilation. However, such an approach is not amenable to
investigation of how future environmental change will alter
biomass density and biogenic emissions. Processed-based
representations of phenological change also provide a
foundation for future assessment of cause-and-effect rela-
tionships between BVOCs, leaf biomass density, and other
components of the climate system; using prescribed, satellite-
derived data would render such investigation impossible.
[39] Realistic modeling of biogenic emissions is funda-

mentally limited by a dearth of observations. Region-
specific biogenic emissions capacities for the coarse-reso-
lution LSM land cover classifications and any estimates in
interannual variability of biogenic emissions are, of course,
only as good as the species-based information from which
they are derived. Although the number of species for
which the scientific community has biogenic emissions
rate estimates is growing, most plant species have no
associated biogenic emissions data and data quantifying
intraspecies variation in both type [Staudt et al., 2004] and
quantity [e.g., Funk et al., 2005] of biogenic emissions is
available for only a very few vegetation species.

4. Summary and Conclusions

[40] We used CLM augmented with a dynamic phenology
module, a species-derived land cover data set, and region-
specific biogenic emissions factors to estimate the interan-
nual variability of biogenic emissions in eastern Texas for
the period 1982–2004.
[41] Using the standard CLM, the domain-mean (domain-

maximum) average absolute departure from the monthly
mean BVOC flux is 11.7% (70.6%); using CLM with
dynamic phenology it is 22.4% (137.7%). The domain-
mean (domain-maximum) average absolute departure from
the monthly mean flux is lower during summer: it is 15.7%
(35.3%) using dynamic phenology; it is 7.0% (23.0%) using
prescribed phenology. When phenology is prescribed, the

Figure 13. Components of interannual variation in domain-average isoprene emissions (1990–2004).
Time series shown are the domain-average% departure from the monthly mean. The temperature
dependence factor is gT in equation (1). The PAR dependence factor is gPAR in equation (1). The
variability in the time period shown is representative of the variability for the entire simulation period;
only years 1990–2004 are shown for ease of viewing.
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domain-average coefficient of variation (mean-normalized
standard deviation) of the JJA mean BVOC flux is 0.0619.
When phenology is allowed to vary with environmental
conditions, the domain-average coefficient of variation
increases threefold to 0.183.
[42] We conclude that year-to-year variation in leaf bio-

mass density is a significant source of interannual variation
in regional biogenic emissions that is at least as important as
interannual variation in temperature or photosynthetic active
radiation. Phenology-driven biogenic emission variability is
greatest in regions with relatively low absolute emissions: as
a grid cell’s mean BVOC flux increases, the mean-normal-
ized standard deviation of mean BVOC flux tends to
decrease. Variability is highest in subhumid, sparsely wood-
ed regions where interannual variability of precipitation is
relatively large.
[43] Our model framework lays the groundwork for

future coupled climate model investigations of the cause-
and-effect relationships between biogenic emissions, other
land surface states and fluxes, and atmospheric processes.
Our results are for Texas, but the presented results likely
apply elsewhere.

Appendix A

[44] We define the absolute percent departure from the
mean for a time series x as follows:

8xy;m; y ¼ ys; ysþ1; . . . ; ye;m ¼ 1; 2; . . . ; 12

xm ¼

Pye

y¼ys

xy;m

ye � ys þ 1ð Þ ðA1Þ

dy;m ¼

�����
xy;m � xm

xm

�����
ðA2Þ

dms�me
¼

Pye

y¼ys

Pme

m¼ms

dy;m

ye � ys þ 1ð Þ � me � ms þ 1ð Þ ðA3Þ

max dms�me
ð Þ ¼ max dy;m

� �
; y ¼ ys; ysþ1; . . . ; ye;

m ¼ ms;msþ1; . . . ;me ðA4Þ

Where xy,m is a member of time series x. xy,m is the monthly
mean value of the variable of interest for month m of year y
(equation (A1)). The first and last years of time series x are
ys and ye (1982 and 2004, in the results described in this
paper). For a given month m in year y, that month’s absolute
departure from the monthly mean is dy,m (equation (A2)).
The average absolute departure from the monthly mean for
the time series x considering only the set of months that
begins with ms and ends with me is dms�me

(equation (A3)).
The maximum absolute departure from the monthly mean
for the time series considering only the set of months that

begins with ms and ends with me is max (dms
�me) (equation

(A4)). To compute the domain-mean (domain-maximum)
average absolute departure from the mean, we first
calculated the average absolute departure from the mean
for each grid cell and then calculated the mean (maximum)
of the values for all grid cells that compose the domain.
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