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[1] Snow cover strongly interacts with climate through snow albedo feedbacks. However,
global climate models still are not adequate in representing snow cover fraction (SCF),
i.e., the fraction of a model grid cell covered by snow. Through an analysis of the
advanced very high resolution radiometer (AVHRR) derived SCF and the Canadian
Meteorological Centre (CMC) gridded snow depth and snow water equivalent (SWE), we
found that the SCF–snow depth relationship varies with seasons, which may be
approximated by variations in snow density. We then added snow density to an existing
SCF formulation to reflect the variations in the SCF–snow depth relationship with
seasons. The reconstructed SCF with the gridded snow depth and SWE by employing this
snow density–dependent SCF formulation agrees better with the AVHRR-derived SCF
than other formulations. The default SCF formulation in the National Center for
Atmospheric Research community land model (CLM), driven by observed near-surface
meteorological forcings, simulates a smaller SCF and a shallower snow depth than
observations. Implementation of the new SCF formulation into the NCAR CLM greatly
improves the simulations of SCF, snow depth, and SWE in most North American (NA)
river basins. The new SCF formulation increases SCF by 20–40%, decreases net solar
radiation by up to 20 W m�2, and decreases surface temperature by up to 4 K in most
midlatitude regions in winter and at high latitudes in spring. The new scheme reproduces
the observed SCF, snow depth, and SWE in terms of interannual variability and interbasin
variability in most NA river basins except for the mountainous Columbia and Colorado
River basins. It produces SCF trends similar to that of AVHRR. However, it produces
greater decreasing trends in ablation seasons and smaller increasing trends in accumulation
seasons than those of the CMC snow depth and SWE.
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1. Introduction

[2] Snow cover strongly interacts with climate through
snow albedo feedbacks. Snow cover extent in late winter
and spring in the Northern Hemisphere (NH) as monitored
by the advanced very high resolution radiometer (AVHRR)
has been decreasing since the middle 1980s in response to
global warming [Robinson and Frei, 2000]. Reconstructed
snow cover using in situ snow depth data also indicates a
rapid reduction during melting season, especially in April
since 1980s associated with the increased temperature
[Brown, 2000]. On the other hand, the warming trend may
be accelerated by decreases in snow cover through the
positive snow albedo feedback. Over the midlatitude NH
land areas, the strongest warming in February and March
over the past 50 a is associated with extensive decreases in
late winter snow accumulation [Brown, 2000]. Over Arctic

regions, the summer warming mainly results from an
increase in snow-free days and a decrease in snow cover
due to the transition from short tundra to tall trees, masking
more snow surfaces [Chapin et al., 2005]. Snow cover also
controls cold region hydrology. Snow mass accumulated in
winter is critical for estimating springtime snowmelt and
river flow, the freshwater input to the Arctic Ocean [Yang et
al., 2003]. Runoff from Arctic river systems constitutes
about 50% of the net flux of freshwater into the Arctic
Ocean [Barry and Serreze, 2000] and thus can affect ocean
salinity, sea ice conditions, and hence the global thermoha-
line circulation.
[3] Over the past decade, land surface models (LSMs) for

use in global climate models (GCMs) have experienced a
transition from single-layer snow models to more complex
multilayer snow models to accommodate more internal
processes in snowpack, such as densification and multi-
phase changes of water [Loth et al., 1993; Lynch-Stieglitz,
1994; Sun et al., 1999; Dai et al., 2003; Yang and Niu,
2003; Xue et al., 2003]. Most of the multilayer snow
schemes are simplified from schemes with detailed internal
processes such as grain size growth and gravitational flows
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of liquid water within a snowpack [Anderson, 1976; Jordan,
1991]. These multilayer snow schemes have improved the
simulation of snow depth and snow water equivalent in
open, unvegetated areas at local scales. In addition, there
have been developments in representations of radiative
effects of the vegetation canopy [Hardy et al., 1997; Davis
et al., 1997; Yang and Friedl, 2003; Niu and Yang, 2004;
R. Essery et al., Radiative transfer modeling of a coniferous
canopy characterized by airborne remote sensing, submitted
to Journal of Hydrometeorology, 2007, hereinafter referred
to as Essery et al., submitted manuscript, 2007] and hydro-
logic impacts of interception of snow by the vegetation
canopy [Storck et al., 2002; Roesch et al., 2001; Essery et
al., 2003; Gusev and Nasonova, 2003; Niu and Yang, 2004].
Most of the developments are tested against in situ observa-
tions at local scales, and very few are implemented into
GCMs. The enhancements in representing internal processes
in snowpack and vegetation sheltering effects on mass and
energy budgets of the underlying snow surface have im-
proved snow simulations at local scales in both open and
vegetated environments. However, snow depth varies greatly
at subgrid scales of regional or global climate models because
of heterogeneities in land cover, terrains, snow deposition,
snowmelt, and meteorological conditions [Liston, 2004].
[4] In regional or global climate models, subgrid snow

distributions are represented as snow cover fraction (SCF),
i.e., the fraction of a grid cell covered by snow, through the
relationship between SCF and snow depth. At a GCM grid
cell scale, one of the largest uncertainties in modeling snow
and its interactions with the atmosphere comes from SCF
formulations and their associated parameters. Various SCF
formulations as summarized in Liston [2004] result in a
wide spread of SCFs. GCMs vary significantly in simulat-
ing SCF, and most of them underestimated SCF [Frei and
Gong, 2005] because of unrealistic formulations. Most SCF
formulations are parameterized as a function of grid cell
mean snow depth and the ground roughness length. Some of
them also considered the impacts of subgrid topography
variations on SCF [Douville et al., 1995]. Despite efforts in
the development of SCF schemes over the past decade [e.g.,
Yang et al., 1997; Luce et al., 1999; Liston, 1999; Mocko
and Sud, 2001; Roesch et al., 2001; Liston, 2004], it is still
problematic to represent SCF in GCMs because of limited
data sets of snow depth at a GCM grid cell scale available
for validating these schemes. However, Brown et al.’s
[2003] high-quality gridded snow depth and snow water
equivalent data sets provide us with an opportunity, for the
first time, to examine existing SCF formulations and then
reformulate SCF at a GCM grid cell scale.
[5] The National Center for Atmospheric Research

(NCAR) community land model (CLM) describes snow
physics in vertical directions in much more detail than
subgrid snow distributions in horizontal directions, which
is represented by SCF. Its unrealistic SCF formulation
resulted in a biased climate. Various versions of the NCAR
climate models (e.g., CCM3/LSM, CAM2/CLM2, and
CAM3/CLM3) produced a warm bias in winter and spring
over snow covered regions in both midlatitudes and high
latitudes. Dickinson et al. [2006] attributed the warm bias in
high latitudes to excessive downward longwave radiation
emitted by excessive low clouds and unrealistic advection
of heat from warmer sea surface driven by anomalously

southerly winds. However, this did not fully explain the
warm biases in midlatitudes in winter and high latitudes in
spring.
[6] The main purposes of this study are (1) to examine

several existing SCF formulations and reformulate SCF on
the basis of data analyses and (2) to evaluate the multilayer
physically based snow model in the NCAR CLM with the
default and the reformulated SCF. We also assess the
impacts of different SCF formulations on net solar radiation
and surface temperature as well as the model’s ability to
simulate interannual variabilities and long-term trends in
snow cover and snow depth.

2. Snow Model in the NCAR CLM

[7] A modified version of the NCAR CLM2 [Bonan et
al., 2002] is used in this study. The modifications include a
frozen soil scheme that relaxes the dependence of hydraulic
properties on ice content by introducing a fractional perme-
able area [Niu and Yang, 2006] and a simple groundwater
model that represents the interactions of soil moisture and
groundwater [Niu et al., 2007].
[8] The snow model in the NCAR CLM is a multilayer

physically based model [Dai et al., 2003; Oleson et al.,
2004], which is primarily simplified from Anderson [1976]
and Jordan [1991] by parameterizing gravitational liquid
water flow and grain size growth while neglecting water
vapor phase. The state variables for snow are partial volume
of liquid water and ice, snow density (or depth), and
temperature. The number of snow layers can be up to 5
depending on the total snow depth. Total snow mass is
divided or combined at every time step in response to
changes in layer depth because of snowfall, sublimation,
and ablation while conserving energy and mass. The layer
structure is to keep such a thin surface layer that the model
can accurately resolve ground heat flux, which is critical for
computing the energy available for ablation.
[9] Snow density is solved through three types of com-

paction processes: destructive metamorphism of new snow,
i.e., crystal breakdown due to wind or thermodynamic
stress; snow load or overburden; and melting, changes in
snow structure due to melt-freeze cycles plus changes in
crystals due to liquid water. The temperature profile is first
computed without phase change and then readjusted for
phase change. The readjustment involves three steps: (1) the
temperatures are reset to the freezing point for layers
undergoing phase change when the layer temperature is
greater than the freezing point and the ice mass is not equal
to zero (i.e., melting), or when the layer temperature is less
than the freezing point and the liquid water mass is not
equal to zero (i.e., freezing); (2) the rate of phase change is
assessed from the energy excess (or deficit) resulting from
adjusting the layer temperature to the freezing point; and
(3) the ice and liquid mass and the layer temperature are
readjusted. Water flow is computed by a simple explicit
scheme that permits a portion of liquid water over the
holding capacity of snow to percolate into the underlying
layer. The water flow out of the bottom of the snowpack is
then available for infiltration into the soil and runoff.
[10] Snow albedo, asno, adopted from BATS, is a function

of snow age, grain size, solar zenith angle, impurity, and the
amount of fresh snow [Warren and Wiscombe, 1980]. Over
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a snow-covered grid cell, ground surface albedo, ag, is
parameterized as an area-weighted average of albedos for
snow (asno) and bare soil (asoi):

ag ¼ 1� fsnoð Þasoi þ fsnoasno ð1Þ

where fsno is the fractional area of the grid cell covered by
snow, or snow cover fraction. Adopted from BATS, fsno is
parameterized as a nonlinear function of snow depth, hsno
(in meters):

fsno ¼ hsno= 10z0;g þ hsno
� �

ð2Þ

where z0,g(= 0.01 m) is the ground roughness length. It
shows a slower increment with snow depth than other
formulations (Figure 1a).
[11] Surface albedo over a vegetated tile is solved through

a two-stream approximation scheme for radiation transfer
[Dickinson, 1983; Sellers, 1985] with ground surface albedo
(ag) as an input. Sky view factor as used in CLASS
[Verseghy, 1991] and ECHAM4 [Roesch et al., 2001] is
not considered in the model to parameterize SCF and
surface albedo, because the more complicated two-stream
radiation transfer scheme already accounts for the sheltering
effects of forests on underlying snow. The two-stream
approximation also accounts for the effects of the canopy-
intercepted snow on surface albedo by modifying vegetation
optical properties. However, the two-stream approximation

should be modified to account for within-canopy and
between-canopy gaps [Yang and Friedl, 2003; Niu and
Yang, 2004; Pinty et al., 2006] induced by subgrid tree
distributions at various scales (Essery et al., submitted
manuscript, 2007) and clumping of needle leaves [Chen et
al., 1991].

3. Data Sets

[12] The data sets used in this study include atmospheric
forcing, the National Oceanic and Atmospheric Adminis-
tration (NOAA) AVHRR snow cover fraction, CMC snow
depth and SWE, and U.S. Air Force/Environmental Tech-
nical Application Center (USAF/ETAC) snow depth clima-
tology. Table 1 lists all the data sets used in this study.

3.1. Atmospheric Forcing [Qian et al., 2006]

[13] This is a long-term (1948–2004) global surface
meteorological data set at a T62 (�1.875�) resolution and
a 3-h interval. The data set combined observation-based
analyses of monthly precipitation and surface air tempera-
ture with intramonthly variations from the National Centers
for Environmental Prediction–NCAR (NCEP-NCAR) re-
analysis, which has spurious trends and biases in surface
temperature and precipitation. Surface downward solar
radiation from the reanalysis was first adjusted for varia-
tions and trends using monthly station records of cloud
cover anomaly and then for mean biases using satellite
observations during recent decades. Surface specific humid-

Figure 1. (a) SCF (or fsno) computed from equation (2) (used in the default CLM and BATS), equation
(3) of Yang et al. [1997], and a formulation used in the NCAR LSM1.0, fsno = min(1, hsno/0.05), where
hsno is snow depth (m) and (b) SCF as a function of ground surface roughness, snow depth, and snow
density computed from equation (4) with new snow density rnew = 100 kg m�3 and m = 1.6. The thick
line (i.e., rsno = 100 kg m�3) is equivalent to equation (3).

Table 1. Data Sets Used in This Study

Types Duration Spatial Resolution Temporal Resolution Author

atmospheric forcing 1948–2004 global T62 3 hourly Qian et al. [2006]
snow cover fraction 1968–2002 NH 1� monthly Robinson and Frei [2000]
snow depth 1979–1996 NA 0.25� daily Brown et al. [2003]
SWE 1976–1996 NA 0.25� daily Brown et al. [2003]
USAF snow depth climatology global 1� monthly Foster and Davy [1988]
topography static global 1 km static Gtopo30
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ity from the reanalysis was adjusted using the adjusted
surface air temperature and reanalysis relative humidity.
Surface wind speed and air pressure were interpolated
directly from the 6-hourly reanalysis data. This data set
was demonstrated to be of high quality through evaluations
of model simulations against observed streamflow, conti-
nental freshwater discharge, and soil moisture [Qian et al.,
2006].

3.2. NOAA AVHRR Monthly SCF [Robinson and
Frei, 2000]

[14] This NH long-term (1968–2003) monthly SCF data
set at 1� � 1� resolution is averaged from weekly binary
values computed from NOAA data by Rutgers University.
The NOAA data [Robinson, 1993] consist of digitized
weekly charts of snow cover derived from interpretation
of visible satellite imagery by trained meteorologists. The
data sets contain corrections recommended by Robinson et
al. [1991] and the Rutgers weighting scheme to correctly
partition weekly charts into appropriate months according to
the number of days of a chart week falling in a given month
[Robinson, 1993]. In general, the NOAA charts are consid-
ered to be the most accurate means of obtaining snow cover
extent information on large regional to hemisphere scales.
Furthermore, they comprise the longest satellite-based re-
cord available.

3.3. CMC Snow Depth and SWE [Brown et al., 2003]

[15] These are daily snow depth and SWE at 0.25�
resolution over North America (NA) for AMIP-2 (Second

Atmospheric Model Intercomparison Project) period
(1979–1996). The gridded snow depth combines in situ
daily observations from �8,000 U.S. cooperative stations
and Canadian climate stations and first-guess fields with an
optimum interpolation scheme developed by Brasnett
[1999], which is employed operationally at CMC. The first
guess fields were produced by a simple snow accumulation,
aging and melt model driven by 6-hourly air temperature
and precipitation from the European Centre for Medium-
range Weather Forecasts (ECMWF) ERA-15 Reanalysis
with extensions from the Tropical Ocean and Global At-
mospheric Program (TOGA) operational data archive. The
gridded snow depth and estimated SWE agreed well with
available independent in situ and satellite data over midlat-
itude regions. The snow depth climatology exhibited several
improvements over USAF/ETAC data, showing more real-
istic snow cover extents in fall and spring [Brown et al.,
2003; Brown and Frei, 2007]. While this data set is
regarded as the currently best available estimates of large-
scale snow depth and SWE over NA, the authors have the
greatest confidence in the product in ‘‘data rich’’ areas of
NA with relatively small orographic effects, which are
mainly located east of the Rocky Mountains south of
55�N [Frei et al., 2005].

3.4. USAF/ETAC Snow Depth Climatology [Foster
and Davy, 1988]

[16] This data set is a monthly snow depth climatology.
Snow depth is manually assigned, with varying confidence
level, at 47 km NH polar stereographic grids according to

Figure 2. Relationship between AVHRR SCF (%) and CMC snow depth (m) in 1� � 1� grid cells of
major NA river basins including the Mackenzie, Yukon, Churchill, Fraser, St. Lawrence, Columbia,
Colorado, and Mississippi from October to May. The darker crosses stand for 1� � 1� grid cells where the
standard deviation of topography sh < 150 m, and the lighter triangles stand for 1� � 1� grid cells where
sh >150 m. The fitted lines are computed from equation (4) (m = 1.6) with the mean snow densities
shown above each frame.
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climatological records, literature searches, surface weather
synoptic reports, and data obtained at snow course sites
covering various time periods. In a number of countries,
summarized snow depth values are not always available to
construct a snow depth climatology with even a fair degree
of confidence. Despite this limitation, a number of research-
ers used this data set to evaluate snow simulations [Douville
et al., 1995; Foster et al., 1996; Yang et al., 1999; Roesch et
al., 2001; Roesch, 2006; Niu and Yang, 2006]. Most
recently, Brown and Frei [2007] pointed out evaluating
GCM snow models with this data set may induce incorrect
conclusions concerning the models’ ability to simulate
snowmelt and duration of snow seasons. In this study, we
used it as a reference data set to see how it compares to
CMC snow depth over various NA river basins.

4. Data Analyses: A New SCF Formulation

[17] To examine the relationship between snow cover
fraction and snow depth and how this relationship may
vary with seasons, we first aggregated the 0.25� CMC snow
depth and SWE data sets into 1�, the same resolution as the
AVHRR SCF. We then selected the CMC and AVHRR data
sets during the same time period (1979–1996) to produce
1� climatologies of snow depth, SWE, and SCF. Then, we
selected grid cells in eight major river basins (the Mack-
enzie, Yukon, Churchill, Fraser, St. Lawrence, Columbia,
Colorado, and Mississippi), which include both mountain-
ous and flat river basins and cover the most snow covered
land area of NA.
[18] Figure 2 shows that the monthly relationship be-

tween the AVHRR SCF and the CMC snow depth varies
from a more rapid increase in SCF with snow depth in
earlier snow months (e.g., October, November, and Decem-
ber) to a slower increment in SCF with snow depth in
melting months (e.g., March, April, and May). Meanwhile,
snow density computed from the CMC snow depth and
SWE averaged over the eight river basins shows a gradual
increase from 176 kg m�3 in October to 318 kg m�3 in
May.
[19] It is apparent that equation (2) or any other one-curve

formulation cannot fit the observed SCF–snow depth rela-

tionship that is varying with seasons. Yang et al. [1997]
found equation (2) underestimates SCF and surface albedo
in local-scale simulations and reformulated fsno:

fsno ¼ tanh
hsno

2:5z0;g

� �
ð3Þ

Roesch et al. [2001] demonstrated the above equation is
more applicable to flat, nonvegetated regions. As shown in
Figure 1a, equation (3) results in a sharper increase in SCF
with snow depth than does equation (2). However, it may
overestimate snow cover fraction in melting season. Guided
by Figure 2, we modified equation (3) to account for the
variation of the SCF–snow depth relationship with season,
which is represented by the variation in snow density, rsno:

fsno ¼ tanh
hsno

2:5z0g rsno=rnewð Þm
� �

ð4Þ

where snow density rsno is scaled by the fresh snow density
rnew (100 kg m�3 in this study), and m, a melting factor
determining the curves in melting season, is adjustable
depending on scale (generally, a larger value for a larger
scale). It can be calibrated against observed snow cover
fraction or surface albedo. In this study, it is estimated at
�1.6 as calibrated against the AVHRR SCF data. It is
noteworthy that the prognostic snow density, rsno, is the
bulk density of the snowpack rather than that of the surface
layer to produce a smoother SCF transition from accumula-
tion seasons to melting seasons.
[20] Because the snowpack becomes much patchier in

melting periods, it covers smaller areas than in snowfall
periods given a same grid-averaged snow depth. This
phenomenon is approximated in equation (4) through the
variations in snow density. As shown in Figure 1b, during
snowfall periods when snow density is relatively small, SCF
increases more rapidly with snow depth than in melting
periods when snow density becomes greater. As snowfall
and ablation phases are mimicked by the bulk snow density,

Figure 3. Reconstructed SCF using CMC snow depth and SWE with different SCF formulations. Plots
are for (a) fsno = min(1, hsno/0.05), where hsno is snow depth in meters; (b) equation (2); (c) equation (3);
and (d) equation (4) with m = 1.6 in comparison with AVHRR SCF for all grid cells in the Mississippi
River basin for all months. R is the averaged ratio of the reconstructed SCF to AVHRR SCF.
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which varies smoothly with time, the transition of SCF from
accumulation seasons to melting seasons is also gradual.
Using the river basin averaged snow density for different
months (shown above each frame of Figure 2), equation (4)
(m = 1.6) matches very well to the observed SCF–snow
depth relationship for a given month. Because the data
quality in mountainous regions is not high enough, we did
not see a clear dependence of the SCF–snow depth rela-
tionship on subgrid topography variations, which is repre-
sented by the standard deviation of topography, sh. For this
reason, we did not further consider the impacts of subgrid
topography on SCF into equation (4) as done by Douville et
al. [1995] for their SCF formulations.
[21] Reconstructing snow cover using historical records

of snow depth from stations is very important for investi-
gating long-term snow cover variations and its correlations
with climate change [Frei et al., 1999; Brown, 2000]. A
SCF–snow depth relationship is critical for reconstructing
snow cover at either grid cell scales (Figure 3) or river basin
scales (Figure 4). Figure 3 shows the reconstructed SCF for
the 1� � 1� grid cells in the Mississippi River basin using
different formulations in comparison with the AVHRR SCF,
where the CMC snow depth and SWE are considered of the
best quality. It is clear that the default formulation in CLM

(equation (2)) underestimated SCF and equation (3) over-
estimated SCF, while equation (4) (m = 1.6) matches the
AVHRR SCF very well. Figure 4 shows the reconstructed
SCF with different formulations using basin-averaged snow
depth and SWE in comparison with the AVHRR basin-
averaged SCF. Equation (4) with optimized melting factors
for each river basin performs much better than equation (2)
and equation (3) in capturing the AVHRR SCF on seasonal
and interannual scales in various river basins. It appears that
the optimum melting factor is smaller for plain river basins
(e.g., the Mackenzie, Churchill, and Mississippi) than for
mountainous river basins (the Columbia and Yukon) and
greater at river basin scales than at grid cell scales (the
Mississippi in Figure 4 versus Figure 3d). Optimization of
the melting factor depending on topography and vegetation
type is discussed in more detail by H. Su et al. (Enhancing
the estimation of continental scale snow water equivalent by
assimilating MODIS snow cover with the ensemble Kalman
filter, submitted to Journal of Geophysical Research, 2007).

5. Model Results

[22] We conducted two experiments with the modified
NCAR CLM2.0, one with the default SCF formulation

Figure 4. Reconstructed SCF using basin-averaged CMC snow depth and SWE with different
formulations (‘‘OLD’’ represents equation (2), ‘‘Yang’’ represents equation (3), and ‘‘NEW’’ represents
equation (4) with optimized melting factors) in comparison with basin-averaged AVHRR SCF. The biases
above each frame are for OLD, Yang, and NEW, respectively.
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(equation (2)) and the other with the density-dependent SCF
(equation (4)), driven by the near-surface atmospheric
forcing data set [Qian et al., 2006]. The two model runs
were integrated from 1948–2002, while the model results
during 1979–1996 were selected to compare to the AVHRR
SCF and the CMC snow depth and SWE. The vegetation
and soil parameters at T62 resolution were interpolated from
the finer resolution raw data of the NCAR standard
CLM2.0. The ground roughness length, which greatly
affects SCF, is 0.01m in both experiments as in the standard
CLM2.0.
[23] Themelting factor in equation (4),m, equals 1.0 through

sensitivity tests against the AVHRR SCF, a value smaller
than the optimum values used for reconstructing SCF using
the CMC estimates. This may be explained by the smaller
3-hourly time step at which the model is operated than the
monthly scale at which the reconstruction was carried out.
Ideally, the melting factor can be determined through data
analyses given accurate data sets of snow depth, SWE, and
SCF at the model’s spatial and temporal resolution. How-
ever, these data sets do not exist so far, and thus calibration
is required for both offline and coupled model runs. As
shown in Figure 5, the modeled SCF with m = 1.0 shows a
little improvement over that with m = 1.8 for the long-term
SCF variations in the Mississippi River basin, as measured
by biases.
[24] As shown in Figure 6, the density-dependent SCF

(equation (4)) improves SCF simulations in all river basins
in terms of interannual and interbasin variations over the
default formulation (equation (2)). However, the model with
the new formulation still meet difficulties in mountainous
river basins, e.g., the Columbia, where the model under-
estimated SCF during the melting season, and the Colorado,
where the model underestimated SCF in all seasons. The
underestimation in mountainous river basins may be mainly
attributed to the underestimated precipitation or snowfall

due to gauge undercatch errors [Adam et al., 2006; Tian et
al., 2007].
[25] The density-dependent SCF formulation produced

greater snow depth (Figure 7) and SWE (Figure 8) in all
the river basins than those with the default formulation. The
modeled snow depth and SWE in most of the river basins
are favorable compared to the CMC snow depth and SWE,
except for those in the Churchill and North Central River
basins. However, the degree of degradation in the modeled
snow depth and SWE is negligible compared to errors in the
atmospheric forcing data and uncertainties in representing
other physical processes and their associated parameters in
the model, such as densification processes, liquid water
flow within the snowpack, radiation transfer through the
vegetation canopy [Niu and Yang, 2004]. In addition, CLM
does not explicitly account for sublimations from the
canopy-intercepted snow and wind-blown snow, both of
which can increase the surface area of snow exposed to the
air and are thus conducive to an increase in sublimation, or
radiation transfer through the snowpack, which can increase
the absorption of solar radiation [Flanner and Zender,
2005].
[26] While the improvement in modeling SCF is observed

in all the river basins including high-latitude river basins,
the improvement in modeling snow depth and SWE by
employing the density-dependent formulation is more ob-
viously significant in midlatitude river basins. This may be
explained by the greater incident solar radiation and thus a
stronger snow albedo feedback in midlatitude river basins.
Overall, the modeled snow depth by the NCAR CLM with
the density-dependent SCF formulation agrees very well
with the CMC data in terms of seasonality, interannual
variability, and interbasin variability except for the moun-
tainous Columbia and Colorado River basins.
[27] The modeled snow density (Figure 8) agrees well

with CMC estimates, especially in snow accumulation

Figure 5. Modeled SCF using equation (4) with different melting factors (m = 1.0 and m = 1.8) in
comparison with AVHRR SCF in the Mississippi River basin. The biases marked above the frame are for
m = 1.8 and m = 1.0, respectively.
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season. It appears that different SCF formulations show no
obvious impacts on the snow density simulation in most of
the river basins. To derive the CMC SWE from snow depth
observations, Brown et al. [2003] used a scheme for
computing snow density. The scheme for accumulation
seasons is the same as that used in CLM, and both were
based on the work of Anderson [1976]. However, they differ
for melting seasons. For such a reason, CLM-modeled snow
densities are greater than those of CMC in melting season in
almost all the river basins. Our previous offline tests using
the Sleepers River data also revealed that the simple
treatment on the compaction rate due to melting in CLM
was a possible cause for the overestimated snow density in
the melting season. Given the same amount of SWE, a
greater snow density would produce a shallower snow

depth, and in turn, a smaller SCF and surface albedo, and
more solar energy absorbed by the ground, resulting in less
SWE and snow depth as well as a shorter snow season.
Additionally, snow density controls snowpack thermal con-
ductivity [Sturm et al., 1997]. Accurately modeling snow
density in melting season is subject to further investigations
in model developments.
[28] The density-dependent SCF formulation produced

higher SCFs by up to 40%, and less net solar radiation by
up to 20 W m�2, and lower surface temperature by up to 4K
in snow covered regions, mainly in midlatitudes in DJF,
moving toward high latitudes in MAM (Figure 9). This
reduction in surface temperature would be more significant
in an online mode when coupled to atmospheric models
[Liston, 2004], because, in the offline runs, the near-surface

Figure 6. Modeled SCF in comparison with AVHRR SCF during 1979–1996 in various large NA river
basins (m = 1.0 for the river basins). The smaller plots on the right show monthly averages of the 18-a
data. The biases shown above each frame are for OLD and NEW, respectively.
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air does not decrease with the cooler surface, thereby
resulting in a spurious transfer of sensible heat fluxes to
the cooler surface.
[29] Long-term snow cover variations can be seen as an

indicator of climate change [Robinson and Frei, 2000].
Additionally, the strongest interactions between snow cover
and climate usually occurs in spring months [Brown, 2000].
Therefore we also evaluated the model’s ability to simulate
long-term snow cover variations for each individual month
over NA and Eurasia. As shown in Figure 10, the model
performs very well in simulating the absolute values of the
observed snow cover as well as the observed interannual
variations and trends in snow cover in both NA and Eurasia
except for November (and December in Eurasia). This is
because snowfall, which is computed from precipitation
using surface air temperature as a criterion, is more sensitive

to the near-surface temperature in November, when the
surface air temperature is more frequently around the
criterion (for instance, 273.16 K) in most of the continents,
than in other months. The modeled snow cover has higher
correlations with the AVHRR in NA than in Eurasia,
possibly because the new SCF formulation is developed
against data sets in NA and the forcing data in NA have
better qualities than those in Eurasia because of denser
observation networks in NA. Both the model and AVHRR
observation show decreasing trends in snow cover almost at
the same rate in February, March, and April in both NA and
Eurasia.
[30] The model performs very well in simulating the

monthly mean values and interannual variabilities of snow
depth and SWE (Figure 11) in large river basins over both
NA and Eurasia. However, the model disagrees with CMC

Figure 7. Same as Figure 6 but for modeled snow depth (m) in comparison with CMC data. The biases
above each frame are for OLD and NEW, respectively.
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Figure 8. Comparison of modeled and CMC climatologies (monthly averages of 1979–1996 data) in
eight large NA river basins. (a) SWE and (b) snow density. The biases above each frame are for OLD and
NEW, respectively.

Figure 9. Modeled differences of SCF (%), absorbed solar radiation (W m�2), and surface temperature
(K) between the density-dependent formulation (equation (4)) and the default formulation (equation (2))
in DJF and MAM. The mean values above each frame are averages over all of the NH continents.
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data in terms of trends in snow depth and SWE. Both CMC
snow depth and SWE show increasing trends in snow
accumulation season (November, December, and January),
while the modeled snow depth and SWE show much
slighter increasing trends in November and December and
a decreasing trend in January. In snowmelt season (February,
March, and April), the model shows much greater decreasing
trends in both snow depth and SWE than do CMC estimates.
This can be explained either by the CMC data quality, on
which Brown et al. [2003] had higher confidence in the ‘‘data
rich’’ regions east of the Rocky Mountains south of 55�N, or
the model’s lack of representation of some critical physical
processes. Compared to the decreasing trend in AVHRR
snow cover, CMC snow depth and SWE show no clear or
weaker decreasing trend in February, March, and April. The
inconsistency between AVHRR snow cover and CMC snow
depth (SWE) warrants more attention in future studies. From
the model aspect, CLM lacks a consideration of stability
correction to the under-canopy aerodynamic resistance in
vegetated regions, which may be a factor contributing to the
snow climate feedback strength. In the melting season,
turbulent sensible heat transfer from the warmer vegetation

canopy to the cooler snow surface plays the same important
role as absorption of solar radiation. This was also reflected
by Brown [2000] that the largest decrease in snow cover
occurred in April because of the warming trend. Stability
correction to aerodynamic resistance can greatly suppress
downward sensible heat flux from the warmer vegetation
canopy, which absorbs solar radiation more efficiently than
its underlying snow surface, to the cooler snow surface [Niu
and Yang, 2004]. In addition, overestimation of snow density
in melting season may also contribute to the stronger snow
climate feedback by underestimating snow depth and hence
snow cover given the same amount of SWE.

6. Summary

[31] We first analyzed the relationship between the
AVHRR snow cover data and the CMC snow depth data
and found it varies gradually from rapid SCF increments
with snow depth in November and December to slower
increases in April and May. We then added snow density to
the Yang et al. [1997] SCF formulation to reflect the
variations in the SCF–snow depth relationship with time.

Figure 10. Modeled (thick solid lines) monthly SCFs and their trends in comparison with those of
AVHRR data (thin dashed lines) averaged over NA (20�–90�N, 40�–160�W) and Eurasia (20�–90�N,
0�–180�N). Also shown on the top right corner of each plot are correlation coefficients (R) between the
model and the AVHRR.
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The new snow density–dependent formulation agrees well
with the observed SCF–snow depth relationship for each
individual month and reconstructs AVHRR snow cover with
the CMC snow depth and SWE data as inputs for the large
NA river basins given optimized melting factors.
[32] When implemented into the NCAR CLM, the new

SCF formulation (m = 1.0) greatly improved the simulation
of SCF for all river basins as well as snow depth and SWE
most obviously in midlatitude river basins. The new SCF
formulation produced higher SCFs by up to 40%, and less
net solar radiation by up to 20 W m�2, and lower surface
temperature by up to 4K in snow covered regions, mainly in
midlatitudes in DJF, moving toward high latitudes in MAM.
In wintertime, increases in snow cover fraction in midlati-
tudes induce more increments in SWE and snow depth than
in high latitudes because of the greater solar radiation fluxes
in midlatitudes.
[33] Overall, CLM with the new SCF formulation did a

good job in simulating SCF, SWE, and snow depth in terms
of seasonal, interannual, and interbasin variations except for
mountainous river basins, where the snowfall is underesti-
mated because of the gauge undercatch errors. CLMwith the

new SCF formulation also performed well in reproducing the
decreasing trend in AVHRR SCF during melting season in
both NA and Eurasia. The model produced a greater decreas-
ing trend in snow depth and SWE than CMC data sets. This
can be possibly explained by either the not-high-enough
quality of CMC data sets or the lack of stability correction
to the undercanopy aerodynamic resistance in CLM, which
may result in a stronger snow climate feedback by over-
estimating the downward sensible heat transfer from the
warmer vegetation canopy to its underlying snow surface
in melting season. CLM also overestimates snow density in
melting season because of the relatively simple treatment of
densification formulation for snowmelt. This overestimation
may also contribute to the stronger snow climate feedback by
underestimating snow depth and hence snow cover given the
same amount of SWE.
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