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ABSTRACT

The authors introduce and compare the performance of the unified Noah land surface model (LSM) and its

augments with physically based, more conceptually realistic hydrologic parameterizations. Forty-five days of

30-min data collected over nine sites in transition zones are used to evaluate (i) their benchmark, the standard

Noah LSM release 2.7 (STD); (ii) a version equipped with a short-term phenology module (DV); and (iii) one

that couples a lumped, unconfined aquifer model to the model soil column (GW). Their model intercompar-

ison, enhanced by multiobjective calibration and model sensitivity analysis, shows that, under the evaluation

conditions, the current set of enhancements to Noah fails to yield significant improvement in the accuracy of

simulated, high-frequency, warm-season turbulent fluxes, and near-surface states across these sites. Qualita-

tively, the versions of DV and GW implemented degrade model robustness, as defined by the sensitivity of

model performance to uncertain parameters. Quantitatively, calibrated DV and GW show only slight im-

provement in the skill of the model over calibrated STD. Then, multiple model realizations are compared to

explicitly account for parameter uncertainty. Model performance, robustness, and fitness are quantified for use

across varied sites. The authors show that the least complex benchmark LSM (STD) remains as the most fit

version of the model for broad application. Although GW typically performs best when simulating evaporative

fraction (EF), 24-h change in soil wetness (DW30), and soil wetness, it is only about half as robust as STD, which

also performs relatively well for all three criteria. GW’s superior performance results from bias correction, not

from improved soil moisture dynamics. DV performs better than STD in simulating EF and DW30 at the wettest

site, because DV tends to enhance transpiration and canopy evaporation at the expense of direct soil evapo-

ration. This same model structure limits performance at the driest site, where STD performs best. This di-

chotomous performance suggests that the formulations that determine the partitioning of LE flux need to be

modified for broader applicability. Thus, this work poses a caveat for simple ‘‘plug and play’’ of functional

modules between LSMs and showcases the utility of rigorous testing during model development.

1. Introduction

By regulating the partitioning and horizontal distri-

bution of water and energy fluxes, land surface pro-

cesses and characteristics modulate local weather and

climate (Viterbo 2002; Yang 2004). Land–atmosphere

interactions are thought to be particularly strong in

zones of transition between dry and wet climates, such

as the U.S. southern Great Plains (Koster et al. 2004).

To understand what processes are important in con-

trolling surface-to-atmosphere fluxes and to better

predict weather and climate, researchers use land sur-

face models (LSMs) (Pitman 2003). LSMs are repre-

sentations of the interactions between soil, vegetation,

and the atmospheric boundary layer. LSMs also provide

lower boundary fluxes of mass, energy, and momentum

to weather forecasting and climate models (Nijseen and

Bastidas 2005). Hence, realistic representation of key

hydrological processes within LSMs is important for

accurate numerical weather prediction.

Discerning which processes are essential to represent

within LSMs is an ongoing effort within the research

community. As our understanding of the land surface
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process grows, LSMs are adapted. New parameteriza-

tions aim to improve on previous generations of models

by including increasingly complex, previously neglected

processes or by replacing old simplifications with newly

proposed, conceptually more realistic approaches (e.g.,

Oleson et al. 2008).

Because they provide a source of hydrological mem-

ory, vegetation processes and anomalies in soil moisture

are believed to influence precipitation and shape cli-

mate (e.g., Pielke 2001). Use of LSMs that include at

least a rudimentary treatment of vegetation and soil

processes tends to improve model simulations. Correct

simulation of the initiation of convection depends on

modeled soil temperature and moisture (Childs et al.

2006; Weckwerth and Parsons 2006). As a result, im-

proved soil moisture representation within LSMs im-

proves simulation of surface fluxes (Dirmeyer et al.

2000), and the use of more realistic representation of

vegetation states and processes (e.g., stomatal resis-

tance) increases the predictive power of LSMs in both

offline (Niyogi and Raman 1997) and coupled simula-

tions (Holt et al. 2006).

Further refinement of the conceptual realism of LSM

soil hydrology and vegetation processes may further

improve model predictive capability. When compared to

more simplistic parameterizations, more complex and

sophisticated LSMs have been credited with improved

simulations of air temperature, runoff, snow, turbulent

fluxes, and soil states (Boone et al. 2004; Bowling et al.

2003; Niu et al. 2005, 2007; Wood et al. 1998). However,

other studies have demonstrated that additional com-

plexity neither necessarily improves model performance

nor reduces the uncertainty in the simulated fluxes of

water and energy (Schultz and Beven 2003; Hogue et al.

2006). Additional complexity in LSM representations is

perhaps unjustified when the new parameterization

cannot be supported or identified with available obser-

vations (Leplastrier et al. 2002; Schultz and Beven 2003;

Hogue et al. 2006).

Keeping in mind that both too parsimonious and too

complex models often lead to decreased skill (e.g., Jensen

1998; Carlson and Doyle 2002), we evaluate the aug-

mentation of the latest version of the Noah LSM (Ek et al.

2003) with two more conceptually realistic parameteriza-

tions: groundwater processes and dynamic phenology. We

ask whether the new modules improve the model’s ca-

pacity to simulate high-frequency turbulent fluxes and soil

states and how reliable each model is when faced with

parameter uncertainty. Because of the strength of the

coupling, our work focuses on warm-season climates in the

transition zone of the central United States.

Our primary goal is to identify whether the recent

enhancements to the Noah model offer improvements

in skill or robustness in simulating high-frequency fluxes

and soil states, which, for this paper, we will term ‘‘ap-

plications.’’ Although LSM development enables in-

corporating necessary degrees of freedom to research

the nature of feedbacks (e.g., the role of groundwater

in long-term memory), investigate trends (e.g., phenol-

ogy contrast between wet and dry years), test scenarios

(e.g., carbon cycling), and so on (e.g., Dirmeyer et al.

2006; Kim and Wang 2007; Lyon et al. 2008), in our

applications-focused framework, we confine our defi-

nition of a ‘‘better’’ model to one that most accurately

reproduces observed high-frequency states and fluxes at

the local scale.

The analysis we present here is more rigorous than

the typical LSM evaluation exercise. We first evaluate

the versions of Noah LSM, following the steps of a

traditional model intercomparison using single-model

realizations (default and calibrated runs). We then use

multiple model realizations and the metrics introduced

by Gulden et al. (2008) to assess model performance

and reliability in conditions that more closely resemble

those in which LSMs are actually applied. Our goal is to

understand how and why the new parameterizations

change model performance. For both segments of our

evaluation, we use 45 days of high-frequency near-

surface states and heat fluxes data collected as part of

the International H2O Project (IHOP_2002) (LeMone

et al. 2007).

Datasets, models, and methods are described in sec-

tion 2. Experimental design and methods for model

performance evaluation are explained in section 3.

Section 4 presents a detailed, traditional model inter-

comparison and sensitivity analysis. Section 5 presents

an assessment of model performance under uncertainty

and focuses on hypothesis testing. Section 6 discusses

the implications of the results for model evaluation and

development. Conclusions are summarized in section 7.

2. Models, data, and methods

a. Hydrological enhancements to Noah LSM

To alleviate known biases [e.g., dry biases in evapo-

transpiration and soil moisture during the warm season

(e.g., Chen et al. 2007) and poor energy partitioning even

after calibration (Hogue et al. 2006)], the Noah LSM

(Ek et al. 2003; Mitchell et al. 2004) was augmented

with modules that improve the conceptual realism of

land surface processes. We compare our benchmark, the

standard Noah LSM release 2.7 (Noah-STD) to (i) a

version that we equipped with a short-term phenology

module (Noah-DV) and (ii) one that couples a lumped,

unconfined aquifer model to the model soil column

(Noah-GW).
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1) NOAH-DV

We added the physically based vegetation module of

Dickinson et al. (1998) to Noah-STD to dynamically

calculate vegetation greenness fraction. Unlike Noah-

STD, which computes greenness fraction by linear in-

terpolation between monthly climatological values,

Noah-DV represents short-term phenological variation

by allowing leaf biomass density to respond to envi-

ronmental perturbations and to vary as a function of soil

moisture, soil temperature, canopy temperature, and

vegetation type. The module allocates carbon assimi-

lated during photosynthesis to leaves, roots, and stems;

the fraction of photosynthate allocated to each reservoir

is a function of, among other things, the existing biomass

density. The model also tracks growth and maintenance

respiration and represents carbon storage. Following

a modification by Yang and Niu (2003), DV explicitly

makes vegetation fraction (vegfrac) an exponential func-

tion of leaf area index (LAI). STD allows LAI to only

influence the computation of stomatal resistance (Rs).

In addition to that, DV makes direct soil evaporation,

canopy evaporation, and transpiration depend on vari-

ations in leafiness, or, more precisely, LAI.

2) NOAH-GW

Noah-GW couples a lumped unconfined aquifer model

(Niu et al. 2007) to the lower boundary of the Noah-STD

soil column. Water flows in both directions between the

aquifer and the soil column. The modeled hydraulic po-

tential is the sum of the soil matric and gravitational

potentials. If insufficient water is available to maintain a

near-surface aquifer, the water table falls below the soil

column; when water is plentiful, the water table is within

the soil column of the LSM. Baseflow is parameterized

using an index of topography (Niu et al. 2005).

b. IHOP_2002 sites and datasets

We used data from the IHOP_2002 field campaign

(Weckwerth et al. 2004) to evaluate predictions from

the different versions of Noah LSM at nine sites. To

enable definitive testing and development of LSMs in

transition zones, IHOP_2002 collected 45 days of high-

temporal-resolution, multisensor measurements of me-

teorological forcing, surface-to-atmosphere flux data,

and near-surface measurements of soil moisture and

temperature along the Kansas–Oklahoma border and in

northern Texas. The interested reader is referred to

LeMone et al. (2007) for details. (The authors obtained

the datasets at http://www.rap.ucar.edu/research/land/

observations/ihop/.)

Table 1 presents the Noah LSM soil and vegetation

classes and mean meteorological values for the obser-

vation period. The nine stations were sited to obtain a

representative sample of the region, which spans a

strong east–west rainfall gradient.

Figure 1 shows evaporative fraction (EF) and 30-cm

soil wetness (W30) for sites 2 (Fig. 1a) and 8 (Fig. 1b)

against the backdrop of precipitation and volumetric

soil moisture (SMC) in three of the soil layers. With

depth, the soil column dries at site 2 (dry) and wets at

site 8 (wet). Evaporation at site 2 tends to be moisture

limited; evaporation at site 8 is most often energy lim-

ited. Comparing EF at site 2 to that at site 8, we see that

it peaks immediately after rainfall at site 2 but some-

what subsides immediately following precipitation at

site 8; the EF does not peak until several days after the

influx of rainwater to the soil.

c. Model initialization and spinup

All runs described in this paper followed the same

initialization and spin-up procedures. We used down-

scaled North American Land Data Assimilation System

(NLDAS) (Cosgrove et al. 2003) meteorological forc-

ing, interpolated from a 60-min to a 30-min time step,

to drive the simulations between 1 January 2000 and

13 May 2002. Following Rodell et al. (2005), we initial-

ized each of the four soil layers at 50% saturation and at

the multiannual mean temperature. For Noah-GW, the

depth to the water table was initialized assuming equi-

librium of gravitational and capillary forces in the soil

profile (Niu et al. 2007). The models were subsequently

driven by IHOP_2002 meteorological forcing (see

Table 1) from 13 May to 25 June 2002 [day of year

(DOY) 130–176].

d. Calibration datasets

To constrain and evaluate the models during the

IHOP_2002 period, we used a 30-min time step and

observed sensible heat flux (H), latent heat flux (LE),

ground heat flux (G), ground temperature (Tg), and first

layer soil moisture (SMC5cm). To score the perfor-

mance, we used root-mean-square error (RMSE). We

scored only the last 45 days of each 2.5-yr-long model

simulation, DOY 130–176.

e. Parameters calibrated

We selected 10 soil and 10 vegetation parameters that

have been deemed sensitive at similar locations

(Demarty et al. 2004; Bastidas et al. 2006). We included

eight parameters responsible for the phenology module

and four that control the aquifer model to estimate a

total of 28 and 24 parameters for DV and GW, re-

spectively. All other coefficients in the models were

kept constant at the recommended values. Defaults and
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feasible ranges (Table 2) for all the parameters were

taken from the literature (e.g., Hogue et al. 2006).

f. Multiobjective parameter estimation technique

To calibrate the models, we used the Markov chain

Monte Carlo sampling strategy of Vrugt et al. (2003).

The calibration algorithm allows an initial population of

parameter sets (randomly selected within preestab-

lished, feasible ranges) to evolve until the population

converges to a stable sample, which maximizes the

likelihood function and fairly approximates the Pareto

set (PS). The Pareto set represents the multiobjective

trade-off: no member of the PS can perform better with

respect to one objective without simultaneously per-

forming worse with respect to another, competing

objective (Gupta et al. 1998). The simultaneous mini-

mization of the RMSE of multiple criteria (H, LE, G,

Tg, and SMC5cm) allows us to constrain the model for

consistency with several types of observations. Multi-

objective optimization facilitates the identification of

physically meaningful parameter sets (and their under-

lying posterior distribution) that cause the model to

mimic the processes they were designed to represent

(Gupta et al. 1999; Bastidas et al. 2001; Leplastrier et al.

2002; Xia et al. 2002; Hogue et al. 2006). We used a

sample of 150 parameter sets to represent the PS.

To obtain a detailed representation of the range of

model performance (i.e., the objective function space),

we also ran a Monte Carlo sampling of 15 000 random

parameter sets, uniform within the feasible bounds

(Table 2). Figure 2 shows slices of STD’s objective

function space at site 4. In frequentist terms, Fig. 2

suggests that, when very little is known about the pa-

rameters, the expected RMSE of STD at site 4 is most

probably ;55 W m22 for LE, ;38C for Tg, and ;5% for

SMC5cm. Note the difference between the location of

the scores most frequently (MF) obtained and the lo-

cation of the low-density region where the PS resides.

3. Experimental design

We aimed to identify the model that best reproduces

the physical behavior of transition zone point-scale heat

fluxes and states during the warm season.

a. Traditional model intercomparison

We first compared the versions of Noah LSM using

single-model realizations. To evaluate the hypothesis

that increased physical realism yields an LSM that

better reproduces observations, we asked, Do concep-

tually realistic enhancements improve the ability of

LSMs to simulate fluxes and near-surface states? We

compared the performance of default and multi-

objectively calibrated runs using the goodness-of-fit

metrics of appendix A and observations of H, LE, G,

Tg, and SMC5cm. In situ, high-frequency measurements

are an integrated response of the land surface and

therefore provide multiple data streams that we used to

examine model soundness at specific locations (Bastidas

et al. 2001; Stöckli et al. 2008). It is important to note

that no estimates of observational uncertainty or errors

in energy balance closure in the tower flux data were

incorporated into the present analysis. We used the

multicriteria optimization as an objective test of the un-

derlying hypothesis that models are able to concurrently

simulate all the response modes that they were designed

to represent. Additionally, we compared characteristic

model behaviors (obtained from extensive Monte Carlo

sampling of parameter space) as a proxy for robustness.

Results are presented in section 4.

TABLE 1. IHOP_2002 sites and mean meteorological forcing observed during the evaluation period (13 May–25 Jun). Noah LSM

vegetation and soil types (indices in parenthesis). Rainfall is cumulative over the observation period. Mean annual precipitation (MAP),

shortwave (SW) and longwave (LW) radiation, 2-m air temperature (T), surface pressure (P), specific humidity (Q2), and wind speed (U).

Site 1 2 3 4 5 6 7 8 9

Lat (8N) 36.4728 36.6221 36.8610 37.3579 37.3781 37.3545 37.3132 37.4070 37.4103

Lon (8W) 100.6179 100.6270 100.5945 98.2447 98.1636 97.6533 96.9387 96.7656 96.5671

Vegetation

type

bare

ground (1)

grassland (7) sagebrush (9) pasture (7) wheat (12) wheat (12) pasture (7) grassland (7) pasture (7)

Soil type sandy

clay loam (7)

sandy clay

loam (7)

sandy

loam (4)

loam (8) loam (8) clay

loam (6)

silty clay

loam (2)

silty clay

loam (2)

silty clay

loam (2)

Rain (mm) 154.5 69.1 72.4 164.5 173.6 203.6 175.4 296.6 250.8

MAP (mm) 530 540 560 740 750 800 900 880 900

SW (W m22) 293.8 296.7 296.9 272.6 270.3 269.8 268.9 261.8 261.8

LW (W m22) 348.3 351.8 360.6 358.1 357.9 367.5 368.5 359.3 358.3

T (8C) 21.4 21.7 22.5 20.7 20.7 21.0 20.7 20.1 19.9

P (h Pa) 914.6 915.9 924.1 955.4 955.9 966.2 970.5 965.2 963.4

Q2 (g kg21) 10.3 9.9 9.8 11.2 11.9 11.7 11.9 12.1 11.9

U (m s21) 7.8 7.8 6.6 6.3 5.9 5.6 5.3 5.3 5.9
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b. Ensemble-based model intercomparison

We evaluated the hypothesis that increased physical

realism in conceptual models not only improves their

performance but also enhances their robustness, making

them less sensitive to errant parameter values (Gulden

et al. 2007a).We asked, Which version of Noah is best

suited for broad application and why?

To objectively identify the model that best repro-

duces observations from among STD, DV, and GW, we

explicitly considered uncertainty and rigorously evalu-

ated different realizations of a model in an ensemble

framework. To capture representative model behaviors

(Smith 2002; Wagener and Gupta 2005), we used pa-

rameter variation to create two ensembles that we used

to evaluate each model. Three metrics were used: the

model performance score (z; quantifies skill and spread

of the ensemble), the model robustness score (r; quan-

tifies insensitivity to poorly known parameters), and the

model fitness score (u; enables ranking models based on

suitability for broad application) (Gulden et al. 2008;

equations are presented in appendix B). We used this

method because it enabled us to identify shortcomings

in the formulation of LSMs that hinder their capacity

to simulate surface exchanges and states, even with op-

timized parameters. We also evaluated the hypothesis

FIG. 1. Segment of the time series of EF, W30, SMC, and precipitation at (a) site 2 and (b) site 8. EF is shown in two ways: 30-min data

points and 3-h smoothed data (gray). EF peaks and depletes immediately after rainfall at site 2 but does not peak until several days after

precipitation at site 8. Here, W30 shows 30%–40% at site 2 and 70%–80% at site 8. SMC measurements at 5, 15, and 60 cm below the

surface are reported using gray lines: the darkest line is the SMC in the layer nearest to the surface and the lightest gray line is the soil

moisture in the layer farthest from the surface.
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that increased physical realism in conceptual models not

only improves model performance but also enhances

model robustness, making them less sensitive to errant

parameter values. Results are presented in section 5.

1) GENERATION OF ENSEMBLES

For each model and each of the nine IHOP_2002

sites, we generated two 150-member parameter-based

ensembles: (i) a MF performing uncalibrated ensemble

and (ii) a calibrated (PS) ensemble. The calibrated en-

sembles were drawn from the PS, which tends to pro-

vide consistent and reliable model realizations (Boyle

et al. 2000). The MF ensembles were composed of

150 randomly sampled models whose RMSE was within

the intersection of the spaces defined by one standard

deviation around the mode of each of the five calibra-

tion objectives (H, LE, G, Tg, and SMC5cm) (Fig. 2).

The PS and MF ensembles characterize distinct modes

of behavior and represent a signature of the LSM in

the objective function space (Gupta et al. 2008). We

confirmed that the parameter sets of the PS and MF

samples come from distinct distributions (results not

shown).

2) EVALUATION CRITERIA

For model evaluation, we use three independent

verification criteria: EF, W30, and change in wetness

over 24 h (DW30).

TABLE 2. Feasible ranges of calibrated Noah LSM parameters.

Parameter Description Units Min Max

Soil parameters

maxsmc Maximum volumetric soil moisture m3 m23 0.35 0.55

psisat Saturated soil matric potential m m21 0.1 0.65

satdk Saturated soil hydraulic conductivity m s21 3 1026 3 1025

b Clapp–Hornberger b parameter — 4 10

quartz Quartz content — 0.1 0.82

refdk Used with refkdt to compute runoff parameter kdt 0.05 3

fxexp Bare soil evaporation exponent — 0.2 4

refkdt Surface runoff parameter 0.1 10

czil Zilintikevich parameter — 0.05 8

csoil Soil heat capacity J m23 K21 1.26 3.5

Vegetation parameters

rcmin Minimal stomatal resistance s m21 40 400

rgl Radiation stress parameter used in F1

term of canopy resistance

30 100

hs Coefficient of vapor pressure deficit term

F2 in canopy resistance

36 47

z0 Roughness length m 0.01 0.1

lai Leaf area index — 0.1 5

cfactr Exponent in canopy water evaporation function — 0.4 0.95

cmcmax Maximum canopy water capacity used

in canopy evaporation

m 0.1 2.0

sbeta Used to compute canopy effect on ground

heat flux

— 24 21

rsmax Maximum stomatal resistance s m21 2 000 10 000

topt Optimim air temperature for transpiration K 293 303

Dynamic phenology parameters (Noah-DV)

fragr Fraction of carbon into growth respiration — 0.1 0.5

gl Conversion between greenness fraction and LAI — 0.1 1.0

rssoil Soil respiration coefficient s21 3 1026 0.005 0.5

tauhf Average inverse optical depth for 1/e decay of light — 0.1 0.4

bf Parameter for present wood allocation 0.4 1.3

wstrc Water stress parameter 10 400

xlaimin Minimum leaf area index — 0.05 0.5

sla Specific leaf area — 5 70

Groundwater parameters (Noah-GW)

rous Specific yield m3 m23 0.01 0.5

fff e-folding depth of saturated hydraulic capacity m21 0.5 10

fsatmx Maximum saturated fraction % 0 90

rsbmx Maximum rate of subsurface runoff m s21 3 1023 0.01 1
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4. Results of traditional model intercomparison

The traditional evaluation of model development

compares the performance of a new model against a

baseline model, while often neglecting parameter un-

certainty. Model intercomparisons are often incomplete

because they are based on ‘‘ad hoc manual–expert

model evaluation’’ methods that are inadequate for

highly complex models (Gupta et al. 2008). By applying

customary evaluation methods to assess the potential

improvement of the LSMs in simulating H, LE, G, Tg

and SMC5cm, we draw conclusions regarding model

performance, review the strengths and limitations of

typical model development procedures, and demon-

strate the need for a more complete approach to thor-

oughly compare the models described earlier.

a. Comparison of default and calibrated runs

To illustrate the concepts of full and partial calibration,

model performance (before and after augmentation with

DV and GW) is presented in Figs. 3, 4. We tested the

implementation of DV with the default parameter values

suggested by its developers. Figure 3 shows that default

STD overestimates LE flux at site 7 (wet). Because the

recommended default parameters may not adequately

characterize the particular conditions of the site, the new

module’s parameters are adjusted to better capture the

desired behavior (e.g., Niu et al. 2005). The practice of

adding modules and tuning only new parameters [i.e.,

partial tuning (xDV)] may improve model performance,

yielding reduced bias (Fig. 3c), better correlation, and

lower error (Fig. 3d). The improved performance may or

may not be (but certainly could be) attributed to the

superior nature of the new model.

The model may not achieve the desired level of im-

provement after partial calibration. In standard model

development practice, the new model is frequently not

rejected but is revised. Because of conflicting hypoth-

eses or undesired interactions, the parameters of the

host model may need to be adjusted to accommodate

the new module (e.g., Gulden et al. 2007b). This is

represented for SMC5cm in Fig. 4. Default GW results in

too-wet simulations and adjusting only its four free

parameters (i.e., xGW) fails to significantly correct this

bias. When the parameters of both the host model and the

new module are simultaneously tuned (calibrated GW),

FIG. 2. Bidimensional projections of the objective function space of STD at site 4. Higher density of RMSE scores

of 15 000 Monte Carlo model runs shown with darker contours. The PS, 150 calibrated parameter sets (black dots),

represent the minimal uncertainty in the multiobjective trade-off (H, LE, G, Tg, and SMC5cm). The MF performing

models have RMSEs within the intersection of one standard deviation (s) around the mode of each objective. Note

that the relative position of default (3) is no indication of the goodness of model.
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the model performs at its best and surpasses the baseline

established by the uncalibrated STD.

However, if we allow the calibration of the free pa-

rameters of the new models, for a fair, more consistent

comparison, STD should be given the same opportunity

to reach its optimal performance. For each objective,

the best achievable performance of calibrated STD is

also depicted in Figs. 3 and 4. Performance metrics and

statistics are presented in Table 3 (see appendix A for

definitions). The goodness-of-fit of calibrated STD is

very similar to the best performance achieved by cali-

brated GW and DV. Distinguishing the models be-

comes nontrivial, and it is practically impossible to state

which model is best based solely on these results.

To circumvent this issue, Akaike (1974) and Schwarz

(1978) proposed information criteria [Akaike informa-

tion criteria (AIC) and Bayesian information criteria

(BIC), respectively] for model selection. They aimed to

reward the model that better explains the data with the

lower complexity (number of parameters). The order of

preference given by the two information criteria favors

STD over DV and GW (Table 3), implying that the gain

in performance, if any, does not justify the additional

complexity.

We do not argue that the aforementioned, general-

ized approach to validation within model development

is fundamentally flawed, only that it is incomplete. To

underscore that this indistinguishability between ac-

ceptable models (Beven and Freer 2001; Beven 2006) is

not the outcome of chance nor that it is the sole con-

sequence of demanding too little from the complex,

FIG. 3. Performance of Noah LSM augmented with DV in

simulating LE at site 7. Figure shows (a) a segment of the time

series of LE and (b) its residuals; (c) scatterplot of simulation vs

observations; and (d) Taylor plot, where dark is a single-objective

calibrated run and gray is the uncalibrated (default) run. Partially

calibrated (xDV) stands for the tuning of the free parameters of

the DV augmentation only (refer to Table 2), while the rest of the

STD parameters are left fixed to its corresponding default values.

(c),(d) For the entire evaluation period. Refer to Table 3 for

statistics.

FIG. 4. As in Fig. 3, but for augmented with GW in simulating

SMC5cm. Refer to Table 2 for the free parameters of the GW

augmentation.
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multioutput models, at each site we calibrate the models

simultaneously against the five objectives (H, LE, G, Tg,

SMC5cm). For simplicity, we selected for each calibrated

model a single ‘‘best’’ set of parameters from among the

PS [using minimum Euclidean norm of the vector

composed by the RMSEs of the five objectives, e.g.,

Hogue et al. (2005)]. With this preferred compromise

solution, we mimicked the common practice of using a

single (‘‘best’’) parameter set during model validation.

At each location, the scores of the fully calibrated

STD, GW, and DV are equivalent (Fig. 5). All cali-

brated models have consistently lower misfit and better

correlation with observed turbulent fluxes and Tg in the

wet locations. Model performance worsens as the lo-

cation gets drier, and simulated SMC5cm is less variable

than observed. At the drier locations, scores differ

slightly, particularly between DV and the rest of the

models. Table 4 reports, for each site, the statistics of

simulated LE by the best set for each model. Although

there is some slight variation in the scores, model per-

formance is essentially indistinguishable. Calibrated

DV ranks best in terms of Nash–Sutcliffe efficiency

(NSE) at four of the nine sites, calibrated GW at four

sites, and calibrated STD at three sites. Note that after

calibration at three of the sites (sites 4, 7, and 9), two

models tie for best performance, scoring the same NSE.

The maximum difference between NSE scores is 0.06

[site 1 (dry)], but most often the difference between the

calibrated models’ NSE scores is 0.01.

The rank of the model depends, in part, on choice of

the objective (Table 4). Improvement in one evaluation

metric tends to result in degradation in another (e.g., at

site 3, GW has a slightly better NSE and coefficient of

determination r2 than STD and DV; however, GW has

the worst bias of the three models). Good performance

at one site does not guarantee reliable performance at

climatologically similar sites. For instance, calibrated

GW is unbiased (bias 5 0.24 W m22) and has an ex-

cellent NSE (0.97) at site 7 (wet), but it is the most

biased performer at site 9 (bias 5 –13.8 W m22) despite

having the same high NSE (0.92) and r2 (0.90) as STD.

Traditional model intercomparisons ignore the afore-

mentioned caveats. They proceed to subjectively select

models based on dependable functioning as judged by

an expert (e.g., STD, GW); distinguishing solutions that

fulfill predetermined criteria, such as the smallest pos-

sible RMSE with zero bias (Boyle et al. 2000); rejecting

models that consistently underperform in the consid-

ered criteria (e.g., xGW, xDV); or rejecting the models

whose optimal parameter values do not conform with a

priori expectations, given any attributed physical mean-

ing. Noting that a single solution was selected from among

a population of realistic behavioral parameters (PS), the

rankings (e.g., Table 4) are likely to change when dif-

ferent parameter sets are considered.

b. Comparison using multiple model realizations

1) SENSITIVITY OF GW TO MODEL PARAMETERS

GW exhibits decreased robustness at dry sites and

almost the same frequency of errors as STD at wet sites.

Cumulative distribution functions (CDFs) of 15 000

RMSE scores obtained by STD, GW, and xGW are

shown in Fig. 6. At site 1 (dry) (Fig. 6a), 75% of the STD

TABLE 3. Performance metrics and statistics for default and (fully and partially) calibrated models against LE and SMC5cm at site 7 for

the entire evaluation period. Models are denoted as STD, DV, and GW. Partial calibration (xDV and xGW) refers to tuning only new

free parameters, while leaving all other STD parameters constant at default values. Calibrated STD is as good as calibrated DV and GW.

AIC and BIC favor STD’s lower complexity. Refer to appendix A for metrics definitions.

Metric

Criterion LE (W m22) SMC5cm (%)

mean 5 126.36; std 5 136.36 mean 5 33.19; std 5 2.84

Model STD DV xDV STD GW xGW

Mean Default 147.14 163.24 31.52 41.29

Calibrated 115.38 112.82 112.01 33.18 33.07 38.27

Std dev Default 184.39 208.34 2.53 0.76

Calibrated 134.35 134.53 124.57 2.72 2.39 1.33

RMSE Default 69.01 97.18 2.22 8.46

Calibrated 24.27 24.66 33.46 1.26 1.48 5.48

r2 Default 0.92 0.92 0.59 0.40

Calibrated 0.93 0.93 0.90 0.65 0.60 0.49

Bias Default 31.80 49.31 21.64 8.12

Calibrated 23.55 26.12 26.78 0.03 20.08 5.11

NSE Default 0.74 0.49 0.39 27.86

Calibrated 0.97 0.97 0.94 0.80 0.73 22.72

Rank DAIC 1 2 1 2

Rank DBIC 1 2 1 2
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FIG. 5. Taylor diagrams of performance metrics for the entire evaluation period for (a)–(c) LE for all

sites and (d) H, (e) Tg, and (h) SMC5cm for sites 2, 4, and 8. Default STD, DV, and GW shown in light

gray. Fully calibrated (black) and partially calibrated (dark gray) models (i.e., xDV and xGW) use a

compromise ‘‘best’’ solution: preferred parameter set minimizes the L2 norm of the RMSE of the five

objectives (H, LE, G, Tg, SMC5cm). Calibrated models cluster together for any given site. Refer to Table 4

for statistics on simulated LE.
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runs have a LE RMSE lower than 55 W m22, and no

simulation is worse than RMSE 5 90 W m22; however,

75% of the GW runs have errors larger than 55 W m22.

For SMC5cm, the top 10% of GW and STD runs have

the same score (RMSE , 6%), but the interquartile

range (IQR) of STD has RMSE 5 8%–14%, whereas

GW’s RMSE 5 9%–30%. The behavior of GW at this

dry, bare soil site suggests significant degradation in

model robustness. At site 7 (wet) (Figs. 6e,f), the IQR of

GW’s RMSE is very similar to STD’s (30–70 W m22;

3%–7%). Although GW does a slightly better job when

simulating LE, STD better simulates SMC5cm. The good

robustness of GW at the wet sites is consistent with

Gulden et al. (2007a). At the intermediate site 4, STD is

on average slightly worse than GW at simulating LE

(Fig. 6c): 25% of GW’s runs score lower than RMSE 5

48 W m22, whereas 25% of STD runs score below

RMSE 5 52 W m22. However, GW performs poorly on

SMC5cm (Fig. 6d): 50% of STD runs score lower than

RMSE 5 10%, whereas only 10% of GW runs score

lower than RMSE 5 10%. The improvement gained by

the addition of the particular aquifer model im-

plemented here (comparing the CDFs of PS STD and

PS GW) appears to be small (results not shown).

Partial calibration (i.e., xGW) significantly increases

the probability of having large errors. At all sites, xGW

shows bimodal distributions of errors. Nearly 70% of

xGW runs have very poor scores. For example, at site 4

(Figs. 6c,d) (LE RMSE . 110 W m22; RMSE SMC5cm .

16%), the majority of xGW runs have a larger RMSE

than the worst-scoring 10% of STD runs. A very small

fraction of xGW can be as good as GW. The exception is

site 4, where the best 10% of xGW runs are still 10 W m22

worse than either STD or GW’s top-scoring runs. In

general, xGW is at least 40 W m22 and 5% (for LE and

SMC5cm, respectively) worse than the most-frequent

performing models of STD and GW.

Tuning only the four new parameters (xGW) is the

wrong way to calibrate GW. It leads to biased model

structures. This implies that the aquifer parameters (e.g.,

TABLE 4. Goodness-of-fit for the simulation of LE for default (def), partial, and fully (cal) calibrated models. Calibrations report only

compromise solution: preferred ‘‘best’’ parameter set minimizes the L2 norm of the RMSE of the five objectives. Best performing model

by site in bold. Number of sites a model performs the best is denoted as No. Refer to appendix A for definitions of metrics.

Metric Model IHOP_2002 site No.

RMSE STD def 49.46 56.08 55.36 62.27 49.81 86.78 69.01 79.78 95.09 0

cal 44.77 32.58 47.89 41.36 46.97 42.05 25.50 32.52 33.86 2

DV def 43.99 62.42 88.93 153.6 131.5 189.2 97.18 102.3 108.8 0

xDV 43.99 42.68 57.16 42.99 51.48 48.98 33.46 31.08 36.30 0

cal 40.56 30.90 48.22 39.18 49.14 48.39 26.15 29.03 34.21 4

GW def 87.49 157.8 90.66 113.3 69.35 138.0 98.61 102.05 112.7 0

xGW 47.41 54.38 54.29 56.73 43.93 62.75 38.12 51.79 66.32 1

cal 41.18 31.71 47.72 40.13 46.6 58.78 25.09 33.48 33.61 3

NSE STD def 0.56 0.54 0.46 0.70 0.82 0.29 0.74 0.51 0.34 0

cal 0.64 0.84 0.59 0.87 0.84 0.83 0.97 0.92 0.92 3

DV def 0.65 0.43 20.40 20.80 20.27 22.37 0.49 0.20 0.13 0

xDV 0.65 0.73 0.42 0.86 0.81 0.77 0.94 0.93 0.90 0

cal 0.70 0.86 0.59 0.88 0.82 0.78 0.96 0.94 0.91 4

GW def 20.39 22.67 20.46 0.02 0.65 20.80 0.48 0.21 0.07 0

xGW 0.59 0.56 0.48 0.75 0.86 0.63 0.92 0.80 0.68 1

cal 0.69 0.85 0.60 0.88 0.84 0.67 0.97 0.91 0.92 4

r2 STD def 0.60 0.70 0.48 0.74 0.81 0.77 0.92 0.91 0.88 0

cal 0.65 0.84 0.60 0.83 0.83 0.81 0.93 0.92 0.90 4

DV def 0.63 0.60 0.46 0.77 0.76 0.68 0.92 0.91 0.88 0

xDV 0.63 0.73 0.55 0.82 0.78 0.74 0.90 0.91 0.87 0

cal 0.69 0.85 0.60 0.85 0.79 0.75 0.93 0.91 0.90 3

GW def 0.51 0.60 0.41 0.75 0.79 0.71 0.92 0.90 0.87 0

xGW 0.59 0.65 0.49 0.76 0.84 0.79 0.92 0.91 0.89 1

cal 0.69 0.84 0.62 0.83 0.81 0.77 0.93 0.91 0.90 5

Bias STD def 9.08 234.1 20.19 7.79 22.82 37.67 31.80 23.40 40.29 2

cal 22.38 29.46 210.0 26.19 220.6 214.1 27.71 216.46 211.4 0

DV def 23.18 234.2 34.06 79.12 49.10 96.80 49.31 37.21 48.87 0

xDV 23.87 2.68 225.6 24.59 214.5 22.14 26.78 210.84 22.05 2

cal 20.61 21.65 26.63 21.59 213.5 27.14 24.41 29.48 211.6 2

GW def 48.23 102.4 44.87 58.45 19.99 72.08 52.64 39.38 52.47 0

xGW 0.10 210.2 24.02 1.71 215.6 19.13 4.76 0.36 19.25 2

cal 23.36 27.69 212.5 25.57 213.1 16.34 0.24 212.6 213.8 1
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specific yield, exponential decay) and the STD soil pa-

rameters need to be coherent to accommodate the new

structure (i.e., parameters need to be allowed to interact).

2) SENSITIVITY OF DV TO PARAMETERS

DV worsens the robustness of STD, significantly at

the dry sites and slightly at wet sites. Cumulative dis-

tributions of 15 000 RMSE scores obtained by STD, DV,

and xDV are shown in Fig. 7. At site 2 (dry) (Fig. 7a), the

IQR of STD simulations of LE lies between RMSE 5 42

and 55 W m22, whereas DV’s is between 50 and 67 W

m22. Fifty percent of the STD runs score below RMSE

5 47 W m22. Fifty percent of the DV runs have RMSE

above 57 W m22. Although the best performing runs of

FIG. 6. CDF of 15 000 RMSE scores obtained by STD (dashed), xGW (light gray), and GW

(dark gray) at (a),(b) site 1 (dry); (c),(d) site 4; and (e),(f) site 7 (wet). LE left column; SMC5cm

right column. Partial calibration (i.e., xGW) significantly increases the probability of having

large errors. GW exhibits decreased robustness at dry sites and almost the same frequency of

errors as STD at wet sites.
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STD and DV have RMSE 5 30 W m22, only 25% of the

PS of DV scores below 40 W m22; the majority of the PS

of DV scores are 15 W m22 worse than STD (results not

shown). At site 8 (wet) (Fig. 7b), the IQR of DV’s LE

(RMSE 5 50–70 W m22) is very similar to that of STD

(RMSE 5 45–70 W m22). Half of STD runs score below

RMSE 5 52 W m22, and half of DV runs have RMSE

below 57 W m22. The best-scoring STD and DV runs at

site 8 have RMSE 5 30 W m22 and RMSE 5 1.5% (for

LE and SMC5cm, respectively). In general, a significant

improvement in terms of better simulating LE over the

reference model (STD) is not seen. The bulk of the

simulations of DV are worse than the most-frequent

performance of STD.

Like xGW, xDV is not an appropriate implementa-

tion of the model. At site 2 (dry), 90% of the xDV LE

runs score between RMSE 5 55–70 W m22 (Fig. 7a).

The scores of the top 10% of xDV PS are 5 W m22

worse than those of DV or STD. At site 8 (wet), only

10% of xDV runs have RMSE , 75 W m22, whereas

75% of the DV and STD runs perform like the best 10%

of xDV. The top-scoring xDV has an RMSE 5 30

W m22 (similarly to STD and DV) but their SMC5cm

RMSE is 3% worse. We stress the need to let the pa-

rameters in the DV module interact with both vegeta-

tion and soil parameters of the host structure. This need

becomes more pressing at more humid sites with more

abundant vegetation.

5. Results of ensemble-based model
intercomparison

We evaluate the reliability of STD, DV, and GW in

simulating EF, W30, DW30 when faced with parameter

uncertainty. Using the framework of Gulden et al.

(2008), summarized in appendix B, we show that STD is

most fit for broad application.

a. Use of the performance score to evaluate
time-varying model performance

Figure 8 shows the time variation of the performance

score (z, refer to appendix B) of the PS ensemble for

each criterion (EF, W30, and DW30) and model for site 2

(dry) (Figs. 8a–c) and site 8 (wet) (Figs. 8e–g). Despite

calibration against H, LE, G, Tg, and SMC5cm, when

simulating DW30, all models significantly overestimate

the speed at which the soil column wets and dries (Figs.

8c,g); this result holds for both PS and MF ensembles.

All models also overestimate the extent by which a

single rainstorm increases overall soil wetness (results

not directly shown). When simulating W30, models

typically do not identify the correct mean value. How-

ever, because individual models have their own equi-

librium states, the day-to-day change in soil wetness is

arguably a more important objective for models than is

the modeled soil wetness (i.e., different W30 states in

different models can yield the same DW30). In the next

paragraphs, we use the z score to help us understand

when and why the models fail.

b. Use of the performance score to guide model
development

The z score can be used as a tool to improve model

structure and to help to assess whether a model is giving

the right answers for the right reasons. Here we dem-

onstrate the use of the time-varying performance score

in this way.

FIG. 7. CDF of 15 000 RMSE scores obtained for simulated LE by STD (dashed), xDV (light

gray), and DV (dark gray) at sites 2 (dry) and 8 (wet). Partial calibration (i.e., xDV) signifi-

cantly increases the probability of having larger errors.
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1) DOES GW IMPROVE PERFORMANCE FOR

THE RIGHT REASONS?

The hypothesis behind the implementation of the

groundwater module is that the physical realism of the

STD soil moisture profile is enhanced by improving

simulated soil moisture dynamics (Niu et al. 2007). By

allowing upward water flow from deep-soil stores during

times of dry down or drought, the GW model presum-

ably buffers the hydrologic cycle, alleviating the dry bias

in LE in dry seasons. We examine the validity of this

hypothesis with the help of Figs. 8 and 9.

GW achieves the best performance scores of any of

the three models when simulating W30 at site 8 (wet)

(Fig. 8f). However, its performance worsens as the soil

dries down. This behavior is consistent with the deteri-

oration in the performance of EF observed between

DOY 150 and 155 (Fig. 8e). To reconcile this apparent

contradiction, we also look at the temporal variation of

ensemble bias (Fig. 9e) and the performance of GW

when simulating DW30 (Fig. 8g). We assert that GW

ameliorates the simulation of W30 by keeping the soil

column wet during the overall simulation period not by

improving soil moisture dynamics; hence GW is not able

to improve the partitioning of surface energy at site 8

(wet). At site 2 (dry), the simulation of W30 by GW is

comparable to that by STD (Fig. 8b), except immedi-

ately after precipitation, when STD outperforms GW.

Observed EF in the dry location peaks sharply when

available moisture is readily evaporated immediately

after a rainstorm, but the cohort of models simulates a

more muted response of EF. In terms of the partitioning

of turbulent fluxes (Fig. 8a), GW’s simulation degrades

because the evapotranspiration can be heavily influ-

enced by soil moisture within deep layers. We note that

other structural shortcomings, such as errors in rooting

depth specification or insufficient soil layer discretiza-

tion, may also exist. GW shows wet bias for W30 after

rainfall events (see DOY 148–155 in Fig. 9b). The rea-

son GW has a good score at site 2 (dry) is likely because

its mean soil moisture value is larger than that of the rest

of the models in the cohort (and it therefore has a larger

moisture gradient between soil and air). At the daily

time scale (DW30 reports the difference in moisture

between time t and 24 h prior), GW is not getting the

right answers for the right reasons in the three sites

reported here. It should be noted that, over longer time

scales (from months to years), the groundwater module

FIG. 8. Time-varying performance (z) scores (refer to appendix B) for STD, DV and GW PS ensembles between DOY 145 and 175 at

(a)–(c) site 2 and (e)–(g) site 8 for EF, W30, and DW30, respectively; the closer the score is to zero, the better. (bottom) Precipitation and

LE for (c) site 2 (dry) and (h) site 8 (wet). For ease of viewing, the EF performance score shown is also the daily mean value. Note that at

site 8, periods of diverging performance (e.g., DOY 151–155) coincide with periods of increasing LE and drying soil. At site 2, unlike at

site 8, DV is significantly worse than STD and GW.
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may yet improve the realism of vertical water transfer in

the soil; however, whether the coupling of the slowly

responding aquifer with high-frequency processes, such

as root zone–fueled evapotranspiration, is correct has

yet to be demonstrated. The dynamics of the aquifer

model may be too slow and result in dampening of the

variability of the soil moisture.

2) DOES INCREASED COMPLEXITY OF MODELED

VEGETATION IMPROVE SIMULATION OF

SURFACE ENERGY FLUXES?

DV improves model performance over STD at hu-

mid, more heavily vegetated sites (e.g., site 8) and de-

grades model performance at dry, sparsely vegetated

sites (e.g., site 2). Sites 2 and 8 have distinct moisture

and evaporation regimes (Figs. 1, 8d,h). At site 2 (dry),

total LE flux peaks in the two days immediately fol-

lowing rainfall; at site 8 (wet), total LE flux peaks sev-

eral days after the rain. We interpret this to mean that

‘‘fast’’ evaporation sources (canopy evaporation [Ec]

and direct soil evaporation [Edir]) play a larger role in

shaping evaporative flux at site 2 (dry); transpiration

(Etransp) is more significant at site 8 (wet).

At site 8 (wet), DV outperforms STD (Figs. 8e–g),

especially as the soil dries after major precipitation

events (e.g., DOY 153–155), when transpiration from

deeper soil layers becomes the dominant source for

evaporation. The relatively better performance of DV

(with respect to STD) at site 8 occurs in both the MF

ensemble (not shown) and the PS ensemble, under-

scoring the assertion that the improvement shown by

DV is a structural improvement that is not related to the

choice of parameters. Because the relationship ex-

pressing vegfrac as an exponential function of LAI fa-

vors vegfrac values that approach 1, DV favors a mode

of behavior in which Ec and Etransp dominate LE flux at

the expense of Edir. This mode is likely more physically

realistic in more densely vegetated zones (e.g., site 8).

At site 8 (wet), STD’s simulation of Edir and Ec (the fast

sources of LE flux) appears too high, and its simulated

Etransp appears suppressed. STD tends to have higher

LAI values than DV [mean LAI PS ensemble is 2.3

(DV) and 3.3 (STD)], slightly lower Rs values than DV

(results not shown), and higher soil moisture than DV

(Fig. 9e). Despite these transpiration-promoting condi-

tions, because total transpiration is scaled by vegetation

FIG. 9. Ensemble bias (refer to appendix B) of the STD, GW and DV PS simulations of EF, W30, and DW30 at (a)–(c) site 2

and (d)–(f) site 8. For ease of viewing, the EF bias shown here is the daily mean value. On a diurnal scale, for all models,

ensemble-mean-simulated EF typically underestimates EF at the beginning and end of the day and overestimates it during

midday. Note that the 30-cm soil moisture of GW at site 8 (wet) is practically unbiased.
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fraction (0.7), STD still does not simulate as much

transpiration as DV.

It should be noted that DV does explicitly link all

components of the LE flux to LAI, which it allows to

vary. Although this linkage may improve the conceptual

physical consistency and make the seasonality and in-

terannual variation in surface fluxes more realistic, we

presume that, over the time scales examined here, its

effect is somewhat minimal. In DV, LAI (and vegfrac)

can and do vary on very short time scales (days), but this

appears not to be the primary reason why DV improves

over STD at site 8 (wet).

At site 2 (dry), DV’s tendency to favor Ec and Etransp

over Edir worsens model performance. At site 2, DV

supports too much evaporation too quickly from both Ec

and Etransp. After a parameter adjustment in which the

model is constrained by multiple objectives, not all of

which directly improve simulation of EF, the model fa-

vors this Ec and Etransp mode and a second mode in which

Edir is strongly favored at the expense of Ec and Etransp.

In both modes, at site 2 (dry), DV overestimates the fast

sources of LE flux (Ec and Edir). STD, with its forced

ratio of Ec, Edir, and Etransp, performs best at site 2. The

additional degree of freedom provided by making veg-

frac an exponential function of LAI makes the model

very sensitive to the conversion. This sensitivity results in

higher spread and less skill within the DV ensemble

simulations of EF. Lastly, at site 4, STD and DV perform

equivalently well in simulating EF (results not shown).

c. Evaluation of models’ suitability for broad
application

1) WHICH MODEL IS MOST RELIABLE FOR A

GIVEN SITE AND OBJECTIVE?

Table 5 presents the time-median z score for each of

the models examined, at sites 2, 4, and 8, for the PS en-

semble and for the MF ensemble. The z score effectively

combines ensemble spread and skill, hence, because of

the large sample sizes, differences in the third decimal

for EF and W30 are significant. Just as other goodness-

of-fit metrics, the relative importance of a unit of dif-

ference depends on the criterion and on experience. We

use the median performance score (instead of the mean)

to minimize the effect of outliers, which have a relatively

high chance of being the result of data outliers. As a

group, the models simulate W30 and EF better than they

simulate DW30. Although the PS ensembles tend to

perform better than the MF ensembles, this statement

cannot be uniformly applied, which underscores the as-

sertion that calibration against certain objectives may

worsen the performance of the model in other, equally

important, objectives (Leplastrier et al. 2002).

GW achieves the best mean performance for EF,

DW30, and W30, both within its MF ensembles and

within its PS ensembles. STD and DV perform equiv-

alently well across the three criteria; however, STD

tends to slightly outperform DV.

2) WHICH MODEL GIVES THE MOST CONSISTENT

PERFORMANCE?

A ‘‘robust’’ model is generally less affected by pa-

rameter variation (Carlson and Doyle 2002; Gulden

et al. 2007a) and therefore ‘‘model robustness’’ can

provide a measure of consistent performance across

ensemble members and across sites. Table 6 shows the

robustness (r) score and rank for each model at each

site and objective. The benchmark model (STD) is the

most robust overall. At wet sites, DV is the most robust.

3) WHICH MODEL IS BEST SUITED FOR BROAD

APPLICATION?

The u score combines the concepts expressed by the

performance and robustness scores. With the exception

TABLE 5. Median model performance (z) score for each en-

semble, site, criterion, and model. The lower the model perfor-

mance score, the better the performance of the model realizations.

Ensembles constructed using 150 MF and 150 PS parameter sets.

Refer to appendix B for the definition of z score.

Criterion Site Ensemble STD DV GW

EF 2 MF 0.204 0.291 0.238

PS 0.186 0.342 0.190

4 MF 0.203 0.153 0.155

PS 0.211 0.198 0.185

8 MF 0.224 0.073 0.076

PS 0.130 0.113 0.157

Average, MF 0.210 0.172 0.156

Average, PS 0.175 0.217 0.177

Mean, all realizations 0.193 0.195 0.167

W30 2 MF 0.297 0.339 0.398

PS 0.291 0.575 0.299

4 MF 0.330 0.299 0.247

PS 0.329 0.282 0.188

8 MF 0.160 0.146 0.060

PS 0.202 0.227 0.120

Average, MF 0.262 0.261 0.235

Average, PS 0.274 0.361 0.202

Mean, all realizations 0.268 0.311 0.219

DW30 2 MF 1.518 1.901 1.831

PS 1.583 1.770 1.861

4 MF 3.486 2.950 1.784

PS 3.059 3.125 2.795

8 MF 0.972 1.004 0.847

PS 1.783 1.536 1.323

Average, MF 1.992 1.952 1.487

Average, PS 2.141 2.143 1.993

Mean, all realizations 2.067 2.047 1.740
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of site 2 (dry), the models are significantly less able to

accurately represent DW30 than they are to represent

EF and W30. Because the models simulate some objec-

tives more accurately than others, we evaluate the

models’ overall suitability for broad application by av-

eraging their rankings for individual sites and objec-

tives. Table 7 reports fitness scores and ranks; it also

presents the individual site and criterion fitness score

rankings and the mean rank of each model, averaged

across sites and across criteria (see the final two lines of

Table 7). In the models’ current configurations, and

using these metrics for model fitness, the benchmark

model, STD, is found to be the most fit for broad ap-

plication. It most consistently ranks at the top of the

cohort in terms of fitness (mean rank of STD u 5 1.33).

GW is second-most likely to rank at the top of the co-

hort (mean rank of GW u 5 1.67), but the variability of

GW’s fitness ranking is a potential caveat. DV and GW

are only somewhat less fit than STD; with improve-

ments to the realism of model physical parameteriza-

tions, guided by the time variation of the performance

scores, modified versions of each of these models have

the potential to outperform STD for broad application.

Of the three models evaluated here (STD, DV, and

GW), despite apparent increases in the nonbenchmark

models’ conceptual realism, the least complex version

of Noah (STD) is most fit for broad application across

these nine representative sites of summer climates in the

central United States.

STD may perform better than the other models, not

because of a more physically realistic representation

but because it has fewer degrees of freedom and

therefore tends to have lower ensemble spread. How-

ever, this low spread could also be an indicator of

‘‘artificial skill’’ in the context of providing an over-

confident estimate. The inability of the enhanced pa-

rameterizations to outperform STD may also result

from a mismatch between the level of complexity of

STD and the new modules or the use of improper con-

ceptualizations for the intended processes. For instance,

the lack of a separate canopy layer in Noah may inhibit

concordant functioning of Noah and the DV module.

The DV module may augment the fitness of an LSM

that explicitly represents canopy radiative transfer. Thus,

it is possible that any of these modules may improve the

fitness of other LSMs. We encourage the application of

similar, thorough analyses for the same modules cou-

pled to different LSMs as a more robust test of model

performance.

6. Discussion of implications for model development

Although the results earlier may be considered model

or site specific, their implications for LSM development

and evaluation are significant and broad reaching. Our

systematic analysis has demonstrated the limitations of

traditional model evaluation techniques and has illus-

trated the utility of an ensemble-based framework that

explicitly accounts for different sources of uncertainty

in LSM predictions.

Standard evaluation methods are inadequate for highly

complex models, such as LSMs. All models require

TABLE 6. The r score and rank for each site, criteria, and model.

A rank of 1 means that the model is the most robust model for that

site and criterion. Mean robustness score is averaged across sites

and criteria. Lower scores indicate increased robustness (lower

sensitivity to errant parameters). Refer to appendix B for the

definition of r score.

STD DV GW

Site Criterion Rank r score Rank r score Rank r score

2 EF 1 0.046 2 0.081 3 0.113

W30 1 0.010 3 0.258 2 0.142

DW30 2 0.021 3 0.036 1 0.008

Mean rank 1.33 2.67 2

4 EF 1 0.019 3 0.127 2 0.089

W30 1 0.001 2 0.030 3 0.136

DW30 2 0.065 1 0.029 3 0.221

Mean rank 1.33 2 2.67

8 EF 2 0.266 1 0.214 3 0.347

W30 1 0.117 2 0.219 3 0.335

DW30 3 0.294 1 0.210 2 0.220

Mean rank 2 1.33 2.67

Average 1.55 0.093 2 0.134 2.44 0.179

TABLE 7. The u score and rank for each site, criterion, and

model. Lower fitness scores indicate better models. A rank of

1 means that the model is the best performing model for that site

and criterion. The average rank combines performance and ro-

bustness, and it is an indication of the model’s broad applicability.

Refer to appendix B for the definition of u score.

STD DV GW

Site Criterion Rank u score Rank u score Rank u score

2 EF 1 0.0085 3 0.0278 2 0.0214

W30 1 0.0030 3 0.1485 2 0.0424

DW30 2 0.0329 3 0.0635 1 0.0155

Mean rank 1.33 3 1.67

4 EF 1 0.0041 3 0.0252 2 0.0164

W30 1 0.0004 2 0.0085 3 0.0256

DW30 2 0.1997 1 0.0901 3 0.6172

Mean rank 1.33 2 2.67

8 EF 2 0.0346 1 0.0241 3 0.0546

W30 1 0.0235 3 0.0497 2 0.0403

DW30 3 0.5246 2 0.3220 1 0.2905

Mean rank 2 2 2

Average rank 1.55 2.33 2.11

Variance of rank 0.53 0.75 0.61
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parameter estimation (Jakeman et al. 2006). Regarding

models that require calibration as inferior is not prac-

tical (Beck 2002). We have shown that the improvement

gained by calibration from an initial ‘‘default’’ state

should not be used as a measure of the quality of the

model for two reasons: (i) default parameters are edu-

cated guesses made by developers, (Dickinson et al.

1998; Shuttleworth 2007) or are model-dependent values

adopted by modelers after extensive testing (which makes

the score of the model applied to analogous settings

fortuitous); and (ii) using ‘‘improvement’’ gained by cal-

ibration as a ‘‘measure’’ of overall model goodness is not

correct. Models often adapt their structural error when

undergoing calibration (Kirchner et al. 1996; Leplastrier

et al. 2002). For that reason, even elevating models to

their ‘‘optimal’’ performance before comparison is an

incomplete and information-limited approach for model

intercomparison. We have shown that conclusions re-

garding model quality should not be drawn using a single

set of parameters (whether with default or ‘‘best’’ pa-

rameters). Single-realization model intercomparisons

provide insufficient information to choose among com-

peting models. Furthermore, such exercises offer limited

help in diagnosing model structural deficiencies and do

not fully explain why models differ and are therefore

insufficient to guide model development.

We used sensitivity analysis to show that significant

uncertainty comes from immeasurable, unknown, and

effective parameters (e.g., the e-folding depth of satu-

rated hydraulic conductivity, or the transformation factor

for LAI to vegetation greenness). Our results are con-

sistent with the notion that parameter values are model

dependent (Wagener and Gupta 2005; Hogue et al.

2006) and that there is no straightforward transferability

of the values between models and/or, potentially, sites

(Hogue et al. 2005). The resulting implication is that

default parameter values tested for a model component

(e.g., GW) within one LSM [e.g., community land

model (CLM); Oleson et al. 2008] will likely not be the

same as those that yield the best—or even good—

performance when the same module is used within a

different LSM (e.g., Noah). This poses a caveat for simple

‘‘plug and play’’ use of functional modules between LSMs.

Additionally, we showed that tuning only the pa-

rameters associated with new modules leads to biased

model structures and significantly increases the chance

of poor performance. We assert that parameters in the

host model need to be modified coherently and in uni-

son with the new parameters to allow for interactions in

the soil–vegetation system that control responses to

meteorological forcing.

Because of these limitations and because of the

dearth of spatially and temporally extensive evaluation

and validation data, modeling for the foreseeable future

will have to contend with significant parameter uncer-

tainty. We assert that, especially when LSMs are to be

used operationally (for short-term weather forecasting),

the community needs to employ an evaluation tech-

nique that explicitly accounts for sources of uncertainty

that are inherent to modeling (e.g., parameters and

data). For the purposes of model development, evalu-

ation techniques should identify, in time, the model

shortcomings that hinder its capacity to simulate surface

exchanges and states, even with optimized parameters.

To effectively capture a more complete spectrum of

model behaviors, we employed the ensemble-based

evaluation framework of Gulden et al. (2008). Com-

parison of the performance of the MF and PS ensembles

enabled us to draw conclusions regarding model struc-

ture that were independent of parameter uncertainty.

The framework also allowed us to evaluate models

rigorously and to consider model robustness as a crite-

rion when selecting models best suited to operational

use (i.e., when possible, we wanted to choose the best-

performing LSMs that were also less sensitive to pa-

rameter variation). Finally, because model rank depends

on criteria and reliability cannot be guaranteed for sim-

ilar sites, the use of fitness scores gave us an objective

way to compare models.

One major caveat to this study is that we have

neglected the uncertainty in the data, but we assert that

the framework used here can and should accommodate

both data and parameter uncertainty. Uncertainty in

model output that stems from uncertain initial condi-

tions is relatively unimportant when compared to un-

certainty in parameter values, so long as reasonable

initial conditions are used or the model is properly

spun up (Bastidas et al. 2001; Abramowitz et al. 2006;

De Lannoy et al. 2006). We assume that this relative

unimportance of initial data, combined with our 2.5-yr

spin-up period before the calibration/evaluation period,

allows us to neglect uncertainty in initial conditions in

this analysis. A less trivial source of uncertainty is un-

certainty in meteorological forcing data. Model sensi-

tivity to errors in boundary forcing data should be a

criterion for model evaluation; however, because of com-

putational constraints, we also neglect forcing data un-

certainty. Next-step work should encompass ensembles

of simulations in which both parameters and input data

are perturbed for each model run.

This study illustrates how increased physical realism

does not necessarily yield an LSM that better reproduces

observations. Thus, our results are consistent with the

notion that increasing complexity (and therefore degrees

of freedom) can significantly increase the modeler’s risk

that his model will not perform as expected (e.g., Gulden
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et al. 2007a). We recognize that nature is inherently

complex, and that models must be sufficiently complex

to represent key processes and feedbacks; however,

especially when models are being used for prediction,

because of parameter and structural uncertainty, re-

searchers should be aware that there often exists a

trade-off between model complexity and model pre-

dictive performance. Our results have shown that while

adding more conceptually realistic components reduces

error in model simulations, additional information-

based criteria often do not deem the improvement to be

worth the additional complexity. Hence, modelers must

increase the precision of their definition of ‘‘improve-

ment’’ (Smith 2002) to include a broad, multivariate

suite of metrics. Results presented here illustrate that

lack of rigorous testing can preclude significant model

development efforts. Raising the standards for objective

comparison against benchmarks using strict, relevant

tests will reward developers and foster confidence of the

public and policymakers (Kirchner et al. 1996; Jakeman

et al. 2006; Refsgaard et al. 2006; Randall et al. 2007;

Clarke 2008).

7. Summary and conclusions

We compare three versions of the Noah LSM (bench-

mark STD, dynamic vegetation-enhanced DV, and

groundwater-enabled GW) using an analysis that employs

high-frequency, local-scale turbulent fluxes and near-

surface states while taking into account both model

structure and uncertainty in model parameters. When

using either default model parameters or a single cali-

brated set of parameters, the performance of STD, DV,

and GW is not distinguishable. After a detailed analysis

that takes into account parameter uncertainty, our pri-

mary conclusion is that, of the three models examined,

the benchmark model (STD) is the best suited for

reproducing observed high-frequency heat fluxes and

soil states. It is significantly more fit than other models

at arid and semiarid sites. Although GW typically ach-

ieves the best performance score when simulating each

of the three criteria (evaporative fraction, 24-h change

in soil wetness, and soil wetness), GW is only about half

as robust as the benchmark model (STD). DV is rea-

sonably well suited for broad application in wet regions.

It significantly improves the model’s ability to correctly

partition net radiation at the site 8 (wet), even when

good model parameters cannot be identified.

We further conclude that although GW has the best

average performance of any models in simulating all

three criteria, its superior performance results from

correcting the mean model state and is not due to

improved short-term soil moisture dynamics. All three

models are too quick to wet and too quick to dry; GW

does not appear to significantly correct this problem.

When compared to STD (and GW), DV improves

simulation of EF at site 8 (wet) because its partitioning

of LE flux favors transpiration and canopy evaporation

over direct soil evaporation. At site 2 (dry), DV’s in-

creased emphasis on canopy evaporation and transpi-

ration leads to model degradation.

Our results do not provide definitive evidence re-

garding the role of conceptual realism in shaping model

robustness. At wetter sites (sites 7 and 8), DV and GW

often perform better and are slightly more robust than

STD; at drier sites, GW and DV do not perform as well

as STD and are less robust than STD. Therefore, the

present formulations of DV and GW may be considered

less conceptually realistic for use when simulating arid

sites.

Although the results discussed above may be model

and site specific, the implications of our work are not.

We have shown that traditional LSM evaluation

methods that use evaluation data averaged in time and

uninformative misfit metrics and that do not account for

parameter uncertainty are, in many cases, insufficient

for confident assessment of model performance. Ad hoc

evaluation using single parameter sets provides insuffi-

cient information for choosing among competing

models. It neither helps in diagnosing deficiencies nor

explains why models differ, and it is insufficient to guide

model development. We have demonstrated a need for

increased rigor in LSM evaluation using techniques that

explicitly account for multiple sources of uncertainty

and that can identify in time the shortcomings in the

formulations of LSMs. Because default parameters are

at best an educated guess and because models are fre-

quently not distinguishable when all are given ‘‘ideal’’

parameters, it may be necessary to revisit conclusions

drawn from model evaluation studies that have not fully

accounted for parameter uncertainty. Plug-and-play use

of new modules, in which the new module’s parameters

are either not calibrated or only parameters within the

new module are calibrated, does not reliably yield op-

timal model performance. Adding complexity to models

(although crucial for research endeavors) entails a sig-

nificant risk in decreasing model robustness, which can

lessen the model’s overall fitness for broad application

in operational settings.

We recommend that the approach used here be widely

adopted by model intercomparison projects, which, in

part because of a lack of stringent evaluation metrics,

have often been plagued by a lack of firm conclusions.

We encourage other modeling groups to perform similar

analyses with their models. Finally, we advocate for a

cooperative approach between the parameter estimation
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and model development communities as a way to ensure

rapid, continued improvement of our understanding and

modeling of environmental processes.
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APPENDIX A

Statistics and Goodness-of-Fit Metrics

For the following definitions, Pt is the prediction at

time t, ot is the observation at time t, and T is the number

of time steps (t) in the series. Here, k is the number of

free parameters in the model (Legates and McCabe

1999; Akaike 1974; Schwarz 1978).

Observation mean: O 5
1

T
�
T

t51
(Ot). (A1)

Model mean: P 5
1

T
�
T

t51
(Pt). (A2)

Observation standard deviation:

std dev 5
1

T
�
T

t51
(Ot �O)2

2
4

3
5

0.5

. (A3)

Model standard deviation:

std dev 5
1

T
�
T

t51
(Pt � P)2

2
4

3
5

0.5

. (A4)

Root-mean-square error:

RMSE 5
1

T
�
T

t51
(Ot � Pt)

2

2
4

3
5

0.5

. (A5)

Coefficient of determination:

r2 5

�
T

t51
(Ot �O)(Pt � P)

�
T

t51
(Ot �O)2

2
4

3
5

0.5

�
T

t51
(Pt � P)2

2
4

3
5

0.5

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

2

.

(A6)

Bias: bias 5
1

T
�
T

i51
(Pi �Oi). (A7)

Nash--Sutcliffe efficiency: NSE 5 1�
�
T

t51
(Ot � Pt)

2

�
T

t51
(Ot �O)2

.

(A8)

Akaike information criteria:

AIC 5 2k 1 T ln
RMSE

T
1 1

� �
1

2k(k 1 1)

T � k� 1
. (A9)

Bayesian information criteria:

BIC 5 T ln
RMSE

T

� �
1 k ln(T). (A10)

APPENDIX B

Ensemble Metrics

For the following definitions, xi,t is the ensemble

member i at time t; ot is the observation at time t; Nens is

the number of ensembles at time t; and T is the number

of time steps (t) in the series (Talagrand et al. 1997).

Ensemble mean: xt 5

�
Nens

i51
xi, t

Nens
. (B1)

Ensemble bias: bt 5 xt � ot. (B2)

Ensemble skill score: kt 5 (xt � ot)
2. (B3)

Ensemble spread: pt 5

�
Nens

i51
(xi, t � xt)

2

Nens � 1
. (B4)
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Metrics for model evaluation

MODEL PERFORMANCE (z)

For time step t, the best performing model will have

the lowest performance score (Gulden et al. 2008):

zt 5
CDFens,t � CDFobs,t

1� CDF
obs

, (B5)

where CDFens,t is the CDF of the ensemble at time t,

CDFobs,t is the CDF of the observations at time t, and

CDF
obs

is the CDF of the time mean of observation

time series. As zt decreases, model performance at time

t increases. Inspired by ensemble verification metrics,

model performance score zt is lowest (i.e., best) when

the parameter set ensemble brackets observations and

when the ensemble is highly skilled (ensemble mean

closer to the observation) and has low spread. It rewards

near misses and penalizes overly uncertain prediction

bounds. Note that when no uncertainty information is

available for the observations, CDFobs,t is a step func-

tion. Denominator 1� CDF
obs

scales the score to en-

able cross-criterion and cross-site comparison along a

time series. Note that if the modeler would like to

penalize one criterion more heavily than another, the

denominator can be modified: for example, using a de-

nominator of 1 2 CDFobs,t would increase the strin-

gency of the score more when observations are low than

when observations are high.

MODEL ROBUSTNESS (r)

A robust model is insensitive to errant parameters: its

performance is not significantly degraded when per-

forming with suboptimal parameters (Carlson and

Doyle 2002). We describe the sensitivity of model out-

put to parameter choices as:

r 5
zps � zmf

�� ��
zps 1 zmf

(B6)

where zps is the time median performance score of the

Pareto set (PS) ensemble; zmf is the time median per-

formance score of the most-frequent performing (MF)

ensemble.

MODEL FITNESS (u)

The z score can be combined with a measure of model

robustness to evaluate overall model fitness. We quantify

each model’s overall suitability for broad application using

u 5 rzps, (B7)

where r is the robustness score for a given model where

zp is the time median of the performance score for the

PS ensemble of that model. For a given site and objec-

tive, the model with the lowest value of u is considered

most suitable for broad application.
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