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ABSTRACT

A regional-scale weather model is used to determine the potential for flood forecasting based on model-
predicted rainfall. Extreme precipitation and flooding events are a significant concern in central Texas, due
to both the high occurrence and severity of flooding in the area. However, many current regional prediction
models do not provide sufficient accuracy at the watershed scale necessary for flood mitigation efforts. The
Weather Research and Forecasting (WRF) model, created with the purpose of improving upon the current
fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR)
Mesoscale Model (MM5), is specifically designed for regional grid spacings of 1–10 km. Previous research
by the authors resulted in the development of a regional-scale prediction system over the San Antonio River
basin, using a geographic information system (GIS) database, a hydrologic model, and a hydraulic model.
Observed precipitation drives the prediction system; the authors hypothesize that the WRF model has the
potential to predict flooding, at a lead time of several days, with a level of accuracy near that of observed
precipitation. Causes of model error are also investigated, to determine the relative errors caused by model
physics, initialization interval, buffer zone and domain size, and small-amplitude random errors. Results
show that the Betts–Miller–Janjić cumulus and Lin et al. microphysics schemes, 48-h initialization interval,
and two-domain configuration covering minimal ocean and having a parent-to-nest area ratio of greater
than 10 best simulates a recent (July 2002) large storm event over the San Antonio River basin. This
particular storm was selected because it produced extreme rainfall volumes and intensities, and also because
its meteorological characteristics are typical of central Texas storm events. Location errors in rainfall are
most significant because of their typically nonlinear patterns (increasing location error does not linearly
modify streamflow output). Errors in intensity and timing show a more predictable (linear) watershed
response that may be useful in the estimation of streamflow ranges for flood forecasting.

1. Introduction

Precipitation is the single most difficult and often
erroneously modeled parameter in numerical weather
models (Wang and Seaman 1997; Nielsen-Gammon et
al. 2006). Determining the appropriate grid spacing that
captures both small- and large-scale processes is vital to
accurately representing storm events. For example, ne-
glecting the subgrid-scale variability of precipitation
has been shown to result in an underestimation of the
total volume and runoff and, consequentially, an over-
estimation of the evapotranspiration (Wang et al.
2005). Mitigation decisions based on local-scale engi-

neering models may not fully consider the hydrologic
effects of large storm systems. Regional weather mod-
els have been successfully applied to the forecasting of
hydrological phenomena and quantitative precipitation
forecasts (Fovell 2006; Marchok et al. 2007; Westrick et
al. 2002). A nested regional model provides a realistic
method for modeling flood events at the watershed
scale by capturing synoptic-scale triggers over the en-
tire domain and downscaling to capture mesoscale fac-
tors over the region of interest. This approach has
proved successful at various grid spacings (Liang et al.
2004a,b; Smedsmo et al. 2005).

Systematic errors still exist in regional models. Major
causes of model error are investigated in this study.
Since causes of error vary with the specific region and
climate of interest, a regional model must be adapted
for each application (Giorgi and Mearns 1999). Major
errors arise from model physics, domain and buffer
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zone treatments, and initial and boundary conditions.
Even after accounting for major sources of error, small-
amplitude random errors may remain in the model.

The implementation of various physics schemes
causes a large variation in the forecast output (Zhang et
al. 2006), especially the choice of cumulus scheme (Gal-
lus and Segal 2001). The particular skill of a cumulus
scheme in simulating rainfall is dependent upon the
region and storm being modeled (Giorgi and Mearns
1999). The Grell–Devenyi (GD) scheme has displayed
widespread skill in simulating precipitation (Giorgi and
Shields 1999; Warner and Hsu 2000; Xu and Small 2002;
Zhang et al. 2006). However, several studies have
shown the Kain–Fritsch (KF) scheme to produce real-
istic precipitation over the North American monsoon
region (Gochis et al. 2002; Leung et al. 2003; Liang et al.
2004b); other research has demonstrated the strength
of the Betts–Miller–Janjić (BMJ) scheme at producing
accurate forecasts (Baik et al. 1991; Vaidya and Singh
2000). Emanuel and Zivkovic-Rothman (1999) found
that the BMJ scheme performs consistently with obser-
vations for relative humidity from the surface up to 500
mb. Jankov and Gallus (2004) found that neither the
BMJ nor the KF scheme accurately reproduced meso-
scale convective systems (MCS) in the Upper Midwest,
with the BMJ scheme consistently overestimating and
the KF scheme underestimating rainfall.

Cloud microphysics is also an important parameter-
ization in the production of precipitation (Fritsch and
Carbone 2004; Smedsmo et al. 2005). Cloud microphys-
ics schemes vary widely. Some schemes only include
water classes (e.g., Kessler 1969). Other schemes in-
clude some ice hydrometeors such as the Ferrier (1994)
method with four total hydrometeor classes, the Hong
and Lim (2006) six-class scheme with graupel, or the
Thompson et al. graupel scheme (Thompson et al.
2004). Microphysics schemes for the present study were
chosen from those available in version 2 of the Weather
Research and Forecasting (WRF) model. The scheme
most suited to the model application varies with loca-
tion; for example, the Lin scheme (Lin et al. 1983) may
be appropriate for hail-bearing storms in the Midwest
(Smedsmo et al. 2005).

Emanuel and Zivkovic-Rothman (1999) assert that
correct microphysics is integral to determining cumulus
convection and hence precipitation. They postulate that
reevaporation of condensed water, currently not in-
cluded in most parameterizations, allows for correct es-
timates of convective moistening. Their cumulus pa-
rameterization controls entrainment and detrainment
by allowing the level of natural buoyancy to vary de-
pending on the moisture levels in cloud air. Both BMJ
(Janjić 1994) and Emanuel’s scheme are comparable to

the observed relative humidity profiles; other schemes
tested were less so.

Errors in the driving initial and boundary conditions
can cause large variations in forecast output. Liang et
al. (2004b) found large uncertainties in boundary con-
ditions, mostly over oceans and other areas lacking
complete data, contributed greatly to model error. The
use of the National Centers for Environmental Predic-
tion–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis caused less sensitivity to
model domain when compared to the European Centre
for Medium-Range Weather Forecasts (ECMWF) re-
analysis (Liang et al. 2001). The initialization interval is
important because of the spinup time needed for model
adjustment, as well as the inability of most weather
models to accurately forecast beyond several days. In
this study, the initialization interval is taken to mean
the difference in initialization times between each se-
ries of model runs over the storm event. A more de-
tailed description of this methodology can be found in
section 4b.

The size of the model domains and the interaction
between nested domains greatly impact forecasts. If the
domain edges are too close to the area of interest, edge
effects may cause inaccuracies in the forecast. For ex-
ample, Seth and Giorgi (1998) found that small do-
mains caused unrealistic responses in the inner domain
that were inconsistent with large-scale forcing. Loca-
tions of domain edges must be chosen so that important
regional meteorological features can be resolved, and
the edges must be located away from areas where re-
analysis inaccuracies exist; parent and nest domains
should be spaced far enough apart to avoid edge dis-
tortions (Liang et al. 2001). Increasing the width across
which the dynamical relaxation of boundary conditions
occurs, or nudging over the entire domain, may help
preserve large-scale waves and hence reduce errors due
to domain size (Juang and Hong 2001).

The major objectives of the present study surround
the following questions: 1) How well does WRF model
the synoptic setting that produced the July 2002 storm
event? 2) What are major causes of model error in
terms of physics, initialization, domain, and small-
amplitude errors? 3) What types of precipitation error
propagate most strongly into streamflow: magnitude,
location, or timing? How do these each affect flood
forecast outcomes? In the next section, an overview of
the July 2002 storm meteorology is presented. Section 3
discusses the background information on the driving
datasets and the WRF model structure, section 4 pre-
sents experimental methods and results, and section 5
discusses the conclusions and implications of this re-
search.
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2. Meteorology of the July 2002 storm event

The high frequency of flooding in Texas results from
a unique juxtaposition of meteorological factors includ-
ing moisture influx from the Gulf of Mexico, easterly
waves moving across the area, and orographic uplift
from the Balcones Escarpment (Hirschboeck 1987). In
fact, Texas has recorded some of the greatest precipi-
tation intensities in the world, for storms with durations
of up to 24 h (Patton and Baker 1977). Storm events
over central Texas are generally controlled by large-
scale anomalies in atmospheric circulation patterns.
The interaction of these anomalous behaviors with lo-
cal and mesoscale processes, such as topographic influ-
ences and the location of mesohigh outflow boundaries,
determines whether or not a flood event occurs in any
given region. Extreme storms in Texas may be trig-
gered by tropical cyclogenesis, cyclonic dissipation,
frontal processes, orographic lifting, or a combination
of several local- and synoptic-scale events. Most ex-
treme storm events over Texas show large-scale meteo-
rology that is significantly different from climatology at
the 95% significance level (Nielsen-Gammon et al.
2006). The July 2002 storm was related to a deep upper-
level trough that became stationary over south-central
Texas. Much of the subsequent discussion is based
upon the work of Nielsen-Gammon et al. (2006), who
performed a compositing analysis to determine typical
meteorological factors present during Texas storms and
particularly the July 2002 event.

At the 850-mb level during typical storm evolution in
central Texas, strong trade winds blow across the
Yucatan toward Mexico and Texas, bringing moisture
into the area. Decreasing wind speed from the Gulf of
Mexico to the Great Plains implies low-level moisture
convergence over the region. This is most easily seen as
a deceleration of winds over eastern Texas. However,
this deceleration was less prominent in the July 2002
storm compared to other large historical storm events
over Texas. Observations on 30 June, several days be-
fore the onset of heavy rainfall, still show strong south-
easterlies over the Gulf of Mexico. Observations for 5
and 6 July (after peak rainfall has occurred) show
weaker winds and less deceleration over Texas.

Typical midlevel development (500 mb) is dominated
by cyclonic circulation in the form of a north–south-
elongated trough over south Texas. This cyclonic circu-
lation causes a high potential vorticity (PV) anomaly
that directs moisture away from Central America and
into Texas. Precipitation efficiency is increased by
southerly winds blowing into Texas from the Gulf of
Mexico. A strong low-level jet (LLJ) feature, defined
by Bonner (1968) as a low-level local maximum in the

vertical wind profile, is generally observed in Texas
nontropical storms during September and October. In
summer storm events, the strongest LLJ features are
located more to the north in the central Great Plains;
the southerly winds present during the July 2002 event
do not show such localized maxima and are better re-
ferred to as a southerly wind event (SWE; Mitchell et
al. 1995). However, similar to the Great Plains LLJ, the
strong SWE transports vast amounts of moisture into
the region and plays a large role in precipitation for-
mation during the storm. In the upper levels of the
atmosphere (200 mb), typical storm evolution in the
region shows a high PV anomaly producing upper-level
divergence over Texas. This PV anomaly causes an up-
per-level ridge to develop over the southeastern states,
which prevents further movement of the trough.

Locally, mechanical lifting is thought to be a factor in
central Texas storm evolution, demonstrated by the lo-
cation of Balcones Fault Zone (BFZ) in relation to
heavy rain concentration areas. Southeasterly to east-
erly winds at the 850-mb level over the region imply
upward motion due to topography (Patton and Baker
1977). Many convective cells and high precipitation ac-
cumulations were observed in July 2002 along the BFZ.
In addition to trigger factors for heavy rainfall, basin
flooding is aggravated by the shallow soils, karstic ter-
rain, bedrock channels, and increasing levels of urban-
ization over the San Antonio River watershed.

3. Reanalysis dataset and meteorological model

a. North American Regional Reanalysis

Initialization and boundary conditions were interpo-
lated from the NCEP North American Regional Re-
analysis (NARR; Mesinger et al. 2006). NARR is a
comprehensive hydrometeorological dataset used to
drive regional-scale models. Based on the Global Re-
analysis (GR) Project that ran 30 yr of simulations us-
ing the Eta Model and assimilated observations,
NARR assimilates observational data for analysis,
boundary conditions, and execution of the Eta Model.

Data are output as 3-hourly files on a 32-km Eta grid
with 29 pressure levels, distributed on a Lambert con-
formal grid. Data are available for free download from
the NCAR Web site in gridded binary (GRIB) format.
The regional reanalysis appears to correctly capture im-
portant elements of the hydrologic cycle; NARR
streamflow output compares well with the measured
discharge, and has been shown to perform better than
the previous 40-yr ECMWF Re-Analysis (ERA-40;
Déry et al. 2007). Although simulations with NARR
have been unable to completely balance the moisture
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budget, summer flux convergence over Texas and the
northern Gulf of Mexico is much better represented
with NARR than with previous global reanalyses (Ni-
gam and Ruiz-Barradas 2006).

b. WRF model

WRF version 2 (Michalakes et al. 2005), a nonhydro-
static, mesoscale weather model developed in a col-
laborative effort between NCAR, the National Oceanic
and Atmospheric Administration (NOAA), and the
Department of Defense (DOD), is used in this study.
Initial conditions from NARR drive the model at the

first time step, and boundary conditions (also from
NARR) are assimilated continuously at hourly time
steps. The preliminary WRF configuration used in this
study consists of a 12-km outer domain with a horizon-
tal grid spacing of 105 � 105 grid points, and a 4-km
inner domain with a horizontal grid spacing of 97 � 94
grid points. The area of interest for flood modeling, the
San Antonio River basin (SAB), lies in the center of
the inner domain; for reference, the basin area accounts
for approximately 1/15 of the inner-domain area (Fig.
1). Both domains have 31 variably spaced, vertical grid
cells in sigma coordinates, � � (P � Pt)/(Ps – Pt), with
its model top at 100 mb. Ten levels reside at or below
the planetary boundary layer (1.5 km); high vertical
resolution in the boundary layer is thought to improve
the simulation of the LLJ or SWE (Ting and Wang
2006), hence improving the model’s representation of
moisture transport and storm generation. The model
physics are variable and described further in the fol-
lowing section.

4. Experimental design and results

a. Physics parameterizations

The WRF model contains multiple options for the
physics parameterizations. Adjustable physics compo-
nents include the microphysics, cumulus parameteriza-
tion, long- and shortwave radiation, boundary layer tur-
bulence (PBL), surface layer, land surface parameter-
ization, and subgrid-scale diffusion. Warm season
precipitation output is especially sensitive to the choice
of cumulus scheme and moderately sensitive to the mi-
crophysics, radiation, and boundary layer scheme
(Wang and Seaman 1997; Liang et al. 2004a; Jankov et

FIG. 1. Model domains. Control domain configuration includes
parent 2 and nest 2 (other domains are referenced in section 4).
The region of interest for forecasting (SAB) is represented by the
hatched region.

TABLE 1. Various combinations of physics parameterizations used to run the WRF model in this study. Experiments are named based
upon the different schemes used in each: MP, CU, NC, and SW refer to microphysics, cumulus, no convection, and shortwave radiation
schemes, respectively. Best-fit combination of physics is shown in boldface.

Expt Microphysics Cumulus Radiation
Parameterization of
convection in nest

MP1CU1 Kessler KF Dudhia Yes
MP1CU2 Kessler BMJ Dudhia Yes
MP1CU3 Kessler GD Dudhia Yes
MP2CU1 Lin KF Dudhia Yes
MP2CU1NC Lin KF Dudhia No
MP2CU2 Lin BMJ Dudhia Yes
MP2CU2SW2 Lin BMJ Goddard Yes
MP2CU3 Lin GD Dudhia Yes
MP3CU1 WSM KF Dudhia Yes
MP3CU2 WSM BMJ Dudhia Yes
MP3CU3 WSM GD Dudhia Yes
MP4CU1 Ferrier KF Dudhia Yes
MP4CU2 Ferrier BMJ Dudhia Yes
MP4CU3 Ferrier GD Dudhia Yes
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al. 2005; Nielsen-Gammon et al. 2006). Warm season
convective precipitation is the most difficult variable to
model accurately (Olson et al. 1995; Nielsen-Gammon
et al. 2006), possibly due to the importance of the initial
precipitation peak locations in providing feedback
mechanisms that dictate the subsequent event evolu-
tion. For this study, sensitivity is tested using various
combinations of schemes (approximately 40 different
combinations); only those combinations that produce
significantly different simulations of precipitation are
described in this paper. The physics options are com-

bined as shown in Table 1 and included the Grell–
Devenyi, Kain–Fritsch, and Betts–Miller–Janjić cumu-
lus schemes; the Kessler, Lin, Eta, and WRF Single-
Moment 3-Class (WSM) cloud microphysics; the Rapid
Radiative Transfer Model (RRTM) and Eta longwave
radiation; and Dudhia, Goddard, and Eta shortwave
radiation. Several studies have suggested that for do-
mains using a fine grid spacing (�5 km), a regional
model may simulate the convective processes equally or
better than using a parameterization of the convection
(Bélair and Mailhot 2001; Smedsmo et al. 2005); hence,

FIG. 2. Total daily precipitation (mm day�1) for 2 Jul 2002 compared between (a) observations and WRF output
using the KF cumulus parameterization, and various microphysics including (b) Kessler, (c) Lin, (d) Lin with no
convection applied to the nest domain, (e) WSM, and (f) Ferrier. All model runs shown use RRTM shortwave
radiation unless otherwise specified.
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the effect of removing the convection parameterization
from the nested domain is also studied. Each model is
run for the entire 11-day storm event using only a single
initialization at day 1 of the storm.

Comparisons between observed and modeled rainfall
are performed by upscaling from the fine-resolution
WRF output to the coarser-resolution Higgins ob-
served dataset (Higgins et al. 2000). The Higgins
dataset is derived from rain gauge records from ap-
proximately 2500 stations on a 0.25° latitude � 0.25°
longitude grid (about 32 km2). Upscaling is performed
by averaging the rain rate (mm day�1) across the WRF

grid points; the total water volume is conserved in the
upscaling process. Regional averages of WRF precipi-
tation output are computed for 32 km2 regions aligning
with the Higgins rainfall grid that intersect the study
basin, for a total of 25 grid cells. These grid regions are
the comparison points for all subsequent analyses.

Precipitation is found to be most sensitive to the cu-
mulus and to a lesser extent the microphysics schemes
used. In Figs. 2–4, the San Antonio River watershed
and its gauges are superimposed on the WRF rainfall
map for the purpose of identifying areas of large errors
across the basin. Although comparisons between the

FIG. 3. Total daily precipitation (mm day�1) for 2 Jul 2002 compared between (a) observations and WRF output
using the BMJ cumulus parameterization, and various microphysics including (b) Kessler, (c) Lin, (d) Lin with
Goddard shortwave radiation, (e) WSM, and (f) Ferrier.
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model and the observations were made over the entire
10-day storm, the following discussion pertains specifi-
cally to the peak days of rainfall (2–3 July). The Kain–
Fritsch scheme (Fig. 2) produces spurious locations of
high precipitation surrounding the basin on 2 July,
especially in combination with the RRTM shortwave
radiation scheme, while underestimating precipitation
inside the watershed. The Grell–Devenyi cumulus
scheme (Fig. 4) largely underestimates precipitation on
2 July, completely missing the large peak over San An-
tonio. Removing convection from the nested domain,
regardless of the cumulus scheme used, results in a
gross underestimation of the rainfall over the basin
(Fig. 2d). This result is consistent with Kain and Fritsch
(1998), who found the parameterization of convection

to be necessary at grid lengths as fine as 5–10 km.
Variations in both the longwave and shortwave radia-
tion schemes appear to have insignificant effects on the
precipitation forecasts over the basin (Fig. 3d for 2 July;
others not shown). Overall, the Betts–Miller–Janjić cu-
mulus scheme (Fig. 3) most accurately simulates the
precipitation and subsequent river flooding over the
SAB; however, this scheme produces a wider swath of
peak precipitation than observed on 3 July, accounting
for the large errors in the lower portions of the basin on
that day (Table 2). Results from experiment MP2CU2
most closely match the observed mean and standard
deviation of rainfall for the basin. Despite the emphasis
on the correct microphysical properties in modeling
deep convection (Fritsch and Carbone 2004; Smedsmo

FIG. 4. Total daily precipitation (mm day�1) for 2 Jul
2002 compared between (a) observations and WRF
output using the GD cumulus parameterization, and
various microphysics including (b) Kessler, (c) Lin, (d)
WSM, and (e) Ferrier.
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et al. 2005), model runs using varying microphysics
schemes produce less striking differences in precipita-
tion than do model runs with varying cumulus schemes.
This observation is most prominent when the BMJ con-
vective scheme is used (Figs. 3b–f), likely because the
BMJ dries the atmosphere and reduces the grid-
resolved precipitation, minimizing the role of the mi-
crophysics in generating precipitation (Jankov et al.
2005). In Fig. 2b, the Kessler scheme underestimates
rainfall over much of the basin on 2 July, especially
the lower portions of the area. In the WSM scheme

(Fig. 2e), the peak rainfall signal is much weaker than is
observed. The Lin (Fig. 2c) and Ferrier (Fig. 2f)
schemes produce more accurate rainfall over all areas
of the basin, despite both having a peak that is located
southwest of the observed rainfall peak. The finding
that rainfall rate is most sensitive to changes in convec-
tive scheme and less sensitive to changes in microphys-
ics and PBL schemes agrees with the recent results of
Jankov et al. (2005), who also found the microphysics
along with the convective treatment to be most influ-
ential on the total rain volume.

FIG. 5. Comparison of daily precipitation for 2 July, over 25 grid cells for the various
experiments listed. A 1:1 line (perfect match with observations) is drawn for reference.

TABLE 2. Mean and standard deviation of precipitation over the SAB (as highlighted in Fig. 1) during the 48-h period of peak rainfall,
and correlation with observations for each of the physics configurations used in this study. MAE is shown for both peak days over the
upstream, midstream, and downstream portions of the watershed. Best-fit combination of physics is shown in boldface.

Expt

Combined 2 and 3 July MAE (%), 2 July MAE (%), 3 July

Mean (mm) SD R Upper Middle Lower Upper Middle Lower

Observed 64 32 — — — — — — —
MP1CU1 22 17 �0.18 69 65 52 68 54 56
MP1CU2 36 16 �0.41 69 36 1 82 23 252
MP1CU3 36 40 �0.36 44 85 67 53 33 98
MP2CU1 25 46 �0.39 61 55 42 73 53 25
MP2CU1NC 13 10 0.27 69 87 83 86 83 72
MP2CU2 70 32 0.17 69 36 1 4 285 364
MP2CU2SW2 49 28 0.15 65 29 10 56 86 374
MP2CU3 24 11 0.19 59 77 62 71 38 9
MP3CU1 27 6 0.60 62 53 41 68 40 9
MP3CU2 45 17 �0.32 69 33 6 61 77 313
MP3CU3 28 9 0.47 55 71 50 67 20 4
MP4CU1 30 9 0.52 52 52 41 67 34 3
MP4CU2 45 16 �0.24 68 33 7 57 74 278
MP4CU3 29 20 0.28 46 74 53 56 44 31
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In Figs. 5 and 6, it is clear that most physics combi-
nations underestimate precipitation during the peak
days of 2 and 3 July; on average, the combination runs
underestimated precipitation by 47%. Experiments uti-
lizing the KF cumulus scheme consistently underesti-
mated rainfall for both days over nearly the entire ba-
sin. Experiments with the BMJ scheme tended to un-
derestimate rainfall for 2 July and overestimate rainfall
for 3 July, which may be attributed to error in the tim-
ing of the convection. However, the BMJ scheme pro-
duces some of the most accurate values over the central
basin region. Experiments using the GD cumulus
scheme show sporadic results, with the highest accuracy
over the southern portions of the basin on 3 July. Daily
totals averaged over the upper, middle, and lower basin
areas (not shown) further support these characteristics.
The physics configuration for the succeeding experi-
ments are as follows: Lin microphysics, BMJ cumulus
parameterization, Janjić Eta surface layer scheme,
Rapid Update Cycle (RUC) land surface model, Mel-
lor–Yamada–Janjić Eta boundary layer physics, and
RRTM (longwave) and Dudhia (shortwave) radiation.

b. Initialization interval

Decision making in flood management demands a
high accuracy of weather model output, and many
weather forecasts are considered impractical for use be-
yond 36 h. The potential performance of WRF in mod-
eling future storm events is investigated in this study; in
the following experiments, the effect of forecast length
on convective rainfall output is addressed through
variation of the initialization interval in WRF.

The WRF model is initialized at intervals of 24 h (1
day), 48 h (2 days), 72 h (3 days), 120 h (5 days), and 264
h (11 days, covering the entire storm length). A series
of model runs are completed with each interval as nec-
essary to cover the 11-day storm (Table 3). For ex-
ample, the 24-h initialization experiment consists of 11
runs, the 48-h initialization consisted of 6 runs, etc. Re-
sults from the model runs are combined for each inter-
val length and plotted for the entire storm length. Pre-
cipitation output grids are then run through the hydro-
logic model and the streamflow output compared
between experiments.

Comparisons between precipitation output for differ-
ent initialization intervals are shown in Figs. 7–9. Ex-
periment results demonstrate that a 48-h initialization
best reproduces the observed rainfall (Fig. 9). The 24-h
run misses or underestimates several precipitation
peaks, while the longer forecasts severely underesti-
mate precipitation, and in some cases produce spurious
areas of precipitation. Although this finding may be
due to numerous factors, one possible reason that an
intermediate initialization interval is more accurate in

TABLE 3. Initialization intervals used for WRF experimental
runs.

Expt Initialization interval (h) No. of model runs

1D 24 11
2D 48 6
3D 36 4
5D 120 3
11D 264 1

FIG. 6. Same as Fig. 5, but for 3 July.
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representing rainfall may be the adjustment time in the
model, as the model integrates the NARR initial
boundary conditions (IBCs) and begins producing grid
variables on its own (i.e., the time needed for the model
to reach equilibrium). In this particular case, the ad-
justment time may also include an adjustment between
the differences in the Eta land surface model used in
the NARR data and the RUC land surface model used
in the WRF model runs for this experiment.

The correlation with the observations is significantly
higher for smaller initialization intervals, with an r
value of 0.47 for a 1-day initialization and 0.63 for a

2-day initialization (Table 4). The streamflow output
shows patterns that are similar to those for the precipi-
tation (Fig. 10), with all but the 48-h run underestimat-
ing the streamflow. The 48-h run produces a slight time
lag compared to the observed streamflow, but captures
the overall peak intensity and timing of the basin
streamflow. Correlation values are high for both ex-
periments 1D and 2D. At urban gauges, the correlation
is very low (Table 5); this low correlation was also ob-
served when driving the streamflow model with ob-
served radar data (Knebl et al. 2005) and, therefore, is
likely due to error inherent in the hydrological model

FIG. 7. Observed total daily precipitation (mm day�1) from the Higgins dataset. Days 2–7 of the
storm-event area shown: (top left) 1 July, (top right) 2 July, (middle left) 3 July, (middle right) 4 July,
(bottom left) 5 July, and (bottom right) 6 July.
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and not error in the WRF output. A comparison of the
mean biases for each experiment (Table 5) as well as an
analysis of the bias distribution (Fig. 11) clearly dem-
onstrates that the 2-day initialization best represents
the entire storm. These results demonstrate that WRF
performs reasonably well at producing precipitation on
its own (without assimilation of observations) for 48-h
intervals.

c. Domain and boundary size

To study the sensitivity of precipitation forecasts to
the size and location of the model domain, various do-
main configurations are designed as shown in Fig. 1. Six
experiments are completed based on the six configura-
tions (Table 6). All experiments utilize two domains,
and the outer domain is driven by NARR forcing data.
Physics and initialization details are dictated by best-fit

results from the previous sections. Experiments are
named using capital letters for larger domains and low-
ercase letters for smaller domains, according to the fol-
lowing convention: P and p for parent domains 1 and 2;
N, n, and nn for nest domains 1, 2, and 3, and BZ for
increased boundary zone width. Experiment pn is des-
ignated as the control run, with the outer domain cov-
ering the entire state of Texas, and the inner domain
covering the area of interest (SAB), including a wide
radius around the basin to allow for the adjustment of
parameters between the two domains. The outer do-
main in experiment Pn is enlarged to cover a significant
portion of the Gulf of Mexico at its southeast corner (20
points added to the south and east sides). The objective
of this configuration is to allow more adjustment time
between ocean and land variables. To lessen the bound-
ary effects that may occur when the forecast area is too

FIG. 8. Same as Fig. 7, but for total daily precipitation (mm day�1) from WRF output using 11-day
initialization.
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close to the parent–nest boundary, experiment pN en-
larges only the nested domain, approximately doubling
its grid points in both directions. Both the parent and
nest domains are enlarged in experiment PN, to ob-
serve the combined effects of the previous two configu-
rations. Experiment pnn shrinks the nested domain
eight points in the north–south direction and four
points in the east–west direction to singularly model the
area of flood interest. Last, experiment pnBZ doubles
the default buffer zone width from 5 to 10 grid cells in
an effort to reduce edge effects from nudging between
the parent and nest domains.

A qualitative comparison of the precipitation grids
appears to show the control experiment pn to be the
most reasonable configuration for modeling the 2002
storm event over the San Antonio River basin (Figs.
12–13; others not shown). Statistical analysis, however,
demonstrates that each configuration has strengths and

weaknesses (Tables 7 and 8). Enlarging the parent do-
main results in location errors of rainfall over the San
Antonio River basin during times of peak precipitation
(experiment Pn; results not shown). These errors in the
rainfall simulations may be, in part, due to the place-
ment of the southern boundary in the Gulf of Mexico

TABLE 4. Precipitation mean, standard deviation, and correla-
tion values for WRF experiments in which initialization is varied.
Values are calculated over the SAB as highlighted in Fig. 1.

Expt
Storm mean
(mm day�1)

Daily
deviation

Correlation with
obs (%)

Observed 31.6 13.6 —
1D 38.8 10.8 0.47
2D 66.8 23.1 0.63
3D 33.4 7.7 0.27
5D 20.6 4.46 0.04
11D 19.9 4.4 0.17

FIG. 9. Same as in Fig. 8, but for a 2-day initialization.

DECEMBER 2008 K N E B L L O W R E Y A N D Y A N G 1113



where large forcing errors exist (Liang et al. 2001); they
may also be, in part, introduced via competition for
convection at the land–ocean boundary (Nigam and
Ruiz-Barradas 2006). In experiment pN (Fig. 13), rain-
fall is underestimated, suggesting that enlarging the
nest domain may reduce the effects of the synoptic forc-
ing from the parent domain. In experiment PN (result
not shown), the effects of enlarging both domains are
compounded, with large errors in both the intensity
(underestimation) and location of the rainfall. Dou-
bling the buffer zone width in experiment pnBZ (result
not shown) results in an underestimation of the precipi-
tation, which is presumably caused by the diminished
importance of small-scale mechanisms in producing
convective precipitation in the nested domain. Decreas-

ing the area of the nest in experiment pnn (result not
shown) has a similar effect to increasing the buffer zone
width; precipitation patterns remain similar but de-
creased in intensity, and boundary edge effects are
clearly observable.

d. Performance of best-fit WRF model

The best-fit WRF model, using a 48-h initialization,
domain pn, and physics as described previously, is in-
vestigated in more detail in order to assess its ability to
simulate the July 2002 storm event. Figure 14 compares
the horizontal winds and divergence between the
NARR reanalysis data and two WRF configurations:
the best-fit configuration and a poor-performing con-
figuration (i.e., one that produces significant precipita-
tion error, domain PN).

Figure 14 displays the observed winds (from the
NARR reanalysis) and the modeled wind vectors for
the upper, middle, and lower levels of the atmosphere.
Strong trade winds are apparent at the 850-mb level
over the Gulf of Mexico; these winds bring moisture
into the central Texas region and weaken as the storm
progresses. As these southerly winds move across land,
they begin to weaken slightly, triggering low-level con-
vergence. Weakening winds are also apparent as air
flows over the BFZ in central Texas. Both the best-fit
and poor-performing WRF models appear to simulate
this near-surface wind pattern quite well (Figs. 14b and
14c).

FIG. 10. Select streamflow output (m3 s�1) from the hydrologi-
cal model at U.S. Geological Survey (USGS) gauge location (a) 3
and (b) 7 that compare the effects of different driving data (rain-
fall) from WRF.

TABLE 5. Correlation of modeled streamflow with observations
for hydrological model runs driven with gridded precipitation out-
put from WRF model runs of varying initialization intervals. Cor-
relation coefficients at each gauge area are included to demon-
strate the wide spatial variability of the error.

Expt 11D 5D 3D 2D 1D

Correlation: upstream
Gauge 1 0.89 0.5 0.69 0.7 0.66
Gauge 2 0.75 0.5 0.69 0.84 0.9
Gauge 3 �0.04 �0.18 �0.06 0.01 0.05
Gauge 4 0.26 �0.04 0.26 0.34 0.47

Correlation: midstream
Gauge 5 0.78 0.55 0.75 0.88 0.93
Gauge 6 0.32 0.11 0.23 0.18 0.34
Gauge 7 0.73 0.49 0.74 0.78 0.88
Gauge 8 0.02 �0.01 �0.01 0.04 0.04
Gauge 9 0.84 0.6 0.81 0.84 0.92

Correlation: downstream
Gauge 10 0.94 0.91 0.96 0.96 0.95
Gauge 11 0.47 0.16 0.56 0.63 0.78
Gauge 12 0.88 0.88 0.94 0.96 0.98

Mean (basin)
correlation

0.98 0.96 0.94 0.88 0.88

Mean bias
(ft3 s�1 � 103)

�11.9 �11.7 �6.0 1.8 �5.9
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FIG. 11. Bias plots for streamflow, using WRF output from initialization experiments to
drive the hydrological model, averaged over the watershed. (left) Comparison of observed
data to modeled streamflow, (middle) residuals, and (right) distribution of residuals in order
to show the relative amount of underestimation and overestimation of streamflow: (top to
bottom) 11 to 1 day simulation.
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At midlevels of the atmosphere, a strong cyclonic
circulation, consistent with the observations, develops
in the best-fit model (Fig. 14e). The poor-performing
WRF places this circulation too far north, over the
Texas–Oklahoma boundary, which may contribute to
its underestimation of the storm’s extent (Fig. 14f).

Both the upper-level divergence and a related anti-
cyclone east of the storm are clearly displayed in the

WRF best-fit model (Fig. 14h). The poor-performing
model run (Fig. 14i) demonstrates much weaker diver-
gence and only minimal anticyclonic winds. This lack of
divergence in the upper atmosphere may inhibit con-
vection and contribute to precipitation underestima-
tion.

Additionally, water vapor mixing ratios display pat-
terns that are consistent with the observations (not
shown), with increasing values as the storm progresses
and significantly decreasing values several days after
the storm has passed. The largest variation in moisture
occurs at midlevels of the atmosphere, where cyclonic
circulation dominates, and over the middle and upper
regions of the basin, where convective precipitation is
strongest.

e. Small-amplitude random errors

Even after adjusting the model physics, initialization,
and domain configurations, the resulting best-fit model

FIG. 12. Same as Fig. 8, but for WRF output using domain configuration pn.

TABLE 6. Domain configuration and grid dimensions used for
domain experiments.

Expt Parent/nest
Parent grid

(i � j)
Nest grid

(i � j)

pn 2/2 105 � 105 97 � 94
Pn 1/2 125 � 125 97 � 94
pN 2/1 105 � 105 193 � 196
PN 1/1 125 � 125 193 � 196
pnn 2/3 105 � 105 79 � 70
pnBZ 2/2/large boundary zone 105 � 105 96 � 93
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still shows significant errors compared to the observa-
tions. The remaining errors may be partially attributed
to random error but also partially attributed to errors in
the best-fit model physics (it should be noted that this
study only reduces errors attributable to physics by
finding the best-fit physics set; the set of physics
schemes still contains substantial errors). Random er-
rors can develop from small inaccuracies in the initial
conditions that grow exponentially with time. Introduc-
ing small perturbations into the model can aid in un-
derstanding how these initial errors grow. Zhang et al.
(2006) perturbed their model domain using thermal
bubbles and found that nonlinear error growth mecha-
nisms are of secondary importance to practical errors
such as erroneous physical parameterization. Their re-
sults implied that error growth is greatest for high-
resolution domains and in regions of high convective
activity. Major error types encountered in regional

models include intensity, location, and timing errors,
with erroneous location shifts most common.

Since precipitation errors are nonlinear, their effects
on various hydrologic fluxes may be manifest in either
an amplification or a dampening of the variable. To test
the effects of common precipitation errors in the WRF

TABLE 7. Same as in Table 4, but for domain configuration
experiments.

Expt
Storm mean
(mm day�1)

Daily
deviation

Correlation with
obs (%)

Observed 31.6 13.6 —
pn 42.34 14.0 0.72
Pn 42.43 8.1 0.73
pN 25.30 6.4 0.68
PN 22.77 5.4 0.71
pnn 36.06 6.5 0.62
pnBZ 27.26 7.3 0.48

FIG. 13. Same as Fig. 12, but for domain configuration pN.
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model on streamflow output from a surface hydrologic
model, WRF output grids were perturbed arbitrarily (in
both the positive and negative directions) in intensity,
location, and timing. Only those grid cells residing in
the area of flood interest (Fig. 1) were perturbed. In-
tensity error was introduced by adding the following
rainfall to each grid cell (in mm h�1): �0.01, 0.05, 0.1,
0.5, 1, 2, 3, 4, and 5. The absolute value, instead of a
percentage, was used to obtain more meaningful results
over the basin. Location error was introduced by shift-
ing rainfall amounts 1, 3, 5, and 10 grid cells in each of
four directions: NE, NW, SE, and SW. Finally, timing
errors were introduced in two ways. First, hours were
added or subtracted from each rainfall grid cell as fol-
lows: � 3, 6, 12, and 18 h. This simple shift is not par-
ticularly realistic for typical rainfall errors, so additional
experiments were run changing the duration of the
rainfall. Rainfall grid cells during peak times were per-
turbed to (a) widen the peak, (b) narrow the peak, and
(c) extensively narrow the peak (to mimic flash flood-
ing).

Table 9 uses a moderate rainfall error of �2 mm h�1

to demonstrate the variation in streamflow error with
location in the basin, over the 72-h peak rainfall period.
Correlation values over the storm period are high for
all locations. The value of the best-fit to modeled ratio
CTL/EXP2 allows study of the relative overestimation
and underestimation of precipitation in each subbasin
region. As expected, increasing rainfall error in a posi-
tive direction results in an overestimation of the
streamflow in all subbasins, with the exception of the
lowermost subbasin. This large subbasin consists of
mostly agricultural soils, and may be better equipped to
dampen the response to increased rainfall and stream-

flow upstream. In addition, this subbasin has a long
response time; much of the impact from upstream rain-
fall may be delayed beyond the time scope observed in
this study. In subbasins with a shorter response time,
such as those with bedrock-dominated streams (gauge
2) or those in urban areas (gauge 7), increases in pre-
cipitation are quickly translated to runoff, and hence in
these basins streamflow is greatly overestimated.

Statistics for various error types are displayed in
Table 10 and Figs. 15–17. Positive (negative) perturba-
tions to the rainfall magnitude show a comparable in-
crease (decrease) in streamflow. Interestingly, positive
rainfall errors are manifested in streamflow error
throughout the entire storm, while negative errors re-
sult in lower overall streamflow error and are concen-
trated at the storm peak (Fig. 15). Intensity errors in
precipitation show a linear translation pattern for
streamflow, especially for positive rainfall perturba-
tions; intensity errors also tend to retain the shape of
the hydrograph. Location shifts in precipitation are a
significant error type, because the streamflow response
is erratic and difficult to predict. Rainfall location er-
rors to the east, especially the southeast, result in the
highest streamflow errors (Fig. 16). Location errors to
the west (NW and SW) appear to retain the correct
hydrograph shape and have fewer errors in discharge
magnitude. This directional variability of the stream-
flow error is highly dependent on the actual location
and size of the peak rainfall; glancing back at Fig. 12
(the best-fit rainfall), it is clear that rainfall changes
most rapidly in an ESE direction away from the peak.
Lagging or advancing the precipitation peak timing re-
sults in a linear lag or advance of the streamflow peak
(Figs. 17a and 17b); however, the error is significantly

TABLE 8. Same as in Table 5, but for domain configuration experiments.

Expt pn Pn pN PN pnn pnBZ

Correlation: upstream
Gauge 1 0.29 0.94 0.64 �0.09 0.28 0.84
Gauge 2 0.8 0.43 �0.34 �0.33 0.8 0.56
Gauge 3 �0.02 �0.09 0.0 0.0 �0.03 �0.06
Gauge 4 0.27 0.16 �0.11 �0.06 0.25 0.1

Correlation: midstream
Gauge 5 0.85 0.5 �0.62 �0.49 0.84 0.63
Gauge 6 0.18 0.14 0.01 0.2 0.019 0.16
Gauge 7 0.75 0.27 �0.48 �0.42 0.74 0.53
Gauge 8 0.03 0.0 0.27 0.27 0.06 0.01
Gauge 9 0.79 0.32 �0.48 �0.46 0.78 0.64

Correlation: downstream
Gauge 10 0.97 0.8 �0.92 �0.91 0.97 0.94
Gauge 11 0.53 0.38 �0.36 �0.36 0.5 0.33
Gauge 12 0.9 0.84 �0.96 �0.96 0.93 0.86

Mean (basin) correlation 0.87 0.62 �0.29 �0.52 0.86 0.75
Mean bias (cfs � 103) 2.8 �6.9 �13.7 �13.7 �1.2 �8.4
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larger for time-lagged experiments. For example, per-
turbing the precipitation �12 h results in a mean abso-
lute error (MAE) of 213.3%, while perturbing the pre-
cipitation �12 h results in an MAE of only 58.4%. In
the case of a negative lag, the peak also increases with
increased lag time, due to increased time of concentra-
tion, which allows the basin more time to accumulate
and then translate runoff to the river network. The ef-
fect of the peak shape perturbations is most pro-
nounced for an erroneously wide peak (Fig. 17c); in this
case the overall volume of the streamflow is increased

to the extent that the hydrograph peak is not well de-
fined compared to the best-fit result.

5. Conclusions and implications

This paper studies the sensitivity of WRF model pre-
cipitation forecasts to different physics, initialization,
and domain configurations, and examines the ability of
WRF to accurately reproduce a summer convective
rainfall event. The propagation of error from rainfall to
streamflow is investigated by applying a variety of per-

FIG. 14. Vector winds (m s�1) and divergence (shading; �10�6 s�1) at three levels in the atmosphere, compared between observed
winds (from NARR), best-fit WRF output, and poor-fit WRF (domain PN) output: at 850mb for (a) NARR, (b) best fit, and (c) poor
fit; at 500 mb for (d) NARR, (e) best fit, and (f) poor fit; and at 200 mb for (g) NARR, (h) best fit, and (i) poor fit.
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turbations to the precipitation and finding the relative
significance of each in terms of streamflow.

WRF’s ability to accurately simulate a July 2002 cen-
tral Texas storm event is most sensitive to cumulus pa-

rameterization, slightly sensitive to microphysics pa-
rameterization, and nearly unaffected by the choice of
shortwave and longwave radiation schemes. The Betts–
Miller–Janjić cumulus scheme combined with Lin mi-

TABLE 10. Intensity, location, and timing error characteristics for streamflow: mean absolute error, bias, and standard deviation of
streamflow resultingm each of 45 perturbations to the WRF output rainfall grid.

Intensity error
(mm h�1) Basin MAE Mean bias* Bias std dev

Intensity error
(mm h�1) Basin MAE Mean bias* Bias std dev

�0.01 10.1 �0.091 0.058 �0.01 0.6 0.077 0.048
�0.05 5.0 �0.455 0.292 �0.05 2.9 0.383 0.240
�0.10 10.1 �0.912 0.583 �0.10 5.6 0.760 0.479
�0.50 56.7 �4.644 2.909 �0.50 23.7 3.570 2.303
�1.00 130.8 �9.472 5.818 �1.00 40.3 6.605 4.337
�2.00 342.2 �19.529 11.652 �2.00 60.6 11.035 7.403
�3.00 641.8 �29.955 17.481 �3.00 68.8 13.188 9.040
�4.00 1023.7 �40.632 23.285 �4.00 72.1 14.225 9.944
�5.00 1479.1 �51.475 29.070 �5.00 73.7 14.743 10.409

Location error Basin MAE Mean bias* Bias std dev Timing errors Basin MAE Mean bias* Bias std dev

Shift1NE 7.8 1.075 1.022 Wide peak 35.7 �9.897 8.876
Shift1NW 9.7 0.057 0.517 Narrow peak 15.2 �4.455 4.123
Shift1SE 10.9 0.237 0.545 Flash peak 10.1 �2.909 2.688
Shift1SW 6.5 �0.800 0.825 �3 h 27.9 0.430 2.755
Shift3NE 30.6 3.757 3.585 �6 h 25.1 0.174 2.045
Shift3NW 24.3 1.175 1.598 �12 h 51.3 0.605 3.797
Shift3SE 44.6 1.173 1.999 �18 h 85.2 1.064 5.240
Shift3SW 17.6 �1.589 1.936 �3 h 18.1 0.234 1.041
Shift5NE 73.5 6.239 5.717 �6 h 49.3 0.506 1.904
Shift5NW 35.1 3.092 2.822 �12 h 206.7 0.987 3.415
Shift5SE 106.9 2.286 3.185 �18 h 603.6 1.402 4.607
Shift5SW 25.6 �1.003 2.068
Shift10NE 227.8 8.815 7.001
Shift10NW 53.3 7.844 5.897
Shift10SE 115.6 6.157 6.186
Shift10SW 40.1 0.755 2.447

* ft3 s�1.

TABLE 9. Spatial variability of streamflow error. A precipitation error in WRF of 2 mm h�1 over the basin area is used as an example.
The ratio of best-fit to modeled streamflow (CTL/EXP) shows the overestimation (CTL/EXP � 1) and underestimation (CTL/EXP �
1) at various gauges across the basin. Time increments are averages during the peak 72 h of the storm.

Time increment (h) 1–12 13–24 25–36 37–48 49–60 61–72 Mean storm R

CTL/EXP: upstream
Gauge 1 0.56 0.41 0.30 0.30 0.36 0.31 0.94
Gauge 2 0.21 0.09 0.07 0.07 0.11 0.10 0.94
Gauge 3 0.99 0.68 0.72 0.78 0.99 0.76 0.96
Gauge 4 0.44 0.25 0.20 0.23 0.34 0.29 0.97

CTL/EXP: midstream
Gauge 5 0.25 0.09 0.06 0.06 0.10 0.08 0.95
Gauge 6 0.31 0.59 0.52 0.45 0.62 0.50 0.98
Gauge 7 0.18 0.08 0.05 0.05 0.07 0.06 0.97
Gauge 8 1.06 0.71 0.70 0.74 0.96 0.75 0.96
Gauge 9 0.18 0.07 0.01 0.01 0.06 0.05 0.97

CTL/EXP: downstream
Gauge 10 0.22 0.10 0.06 0.04 0.06 0.05 0.99
Gauge 11 0.79 0.40 0.22 0.15 0.20 0.20 0.98
Gauge 12 25.71 13.43 6.23 1.72 0.82 0.34 0.99
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crophysics produces the most reasonable rainfall over
the San Antonio River basin. Other cumulus schemes
tend to underestimate rainfall intensity and shift the
peak away from its true location. Contrary to modeling
studies suggesting that domains with close grid spacing
have the ability to resolve convective motions on their
own, this research found that simulation of the 11-day
convective storm requires parameterization of convec-
tion in the inner 4-km domain.

A 48-h initialization interval produces optimum per-
formance in WRF, as determined by the high correla-
tion values and low errors in both rainfall and stream-
flow. This interval allows WRF to successfully produce
precipitation on its own, and the forecast is not sub-

stantially degraded, as in longer forecasts. Investigation
of various domain configurations suggests it is best to
avoid placing any domain over oceans or other regions
lacking sufficient data. The relative size and placement
of the parent and nested grid(s) are also important; to
best simulate the combined effects of synoptic, meso-
scale, and local atmospheric forcings, the nest must be
close to the area of flood interest while being kept a
significant distance from the parent domain. Addition-
ally, studies of domain grid spacing should be under-
taken; Zhang et al. (2006) found that a finely gridded
nest (3.3 km) did not produce the best simulation (using
the MM5 model) compared to coarser nest grids. It
would be useful to test alternate grid spacings to deter-

FIG. 15. Effect of (a) positive and (b) negative rainfall intensity errors (mm h�1) on
streamflow. Boldface line is the output from the best-fit WRF rainfall grid.
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mine if forecast degradation occurs at high resolutions
in WRF.

The best-fit WRF model accurately reproduces pre-
cipitation patterns and intensity over the warm season,
convective central Texas storm of interest. Compari-
sons of observed and modeled wind vectors at three
different atmospheric levels suggest that errors in hori-
zontal winds for the poor-performing WRF configura-
tions may be a major factor in producing insufficient
precipitation. There are several implications from the
success of WRF in simulating the July 2002 storm and
its subsequent streamflow. For data-sparse areas or In-
ternational River Basins (IRB) nations that do not have
access to upstream data, due to either a lack of infra-
structure or to a lack of data sharing between coinci-

dent riparian nations, WRF output can provide a proxy
for such data. However, WRF may not increase the
lead time enough to significantly improve flood fore-
casting in these regions. Additionally, WRF output can
be used as the driving meteorological forcing data for
regional- and watershed-scale hydrological models.

Current numerical weather models categorically con-
tain small errors associated with initial and boundary
conditions, which result in errors in the precipitation
forecast. This research investigates numerous perturba-
tions to the WRF rainfall grid and their effects on
streamflow output after running through a hydrological
model. Results indicate that 1) error dampening from
rainfall to streamflow is greatest when the initial rain-
fall perturbation caused an increase in rainfall relative

FIG. 16. Effects of rainfall location errors on streamflow. Units are number of grid cells that
the best-fit output is shifted (a) northeast, (b) northwest, (c) southeast, and (d) southwest.
Boldface line is the output from the best-fit WRF rainfall grid.
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to the control and 2) translation of error from precipi-
tation to streamflow is strongly affected by surface
characteristics such as topography, land use, and soils.
Intensity and timing errors propagate fairly linearly to
streamflow error, which therefore may be simpler to
predict. Simulations that result in location error are
most important because the effects of erroneous pre-
cipitation locations on streamflow are dependent on the
pattern of observed precipitation. Streamflow effects
from these errors are nonlinear and difficult to deter-
mine for operational flood prediction.

The study of error in WRF may help to establish
limits on acceptable rainfall error for flood forecasting
of large events. For example, WRF rainfall errors less
than or equal to �0.5 mm h�1 appear to have a negli-
gible effect on the quality of a streamflow forecast, as
do timing errors of 6 h or less. This type of research can
serve as a guideline for error estimation and correction
in operational modeling with the WRF model. Further

research is necessary, using a wider range of perturba-
tion experiments, to better define the relative effects of
different error types. Future publications on this sub-
ject should include more quantitative analysis, such as
the growth rate of error for each perturbation type. In
addition, a finescale precipitation product such as
NOAA stage III should be used for more detailed veri-
fications of results.
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FIG. 17. Effect of rainfall timing errors on streamflow: (a) forward time error, (b) backward
time error, and (c) peak shape error. Boldface line is the output from the best-fit WRF rainfall
grid.
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