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1.  INTRODUCTION

Human-induced global and regional climate change
has shown profound impacts on ecosystems, water re-
sources, sea levels, extreme events, and human
health (e.g. Walther et al. 2002, Kalnay & Cai 2003,
Karl & Trenberth 2003, Patz et al. 2005) during the
past 50 yr. These impacts may be further amplified as
global temperatures continue to rise in response to in-
creasing greenhouse gases. An annual to decadal as-
sessment of future climate change on regional scales
is crucial in understanding the public’s vulnerability.

The Fourth Assessment Report (AR4) of the Inter-
governmental Panel on Climate Change (IPCC 2007)
showed a global warming of about 0.2°C decade−1 for

a range of emission scenarios outlined in the Special
Report on Emissions Scenarios (SRES) over the next 2
decades. Even if the concentrations of greenhouse
gases and aerosols were held constant at year 2000
levels, a 0.1°C decade−1 increase in global tempera-
tures is projected (IPCC 2007). At local (e.g. county)
to regional (e.g. state) scales, temperature changes
are projected to be more variable. Utilizing output
from global climate models, a number of studies have
analyzed model projections of future climate change
for different regions under different emissions sce-
narios (e.g. Boer et al. 2000, Johns et al. 2003, Seager
et al. 2007, Cayan et al. 2008). With regard to precip-
itation changes, climate models project more precip-
itation in some regions as a result of an increase in
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the total amount of water in the atmosphere under a
warming climate (Wentz et al. 2007), while mid-lati-
tude regions, are projected to have less precipitation
(IPCC 2007). 

The present analysis focuses on Texas, which is
home to 4 of the top 10 fastest growing cities in the
USA, and also a very productive agricultural state.
Increases in climate variability could make adapta-
tion by farmers more difficult. A warmer climate and
in creased evaporation may increase the need for
 irrigation. As the state population is projected to dou-
ble by 2060, demand for water is projected to in -
crease by 27% (www.twdb. state.tx.us/wrpi/data/ proj/
2012popproj.  asp).

Projected impacts of climate change in Texas have
previously been assessed based on global climate
model simulations and downscaled regional climate
information. By use of a scaling method on global cli-
mate model simulations, Loaiciga et al. (2000) de -
monstrated the vulnerability of the Edwards aquifer,
an important water resource for Texas, to climate
change. Using geographic information systems, veg-
etation models, and general circulation models,
Cameron & Scheel (2001) re vealed that climate
change could have a large impact on regional distri-
butions of vegetation and rodents. Based on simula-
tions of several global climate models, Seager et al.
(2007) showed that southwestern North America,
which encompasses part of Texas, is projected to
become drier in the 21st century, and that the transi-
tion to a more arid climate should already be under-
way. Jiang et al. (2008) investigated the impacts of
climate change on Texas air quality using a regional
climate model and future climate scenario, suggest-
ing that climate change could have a large effect on
ozone formation and high ozone episodes. The pre-
sent study analyzes climate change in Texas on the
basis of 16 downscaled global climate models under
various emissions scenarios. 

International climate modeling groups have pro-
duced hundreds of simulations at a coarse resolution,
representing past and future climates for the IPCC
AR4 (Meehl et al. 2007). The regional climate infor-
mation projected by these global climate models is
not adequate for impact assessments (e.g. risk of
droughts or floods) that require climate infor ma tion
at finer resolutions. For example, hydro logical and
crop models often require climate information at a
very fine spatial resolution (e.g. Mearns et al. 1997,
Wood et al. 2002). Methods to downscale coarse-
 resolution climate information to regional scales
have been developed (e.g. Kidson & Thompson 1998,
Mearns et al. 1999, Murphy 1999, Liang et al. 2006,

Fowler et al. 2007, Schmidli et al. 2007, Lo et al.
2008). Dynamic downscaling and statistical down-
scaling are the 2 primary methods employed (e.g.
Wilby & Wigley 1997, IPCC 2001). Dynamic down-
scaling, which involves the use of regional climate
models, has the advantage of taking into account
regional features such as land use and terrain in sim-
ulations, but is more computationally expensive (e.g.
Liang et al. 2006, Lo et al. 2008). Statistical downscal-
ing, based on the development of relationships link-
ing the local variables to atmospheric-predictor vari-
ables (Wilby & Wigley 1997), is more affordable.
Wood et al. (2004) found that a bias correction-based
statistical downscaling method outperforms others
in  cluding the dynamic downscaling method, whereas
Schmidli et al. (2007) compared 6 statistical down-
scaling models and 3 regional climate models and
found that statistical downscaling models underesti-
mated the magnitude of year-to-year variations in
simulated precipitation compared to dynamic down-
scaling models.

The US Department of Interior’s Bureau of Recla-
mation (Research & Development Office) and the
Lawrence Livermore National Laboratory (LLNL),
teamed with other research institutes, have devel-
oped statistically downscaled climate projections
(monthly temperature and precipitation) on the basis
of the World Climate Research Programme (WCRP)
Coupled Model Intercomparison Project phase 3
(CMIP3) multi-model data set. They used a method
originally developed by Wood et al. (2004) to down-
scale the global climate model data sets to region
scale over the USA. This method is computationally
efficient enough to be applied to many projections
(e.g. Maurer 2007). 

In the present study, the statistically downscaled
WCRP CMIP3 Climate Projections are used to detect
signals of future climate change for Texas with a fo -
cus on precipitation and temperature changes under
3 different future emissions scenarios. The model
performance is evaluated using available ob ser va -
tions and reanalysis data. Part of the effort at evalua-
tion is focused on analyzing general trends of climate
change in terms of trend analysis and interannual
variability. Seasonal changes in precipitation and
temperature are presented. The large size of Texas
and its unique location at the intersection of different
climate zones — humid subtropical, temperate semi-
arid, and subtropical steppe — make it necessary to
study changes for different regions. We define 5 sub-
regions in Texas (Fig. 1), based on the fact that these
regions historically have experienced different cli-
mates varying widely from arid in the west to wet in
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the east. Finally, the relationships between precipita-
tion and surface air temperature changes over Texas
are examined. The methodologies described in this
study are ap plicable to other regions under different
climate scenarios.

2.  DATA AND METHODS

The present study uses the downscaled WCRP
CMIP3 multi-model data set for 3 IPCC SRES emis-
sions scenarios: A2, A1B, and B1 (Nakicenovic et al.
2000). 

The WCRP CMIP3 data set (www-pcmdi. llnl. gov/
ipcc/  diagnostic_subprojects.php) consists of 39, 36,
and 37 simulations provided by 16 climate models for
the A1B, A2, and B1 scenarios, respectively (Table 1),
with some models generating more than one simula-
tion for one scenario. Therefore, this data set includes
a total of 112 transient simulations for the 20th century
and 21st century under the 3 scenarios. A statistical

down scaling approach — basically a
bias correction technique, first intro-
duced by Wood et al. (2004) — was em -
ployed to generate downscaled high-
spatial-resolution products (http: // gdo-
dcp. ucllnl. org/ downscaled_ cmip3 _
projections). For bias removal, a quan-
tile-based mapping was constructed
from the global climate model clima-
tology to the observed monthly clima-
tology for each variable (temperature
and precipitation). The success of the
method depends on the stability of the
probability distributions used to cor-
rect climate model bias. Details were
reported in Wood et al. (2004) and
Maurer (2007). In their technique,
they assumed that the processes con-
trolling the climate at the fine grid
scale during the period of 1950−1999
would continue to govern local climate
features in the future. Although this is
a limit of their approach, Wood et al.
(2004) showed that this bias correction
method outperformed others, in clud -
ing dynamic downscaling approaches.
Thus, in the present study, we only
briefly evaluate the statistically down-
scaled climate model results against
ob servations. Multi-model ensemble
results of precipitation and surface air
temperature are also used to assess

Fig. 1. Five sub-regions of Texas

Model                            Modeling group

BCCR-BCM2.0             Bjerknes Centre for Climate Research, Norway

CGCM3.1 (T47)            Canadian Centre for Climate Modeling & Analysis,
Canada

CNRM-CM3                 Météo-France/Centre National de Recherches
Météorologiques, France

CSIRO-Mk3.0               CSIRO Atmospheric Research, Australia

GFDL-CM2.0                US Dept. of Commerce/NOAA/Geophysical Fluid
GFDL-CM2.1                Dynamics Laboratory, USA

GISS-ER                        NASA/Goddard Institute for Space Studies, USA

INM-CM3.0                  Institute for Numerical Mathematics, Russia

IPSL-CM4                     Institut Pierre Simon Laplace, France

MIROC3.2 (medres)     Center for Climate System Research (University of
Tokyo), National Institute for Environmental
Studies, and Frontier Research Center for Global
Change (JAMSTEC), Japan

ECHO-G                       Meteorological Institute of the University of Bonn,
Meteorological Research Institute of KMA,
Germany

ECHAM5/MPI-OM      Max Planck Institute for Meteorology, Germany

MRI-CGCM2.3.2          Meteorological Research Institute, Japan

CCSM3                         National Center for Atmospheric Research, USA

PCM                              National Center for Atmospheric Research, USA

UKMO-HadCM3          Hadley Centre for Climate Prediction and
Research/Met Office, UK

Table 1. Global climate models used in World Climate Research Programme 
(WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) data
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potential future climate change in Texas under differ-
ent emission scenarios, with an emphasis on the A1B
scenario. The spatial resolution of this data set is 1/8°
(~12 km) for the contiguous USA.

3.  PRESENT-DAY CLIMATE EVALUATION

One observation data set used for evaluation was
from the USA National Climatic Data Center (NCDC).
The data were adjusted to account for ef fects of fac-
tors such as instrument changes, station re lo cations,
observer practice changes, and  ur ban ization (www.
ncdc. noaa. gov/  oa/ ncdc. html). The National Centers
for Environmental Prediction (NCEP) North Am er i -
can Regional Reanalysis (NARR) data set (Mesinger
et al. 2006) was also used for model evaluation. The
NARR data were generated at a 3 h interval with the
use of the NCEP Eta model, its data assimilation sys-
tem, and a recent version of the Noah land surface
model at a spatial resolution of 32 km. The system
used to generate the NARR data also includes hourly
assimilation of observed precipitation. We compare
the 1980−2000 means of monthly average NCDC and

NARR surface air temperature and precipitation with
the downscaled WCRP CMIP3 data. The reason for
selecting the period of 1980−2000 is that the NARR
data are only available since 1979.

Overall, the downscaled surface air temperature
and precipitation agree well with the NARR data
over the entire domain (Fig. 2). Downscaled model
results reproduce well the main features of monthly
variations in surface air temperature (Fig. 3a). If we
consider the NCDC data as true ob servations, there
is a warm bias in the NARR data as a result of unsuc-
cessful assimilation of land surface temperature
observations (Mesinger et al. 2006) in the data assim-
ilation scheme (3DVAR). Because of the large diurnal
variation of temperature over land that exists at any
time of year, residuals between observations and
background required by the 3DVAR scheme of the
NARR system are regularly quite large. The balance
relationship in the 3DVAR erroneously connects
these large surface residuals to the wind field, which
has a relatively large vertical correlation length
(around 250− 300 mb). As a result, the large surface
residuals have an un desirable impact on lower-
 tropospheric temperatures and lower- to mid-
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Fig. 2. Comparison of (a,b) North American Regional Reanalysis (NARR) and (c,d) downscaled annual mean (a,c) surface air 
temperature (°C) and (b,d) precipitation (mm d−1) over the period 2000−2007
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 tropospheric winds, instead of being limited to the
boundary layer. Therefore, surface air temperature
in the NARR data is simulated using the Noah land
surface model, which suffers from several biases in
near-surface fields due to errors in the partitioning of
boundary layer fluxes. The warm bias is mainly
owing to an overestimate of sensible heat flux at the
cost of latent heat flux. Hence, we attribute the warm
bias in the NARR data to the lack of assimilation of
ground-based surface temperature measurements in
the NARR system.

Model performance in simulating precipitation
varies (Fig. 3b). Overall, down scaled model results
match well with the NARR precipitation data. The
high quality of the NARR precipitation data is attrib-
uted to the assimilation of several sources of precipi-
tation data sets including the Climate Prediction
Center (CPC) precipitation and Higgins data over the
USA continental area, and CMAP and CMORPH
over southern portions of the oceans in the NARR
system. The quality control performed on the CPC
data (e.g. duplicate station check, standard deviation
check) and radar and satellite data greatly improves
the quality of precipitation data used in the NARR
system (Higgins et al. 2000). No quality control was
made of the NCDC precipitation data using radar or
satellite data. The downscaled precipitation is over-
estimated in September compared to the NARR pre-
cipitation data, and the spread among climate mod-
els is larger than that in surface air temperature.

Correlation coefficients for surface air temperature
between the NCDC observations and the downscaled
model results (data not shown) are around 0.98 over

the whole of Texas. The correlation coefficients for
precipitation vary across models (Fig. 4). GFDL-
CM2.1 and IPSL-CM4 have the highest correlation
coefficients (>0.9), while CNRM-CM3 has the lowest
correlation coefficient (~0.79). To further assess the
downscaled results, we calculated model biases
(Fig. 5a,b) and normalized root mean square errors
(RMSEs) for temperature and precipitation (Fig. 5c,d).
Normalized RMSE values can be used to judge the
extent to which the simulations differ from the obser-
vations. Models have smaller biases for winter pre-
cipitation and summer surface air temperature than
for summer precipitation and winter surface air tem-
perature. Models that perform best in simulating tem-
peratures do not necessarily simulate precipitation

233

Fig. 3. National Climatic Data Center (NCDC) observations (thick solid line), North American Regional Reanalysis (NARR)
data (thick dashed line), and downscaled model results (colored lines) over all of Texas for (a) monthly mean surface air 

temperature and (b) monthly mean precipitation over the period 1980−2000

Fig. 4. Correlation coefficients of monthly precipitation be-
tween downscaled results (16 models) and National Climatic
Data Center (NCDC) observations over entire Texas. See 

Table 1 for abbreviations
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well. CNRM-CM3 has the largest normalized RMSE
for surface air temperature and precipitation, sug-
gesting it is not good for climate assessment studies
over Texas. ECHO-G and UKMO-HadCM3 are the
best among all of the downscaled climate models for
surface air temperature simulations. Again, GFDL-
CM2.1 and IPSL-CM4 are good at simulating precipi-
tation over Texas, as shown by smaller normalized
RMSE values. Although there are biases in different
climate models, we assume that biases in simulating
the present-day climate are systematically propa-
gated into the projected future climate (Liang et al.
2008). This could give rise to some uncertainty in fu-
ture climate projections for Texas.

4.  PROJECTED TEMPERATURE AND
 PRECIPITATION CHANGES

4.1.  Temperature

IPCC climate models projected an overall warming
trend towards the end of the 21st century all over the
world (IPCC 2007). As shown in Fig. 6a, temperatures
over Texas are projected to increase under the 3 dif-
ferent emissions scenarios, with the highest increase
associated with the A2 scenario. The warming during
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Fig. 5. Model biases for monthly mean (a) surface air temperature (°C) and (b) precipitation (%) between downscaled re-
sults and National Climatic Data Center (NCDC) observations; normalized root mean square error (RMSE) of (c) surface air 

temperature and (d) precipitation for each model over Texas. See Table 1 for abbreviations

Fig. 6. (a) Projected surface air temperature anomalies for the
period 2001− 2099 over Texas relative to 1971−2000 means.
All model results for the A1B scenario (gray line); ensemble
means for the A1B (black line), A2 (red line), and B1 (blue
line) scenarios; and observations (green line) are shown. (b)
Projected probability distributions of surface air temperature 

changes for the period 2070−2099 relative to 1971−2000



Jiang & Yang: Projected climate change in Texas

the 21st century is approximately linear with time un-
der each scenario, al though there are year-to-year
variations. NCDC observations show strong year-to-
year variation, while the ensemble means do not.
This can be explained thus: when we averaged all
model results, we removed high-frequency informa-
tion. This type of feature is also observed in the IPCC
AR4 report for global temperature projections (IPCC
2007). The ensemble means of model-simulated sur-
face air temperature for the present day are in the
range of observed variations. The temperature in -
crease is somewhat modest from 2000 to 2040, but be-
comes more marked afterwards. It is projected that a
relatively small increase in temperatures is likely to
occur under the B1 scenario. Projected temperature
increases over Texas will reach 4.8, 3.6, and 2.2°C by
the end of 2100 under the A2, A1B, and B1 scenarios,
respectively. We only plotted all model results, as in-
dicated by the gray color in Fig. 6a, for the A1B sce-
nario. It shows that there is a large spread among
models due to differences in model para meter -
izations, sensitivities, and responses to greenhouse
gases and other forcings.

The probability plot of projected surface air tem-
perature changes (Fig. 6b) shows a range of positive
anomalies over the period of 2070− 2099 from +0.6 to
+6.5°C. Table 2 shows that, under the A2 scenario,
about 10% of the models project an increase of 5.2°C
in surface air temperature. Half of the models project
a 4.1°C increase. Most (~90%) of them project that
there will be at least a 3.0°C increase in surface air
temperature. Increases under the B1 scenario are the
smallest, and the A2 scenario yields the highest tem-
perature in crease.

Temperatures in northwestern Texas increase more,
with trends ranging from approximately 2.4°C under
the B1 scenario to 4.2°C under the A2 scenario
(Fig. 7). Projected temperature changes occur rather
steadily in southeastern Texas, with annual tempera-
ture increases ranging from 2 to 3.2°C under the B1
and A2 scenarios. This could be attributed to the
large thermal capacity of the Gulf of Mexico. The
temperature gradient becomes stronger as emissions
forcing increases.
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No. of models (%)            A2                  A1B               B1

10                                      5.2                   4.5                3.2
50                                      4.1                   3.0                2.3
90                                      3.0                   2.5                1.8

Table 2. Temperature increase (°C) from the 1971–2000
period to the 2070–2099 period predicted by 10%, 50%, and 

90% of all models
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Fig. 7. Projected annual surface air temperature anomalies
(°C) for the period 2070−2099 relative to 1971−2000 means 

over Texas under different emissions scenarios
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4.2.  Precipitation

An increase in the average global temperatures
will likely to lead to changes in precipitation and
atmospheric moisture because of changes in atmos-
pheric circulation and increases in evaporation and
water vapor. Model projections of future climate in
southwestern North America show a transition to a
more arid climate that began in the late 20th and
early 21st centuries (Seager et al. 2007). While it is
not easy to detect the projected trends in precipita-
tion changes in Texas (data not shown), owing to
large year-to-year variability of precipitation, careful
examination reveals a slightly decreasing trend
under the A1B scenario and a slightly increasing
trend under the B1 scenario. The decreasing trend
under the A2 scenario is relatively more conspicuous.
A more sophisticated analysis is needed to discern
the future changes in precipitation. For this purpose,
in Section 5, a wavelet analysis tool is applied to pre-
cipitation data over 5 sub-regions in Texas. We will
discuss this in more detail in Section 5.

The means of precipitation change under the 3
emissions scenarios are quite close, whereas a wet-
ting trend is observed under the B1 scenario and a
drying trend is present under the A2 scenario
(Fig. 8a). The largest standard deviations are seen
under the A2 scenario, while the smallest ones are
observed under the B1 scenario. This suggests that
more extremes of precipitation are projected to occur
under the A2 scenario, which is not unexpected as
the A2 scenario is the high-emissions scenario. As a
result of projected increases in future temperature,
precipitation extremes are projected to in crease
(Fig. 8b). A high risk of extreme precipitation events
is likely to occur over the period 2070−2099; how-
ever, it should be noted that the averaged anomalies
are around zero, indicating no big changes found in
the annual-averaged precipitation over the entire
state. Different climates in different regions over
Texas might offset each other. Different seasonal
changes in precipitation could reduce the annual
changes as well (see Section 5).

4.3.  Changes in seasonal patterns of temperature
and precipitation

Simulations under the 3 scenarios all show more
warming in summer than in winter (Fig. 9). As
pointed out in Section 4.1, a much higher tempera-
ture increase is projected under the A2 scenario. Sur-
face air temperatures are projected to increase by

2.30°C on an annual basis, and 2.49°C and 1.92°C for
summers and winters during the period 2040−2069
(Table 3). By the end of the 21st century, the
increases in annual, summer, and winter tempera-
tures are projected to reach 3.92, 4.17, and 3.29°C,
respectively (Table 3). The projected difference in
temperature in creases between the A2 and A1B sce-
narios is larger during the period 2070−2099, indicat-
ing more warming is likely to occur at the end of the
21st century. The B1 scenario leads to a projected
2°C in crease in annual temperature and smaller sea-
sonal variations. Note that the spatial patterns of pro-
jected temperature changes for the 3 scenarios are
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Fig. 8. (a) Projected probability distributions of precipitation
changes under the 3 emissions scenarios for the period
2070− 2099 relative to 1971−2000 means over Texas, based
on a histo gram plot of the precipitation changes with a fitted
normal distribution. (b) Projected probability distributions of 

annual precipitation changes under the A1B scenario
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Fig. 9. Projected (a−c) winter (DJF: Dec-Jan-Feb) and (d−f) summer (JJA: Jun-Jul-Aug) surface air temperature changes (°C) 
between 2070−2099 and 1971−2000 under the 3 emissions scenarios over Texas
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very similar, with larger increases seen in northwest-
ern Texas and smaller increases seen in southeastern
Texas, but they differ in their magnitudes.

Changes in precipitation in different seasons are
projected to trend southwest−northeast, with rela-
tively larger changes in the southwest (Fig. 10). The
observed precipitation gradients in Texas are in a
west−east direction. So the changes in future precipi-
tation do not exactly match the observed precipitation
gradients. Most regions are projected to experience
reduced precipitation in winters under global warm-
ing, except for the Panhandle region. The decrease in
winter precipitation can be as large as 20%. The de-
gree of future drying trend is most obvious under the
A2 scenario. The B1 scenario produces modest drying
climates in winters. In contrast, summers are likely to
become wetter over southwestern Texas under all
scenarios. Nearly half of the area is projected to be
wetter in summer under the A2 scenario, and three-
quarters of the area is projected to have more precipi-
tation under the A1B scenario, with the largest in-
crease reaching >10%. If the scenario is B1, the
wetting trend expands all over Texas. If we average
precipitation changes over the entire state, the wet
summers and dry winters will offset each other. The
summary of precipitation changes over Texas is listed
in Table 3. The results for precipitation changes sug-
gest that the southwest region of Texas is more vul-
nerable to future climate change.

5.  SUBREGIONAL CLIMATE CHANGE UNDER
A1B SCENARIO

For the sake of simplicity, we only examine future
climate change for the 5 sub-regions in Texas under

the mid-level A1B scenario. We calculated 95% con-
fidence intervals for temperature and precipitation
changes using ANOVA (Dean & Voss 1999). The
Pan handle region is projected to have larger in -
creases in surface air temperature, whereas South
Texas is projected to experience smaller increases
(Fig. 11a). The difference in temperatures between
the 2 regions is around 0.5°C. Temperatures in other
regions are projected to increase by about 3.0°C. The
confidence interval plot for precipitation (Fig. 11b)
suggests big uncertainties in future precipitation pro-
jections, as indicated by the large intervals over dif-
ferent sub-regions. The climate models project a
drier climate towards the end of the 21st century over
much of the Texas region except for East Texas,
which is more influenced by the Gulf of Mexico.

To assess the long-term trend in precipitation
changes, a detrending method is needed be cause
precipitation often contains multiple signals and has
segments of increasing and decreasing trends.
Among a variety of techniques available for analyz-
ing variability, wavelet analysis has emerged in the
last decade as a useful statistical tool for this purpose
(e.g. Almasri et al. 2008). The wavelet method can
detrend time series according to time and scale
simultaneously. It can perform a local analysis,
revealing as pects of data that other signal analysis
techniques miss, such as trends, abrupt changes,
breakdown points, and discontinuities. The discrete
wavelet analysis (DWT) using the Wavelet Toolbox
for Matlab was applied; precipitation time series
decomposition was performed 2 times (level 2) using
Daubechies family (db) at order 4. Fig. 12 exhibits the
trends of annual precipitation changes (mm d−1) for
the 5 sub-regions. The results show drying trends for
4 of the 5 sub-regions: South Texas, Central Texas,
East Texas, and the Panhandle region. In West Texas,
the trend is not discernible. Nevertheless,  there are
some periods with precipitation increases.

South Texas and West Texas have similar patterns
in precipitation changes on a monthly basis (Fig. 13).
Starting from November to April, the 2 regions tend
to become much drier, and the precipitation changes
during the period 2070−2099 relative to the pe riod
1971−2000 can be as much as −15%. From June to
September, there is a 5% increase in precipitation
over the 2 regions. East and Central Texas are pro-
jected to become drier in winter and wetter in sum-
mer in the future, but the changes in precipitation are
not as notable as those seen in South and West Texas.
In the Panhandle region, winter is projected to have
more rainfall, while spring and fall are projected to
have less rainfall. There is no big change in summer

Table 3. Changes in temperature and precipitation over
different periods relative to the baseline period 1971−2000.
The unit for precipitation for the baseline period is mm d–1

1971−2000

2040−2069

2070−2099

A2

B1

A2

B1

Annual

17.150

2.30
2.34
1.74

3.92
3.30
2.25

Summer

Temperature (°C) Precipitation (%)

26.180

2.49
2.50
1.86

4.17
3.44
2.33

Winter

7.72

1.92
1.97
1.44

3.29
2.85
2.02

Annual

1.86

−1.36
−0.41

0.23

−3.02
−0.41

1.53

Summer

2.26

−0.49
1.04
1.59

−1.08
3.05
4.91

Winter

1.28

−2.27
−2.06
−0.97

−6.19
−3.42
−2.67

A1B

A1B
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precipitation in this area. These results suggest that
moisture sources, atmospheric circulations, topogra-
phy, and locations have important roles in future
changes in precipitation and temperature in different
sub-regions of Texas. Historically, the eastern half of
Texas is humid subtropical, while the western half is
semi-arid (with some arid regions). Northern Texas
including the Panhandle region is semi-arid and
experiences colder winters than the other regions of
Texas. These differences also affect future tempera-
ture and precipitation patterns in different parts of
Texas.

Seasonal temperature changes over 2040−2069
and 2070− 2099 are shown in Fig. 14a. Temperatures
in summer are more heterogeneous than those in
winter. Larger temperature increases occur in the
Panhandle region on an annual basis and in summer.
The temperature increases exhibit similar patterns in
winter for all  5 sub-regions. Still, the magnitudes in
temperature increase in summer are larger than
those in winter. For precipitation changes, the mag-
nitudes are amplified as temperatures continue to
rise (Fig. 14b). Precipitation changes are small on the
annual scale. We conclude that different areas in

Texas are likely to experience different climate
change in terms of magnitudes and timing in temper-
ature and precipitation under the A1B scenario.

6.  RELATIONSHIPS BETWEEN PRECIPITATION
AND SURFACE AIR TEMPERATURE CHANGES

Some early studies of temperature−precipitation
relationships were summarized by Madden &
Williams (1978), who computed correlations between
temperature and precipitation in the contiguous USA
and Europe for the period 1897−1960. They found
strong negative correlations in summer, strongest in
the central and southern Great Plains, which in -
cludes Texas. They also found that cold winters were
mostly wet in the plains states. 

Fig. 15a shows that there is a negative relationship
be tween annual pre cipitation and temperature changes
under the A1B scenario as projected by the 16 cli-
mate models. The regression slope is −7% °C−1,
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Fig. 11. The 95% confidence intervals for (a) surface air tem-
perature and (b) precipitation changes between 2070−2099
and 1971−2000 under the A1B scenario for the 5 sub-regions 

over Texas (TX)

Fig. 12. Projected precipitation anomalies relative to 1971−
2000 means after applying wavelet analysis to the ensemble
mean of all downscaled model outputs in the 5 sub-regions 

over Texas. Note the different y-axis scales
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 indicating an overall drying trend in the 21st century.
The projected correlation be tween summer pre -
cipitation and  temperature changes is negative
(Fig. 15b). In winter, pre cipitation changes are
not highly correlated with temperature changes
(Fig. 15c). This suggests that changes in summer pre-
cipitation are very sensitive to changes in surface air
temperature in a warming climate, while winter pre-
cipitation changes are not. This relationship for sum-

mer precipitation and temperature
changes is consistent with Madden &
Williams (1978). Fig. 15b also shows
that in summer, when temperature
in creases are small, precipitation is
ex pected to increase. Thus, summers
in Texas tend to be either hot and dry
or cool and wet. This indicates that
the role of large-scale dynamics in
summer is diminished, and reduced
precipitation is associated with less
soil moisture and thus a higher
Bowen ratio (or higher sensible heat
fluxes and lower latent heat fluxes).
The GFDL-CM2.1 and IPSL-CM4 cli-
mate models perform best in simulat-

ing precipitation in Texas, while CNRM-CM3 pro-
duces the smallest correlation between model results
and observations. The results for the 5 sub-regions in
Texas (not shown here) exhibit similar relationships
be tween precipitation anomalies and temperature
changes. The precipitation and temperature relation-
ships in Texas are different from those reported in
Held & Soden (2006), suggesting that regional cli-
mate change signals are not always on the same
order as those on the global scale.

7.  CONCLUSIONS

The comparison of downscaled model results with
observations (NCDC and NARR) shows that the
 models reproduce the main features of surface air
temperature and precipitation for the present-day
climate, although there are model-to-model varia-
tions in both temperature and precipitation. GFDL-
CM2.1 and IPSL-CM4 perform best in simulating
precipitation in Texas.

Our probability analysis shows an overall increase
in temperature towards the end of the 21st century,
with ensemble mean increases of 4.8, 3.6, and 2.2°C
for the A2, A1B, and B1 scenarios, respectively. Tem-
peratures in northwestern Texas are projected to
increase more, ranging from 2.4 to 4.2°C under
 different scenarios, while temperatures increase
steadily in southeastern Texas in response to the
large thermal capacity of the Gulf of Mexico. These
detailed regional features are not present in coarse-
resolution GCM projections (IPCC 2007). The trends
in precipitation are not as conspicuous as those in
temperatures, suggesting the involvement of more
complicated mechanisms. Overall, precipitation de -
creases under the A1B and A2 scenarios. Under the
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Fig. 13. Projected monthly precipitation anomalies under the A1B scenario for
the period 2070−2099 relative to 1971−2000 means in the 5 sub-regions of Texas

Fig. 14. Ensemble means of (a) temperature and (b) precipi-
tation changes under the A1B scenario in the 5 sub-regions 

over Texas (TX)
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B1 scenario, there is a wetting trend. Precipitation
variability decreases in winter and increases in sum-
mer in a southwest−northeast direction, with big
changes in the southwest. Most of Texas, except for
the Panhandle region, is projected to experience
reduced rainfall in winter. In contrast, summer sea-
sons are projected to become much wetter over
southwestern Texas. By use of wavelet analysis for
precipitation changes, we found drying trends in 4 of
5 sub-regions, except West Texas. Under future
global warming, the magnitudes of regional precipi-
tation change in different sub-regions are projected
to be different from the global trends (IPCC 2007).
Observations also show that regional precipitation
changes in Texas during the past few decades are
different from the global precipitation trends (e.g.
Mishra & Singh 2010). Analysis of the relationships
between precipitation and surface air temperature
changes suggests an overall negative correlation
between precipitation and temperature changes on
an annual basis, while there is no clear correlation in
winter. The relationship in summer is negative, sug-
gesting a high sensitivity of summer precipitation to
temperature changes.

The US Global Change Research Program has pro-
vided a comprehensive assessment of future climate
across the USA, and the results from the present
study will add more details of future climate change
for the Texas region to help the state prepare for the
future climate change impacts.

Uncertainties associated with fu ture climate pro-
jections, including the representation of future
greenhouse gases emissions scenarios, use of bias
correction in downscaling the coarse- resolution cli-
mate simulations to regional scale, and parameteri-
zations used in climate models, have not been fully
addressed here. Future studies concerning model
uncertainties are needed to better quantify the
changes. In addition, given the fact that the precipi-
tation and temperature data are only at a monthly
scale, this study did not assess the downscaled model
results in simulating daily precipitation and tempera-
ture, extremes and variability, which are important
for some applications, e.g. hydrologic impacts such
as flooding. A lot of effort is being put into improving
climate projections at regional scales. One example
is the North American Regional Climate Change
Assessment Program (NARCCAP), which is an inter-
national program to produce high-resolution climate
change simulations in order to investigate uncertain-
ties in regional scale projections of future climate and
generate climate change scenarios for use in impacts
research (Mearns et al. 2009). 
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Fig. 15. (a) Annual, (b) summer, and (c) winter hydrologic
sensitivities in the 21st century over Texas under the A1B
scenario. Annual, summer, and winter precipitation and
surface air temperature changes are averaged for the pe-
riod 2001−2099 relative to 1971−2000 means. Each point
represents one model result at one specific year over the
period 2001−2099. There are 39 × 99 points for the 39 model
runs provided by 16 climate models. Green dots: results
from the 13 models other than CNRM-CM3, IPSL-CM4, and 

GFDL-CM2.1
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