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[1] The optimal parameters and uncertainty estimation of land surface models require that
appropriate length of forcing and calibration data be selected for computing error
functions. Most of the previous studies used less than two years of data to optimize land
surface models. In this study, 18-year hydrometeorological data at Valdai, Russia, were
used to run the Chameleon Surface Model (CHASM). The optimal parameters were
obtained by employing a global optimization technique called very fast simulated
annealing. The uncertainties of model parameters were estimated by the Bayesian
stochastic inversion technique. Forty-four experiments were conducted by using different
lengths of data from the 18-year record, and a total of about 3 million parameter sets were
produced. This study found that different calibration variables require different lengths
of data to obtain optimal parameters and uncertainty estimates which are insensitive to the
period selected. In the case of optimal parameters, monthly root-zone soil moisture, runoff,
and evapotranspiration require 8, 3, and 1 years of data, respectively. In the case of
uncertainty estimates, monthly root-zone soil moisture, runoff, and evapotranspiration
require 8, 8, and 3 years of data, respectively. Spin-up has little impact on the selection of
optimal parameters and uncertainty estimates when evapotranspiration and runoff were
calibrated. However, spin-up affects the selection of optimal parameters when soil
moisture was calibrated. INDEX TERMS: 1655 Global Change: Water cycles (1836); 1833

Hydrology: Hydroclimatology; 3307 Meteorology and Atmospheric Dynamics: Boundary layer processes;

3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; 3260 Mathematical
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1. Introduction

[2] Over the past two decades, The Project for Intercom-
parison of Land-Surface Parameterization Schemes (PILPS)
has shown poor agreement and large uncertainties among
the schemes [Henderson-Sellers, 1996]. The PILPS experi-
ments were performed for different climate zones, soils and
vegetation types from stand-alone comparisons such
as phase 2a [Chen et al., 1997], phase 2b [Shao and
Henderson-Sellers, 1998], and phase 2d [Schlosser et al.,
2000; Slater et al., 2001] to regional comparisons such as
phase 2c [Wood et al., 1998] and phase 2e [Bowling et al.,
2003]. The results showed that these uncertainties
came from different model development philosophies
[Henderson-Sellers, 1996; Sellers et al., 1997], different

model structures [Henderson-Sellers et al., 1996], and
different definitions of effective parameters [Desborough,
1999]. Although intercomparison efforts have attempted to
minimize these uncertainties by assigning a common set of
parameter values for all schemes, no mechanism existed to
ensure that the parameter values produce the same effect in
terms of the land surface model simulation.
[3] One way to reduce parameter uncertainties is to use

automated methods of parameter calibration. Sellers et al.
[1989] used an iterative loop driven by a least squares
reduction program and reliable micrometeorological mea-
surements taken over the Amazonian tropical forests to
estimate and to optimize physiological parameters in the
simple biosphere model. Their results showed that specifi-
cation of optimal parameters improved simulations of
sensible and latent heat fluxes and reduced simulation
uncertainties. Recently, Gupta et al. [1999] used a multi-
criteria parameter calibration technique to estimate optimal
parameter values using prior ranges of model parameter.
They showed that the biosphere-atmosphere transfer scheme
improved the simulations of energy fluxes (i.e., sensible
heat, latent heat) and state variables (i.e., soil temperature,
soil moisture) when its parameters were optimized using a
multicriteria method. Xia et al. [2002] investigated the
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relationship of model complexities to accuracies of modeled
energy fluxes using the Chameleon Surface Model
(CHASM) and this multicriteria method for one field site
(i.e., Cabauw). Their results showed that a complex model
had more accurate simulations of energy fluxes than a
simple model when all models were optimized. More
recently, Jackson et al. [2003] and Y. Xia et al. (Multi-data
set study of optimal parameter and uncertainty estimation of
a land surface model with Bayesian stochastic inversion and
Multicriteria method, submitted to Journal of Applied
Meteorology, 2003, hereinafter referred to as Xia et al.,
submitted manuscript, 2003a), compared the efficiency and
ability of Bayesian stochastic inversion and multicriteria
methods to find the optimal parameter values using the
CHASM model at seven measurement sites. The results
showed that two methods gave similar optimal parameter
values which resulted in similar energy flux simulations.
[4] Previous efforts to make more uncertainty assess-

ments of land surface models were undertaken by Franks
and Beven [1997]. They used a Monte Carlo sampling of
parameters within the soil-vegetation-atmosphere transfer
scheme and generalized likelihood uncertainty estimation
methodology to analyze uncertainties in land surface-atmo-
sphere flux predictions for the FIFE site (First International
Satellite Land Surface Climatology Project Field Experi-
ment) and an Amazonian pasture site. The top 10% of
10,000 different parameter combinations were chosen to
represent the uncertainty stemming from model parameters.
The results showed that the range of model predictions on
surface energy fluxes had typical widths of approximately a
third of the maximum observed fluxes for both sites. Franks
and Beven [1997] reported that the short-term field cam-
paigns represented by the data sets (6–21 August 1987 and
5–16 October 1987 at FIFE site, 16 October to 2 November
1990 and 29 June to 10 September 1991 at Amazon site)
may not be adequate to specify parameter values represent-
ing a site or area.
[5] Optimal parameter and uncertainty estimates of land

surface models require the selection of: (1) a meteorological
forcing data set (e.g., downwelling solar radiation, down-
welling longwave radiation, precipitation, temperature,
wind, humidity), (2) a calibration data set (e.g., soil mois-
ture, evapotranspiration, and runoff), (3) an error function,
(4) an automatic parameter search procedure (optimization
algorithm), (5) a parameter region with feasible parameter
ranges, and (6) a validation or evaluation procedure with
independent data sets. The selection of an automatic pa-
rameter optimization algorithm has been studied extensively.
Global optimization methods such as a multicriteria method
[Gupta et al., 1998, 1999] and Bayesian stochastic inversion
method [Sen and Stoffa, 1996] have been widely applied to
land surface models [Bastidas et al., 1999; Xia et al., 2002;
Jackson et al., 2003; Xia et al., 2003; Xia et al., submitted
manuscript, 2003a] to estimate optimal parameters and/or
their uncertainties. Y. Xia et al. (Optimal parameter and
uncertainty estimation of a land surface model: Sensitivity
to parameter ranges and model complexities, submitted to
Agricultural and Forest Meteorology, 2003, hereinafter
referred to as Xia et al., submitted manuscript, 2003b)
discuss impact of the selection of parameter ranges on
optimal parameter and uncertainty estimates. Their results
showed that local parameter ranges may be more reasonable

for obtaining optimal parameters and their uncertainties than
the global ranges as used in the work of Xia et al. [2002], L.
A. Bastidas et al. (Comparative evaluation of land surface
models using multi-criteria methods, submitted to Journal
of Geophysical Research, 2003, hereinafter referred to as
Bastidas et al., submitted manuscript, 2003), Jackson et al.
[2003], and Xia et al. (submitted manuscript, 2003a).
However, the sensitivity of optimal parameters and their
uncertainties to the data length has not yet been investigat-
ed.
[6] In previous studies, less than two years forcing and

calibration data were used [e.g., Gupta et al., 1999; Xia et
al., 2002; Jackson et al., 2003; Xia et al., 2003; Xia et al.,
submitted manuscripts, 2003a, 2003b; Bastidas et al., sub-
mitted manuscript, 2003] to derive optimal parameters,
which were further used in climate simulations [Sen et al.,
2001]. Franks and Beven [1997] indicated that short-period
data may be inadequate to estimate optimal parameters and
their uncertainties for land surface models. The sensitivity
of optimal parameters to data lengths for a conceptual
rainfall-runoff model [Yapo et al., 1996] showed that
approximately 8 years of data were required to obtain
optimal parameters that were relatively insensitive to the
period selected. However, this type of study is rare for land
surface models because of lack of long-period meteorolog-
ical forcing and calibration data. Eighteen years of forcing
data and long-period calibration data (e.g., 18-year runoff
and soil moisture, and 8-year evapotranspiration) at Valdai
provide us with an opportunity to investigate the sensitivity
of optimal parameter sets to data lengths using land surface
models. At the Valdai site, exist monthly runoff related
closely to snowmelt, snow sublimation, evaporation, and
soil moisture. This provides a useful setting to examine how
the sensitivity varies when different calibration variables are
used.

2. Data, Model, and Method

2.1. Forcing and Calibration Data Sets

[7] Observational data from Valdai (57.6�N, 33.1�E),
Russia, have been used to test the representation of snow
accumulation, snowmelt, and frozen soil processes in land
surface models [e.g., Robock et al., 1995; Vinnikov et al.,
1996; Schlosser et al., 1997, 2000; Luo et al., 2003]. The
continuous 18 years of atmospheric forcing and hydrologic
data have been described in detail by Fedorov [1977],
Vinnikov et al. [1996], and Schlosser et al. [1997]. Here
we give an overview only for completeness. The vegetation
cover is mainly grassland meadow. The climate at Valdai is
highly seasonal with an annual temperature range of 35�C
and an annual average precipitation of 730 mm. The
majority of precipitation falls in the summer and autumn
months. Near surface air temperatures rise above 15�C in
summer and fall below �10�C in winter. Continuous snow
cover exists from November to April.
[8] The atmospheric forcing data include atmospheric

pressure, air temperature, humidity, wind speed, and short-
wave and longwave radiation. Atmospheric pressure, air
temperature, and humidity were recorded at a height of 2 m.
Wind speed was recorded at a height of 10 m. Shortwave
and longwave radiation fluxes were not directly measured,
and their estimates are used in this study following
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Schlosser et al. [1997]. Original data recorded at 3-hour
intervals were interpolated to 30-min intervals.
[9] The calibration data include monthly evaporation,

runoff and root zone soil moisture. Monthly evaporation
was recorded from a lysimeter from May to October for the
years 1966–1973 [Federov, 1977]. Evaporation data for the
remaining months (November to April) were estimated using
the algorithm of Budyko [1956]. Schlosser et al. [1997]
compared the monthly evaporation calculated from the
residual of the water balance from the top 1 m of soil with
the lysimeter measurements and found that their seasonal
cycles were in good agreement. Monthly runoff was mea-
sured by a stream gauge at the catchment outflow site. To
assure a more consistent comparison of the observed catch-
ment runoff to modeled runoff from the root-active zone, the
observed runoff were modified by Schlosser et al. [1997]
according to variations in the observed averaged water table
depth. Total soil moisture in the top 1 m of soil was taken
from eleven point measurement sites at the end of every
month and was calculated using the thermostat-weight
(gravimetric) technique [Robock et al., 1995]. The ranges
of error for evapotranspiration, runoff and soil moisture were
estimated to be 0.5 mm/day, 0.5 mm/day, and 10 mm,
respectively [Schlosser et al., 2000].

2.2. Chameleon Surface Model (CHASM)

[10] The CHASM [Desborough, 1999; Pitman et al.,
2003] land surface model has been used in offline inter-
comparison of the PILPS phase 2d [Schlosser et al., 2000;
Slater et al., 2001] and phase 2e [Bowling et al., 2003],
global climate simulations [Desborough et al., 2001], and
regional climate simulations [Zhang et al., 2001]. CHASM
was designed to explore the general aspects of land-surface
energy balance representation within a common modeling
framework that can be run in a variety of surface energy
balance modes ranging from the simplest energy balance
formulation [Manabe, 1969] to a complex mosaic type
structure [Koster and Suarez, 1992]. Here we use the two-
tile mosaic-type representation. Within the mosaic-type
representation the land-atmosphere interface is divided into
two tiles. The first tile is a combination of bare ground and
exposed snow with the second tile consisting of dense
vegetation. The tiles may be of different sizes and the
energy fluxes of each tile are area-weighted. Because a
separate surface balance is calculated for each tile, temper-
ature variations may exist across the land-atmosphere inter-
face. A prognostic bulk temperature for the storage of
energy and a diagnostic skin temperature for the computa-
tion of surface energy fluxes are calculated for each tile.
Snow fraction cover for both ground and foliage surfaces
are calculated as functions of the snowpack depth, density,
and the vegetation roughness length. The vegetation frac-
tion is further divided into wet and dry fractions if canopy
interception is considered. This model has explicit param-
eterizations for canopy resistance, canopy interception,
vegetation transpiration and bare ground evaporation, but
has no explicit canopy-air space [Pitman et al., 2003].
[11] CHASM uses the formulation of Manabe [1969] for

the hydrologic component of the land surface in which the
root zone is treated as a bucket with finite water holding
capacity. Any water accumulation beyond this capacity is
assumed to be runoff. In addition to storage as moisture in

the root zone, water can be stored as snow on the ground or
on the canopy. Soil temperature is calculated within four
soil layers using a finite difference method and zero-flux
boundary condition. Each tile has four evaporation sources
including canopy evaporation, transpiration, bare ground
evaporation, and snow sublimation.

2.3. Bayesian Stochastic Inversion

[12] The Bayesian stochastic inversion (BSI) method is
based on Bayes theorem and, usually, a stochastic method to
select sets of parameter values from a distribution of
realistic choices for model parameters. Within the Bayesian
nomenclature, the relative probability for each combination
of parameter values is expressed as a ‘‘posterior’’ probabil-
ity density function (PPD) and is given mathematically as

s m=dobsð Þ ¼ exp �sE mð Þ½ �p mð ÞR
exp �sE mð Þ½ �p mð Þdm ; ð1Þ

where the domain of integration spans the entire model
parameter space m, s(mjdobs) is the PPD, vector dobs is the
observational data, E(m) is the error function, exp[-sE(m)]
is the likelihood function, p(m) is the ‘‘prior’’ probability
density function for m. The shaping factor, s, was estimated
by the estimated errors and the method is described in the
work of Jackson et al. [2003]. Because only the range for
each model parameter in m is known, a uniform distribution
within the ranges is used as the ‘‘prior’’ probability density
function. This selection is the least-biased as a uniform
distribution indicates maximum uncertainty.
[13] Because the PPD is multidimensional, it is difficult

to visualize. Therefore a one dimensional projection of the
PPD (i.e., the marginal PPD) is usually displayed. Parameter
inter-dependencies may be estimated by the covariance
matrix defined by

I ¼
Z

f mð Þs m=dobsð Þdm; ð2Þ

where f(m) = (m-hmi)(m-hmi)T and hmi is the vector of
parameter means.
[14] We use the very fast simulated annealing algorithm

(VFSA) to stochastically select parameter sets. The VFSA is
a form of importance sampling that reduces the computa-
tional burden of modeling the impact of every possible
combination of model parameters. VFSA algorithm will
sample more frequently those regions of the PPD that are
more probable. As reported in the work of Sen and Stoffa
[1995, 1996], the VFSA algorithm can be used with the BSI
framework to approximate the multidimensional PPD, even
when the relationship between parameters is nonlinear.
Since VFSA converges to an optimal solution quickly,
repeated runs of VFSA are used to sample the model space
and all parameter evaluations from all VFSA runs are used
to estimate the PPD.

2.4. Error Functions Used

[15] The square error for normalized variables (E2) and
the ratio of variance of the errors to the variance of
observations were used in this study to investigate the
sensitivity of optimal parameters and uncertainty esti-
mates to different error functions. The normalization
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was used in computing E2 for two reasons. First, the
square error is sensitive to any differences between two
data sets, and this sensitivity can be reduced by first
normalizing these data [Martinson et al., 1982]. Second,
the square error calculated in this way is usually within a
unity, which ensures the Bayesian stochastic inversion to
be used more reasonably and effectively. Therefore E2 is
defined as

E2 ¼
XN
i¼1

on � sn½ �2; ð3Þ

where on and sn are normalized observed and simulated
data, respectively. N is the number of observed data. Here on
and sn are calculated by

on ¼
obsn

PN
n¼1

obsnð Þ2
� �1

2

ð4Þ

sn ¼
simn

PN
n¼1

simnð Þ2
� �1

2

; ð5Þ

where obsn is the observed data, and simn is the simulated
data. Due to the use of normalized data, E2 mainly
measures the consistency of varying trends of observed
and simulated data because E2 is proportional to the
coherence (C) between simulated and calibrated data sets,
that is, E2 = 2(1-C). The ratio of variance of the errors to

the variance of observations is defined as

PN
n¼1

obsn�simnð Þ2

PN
n¼1

obsn�obsð Þ2
.

In this definition, obs is a mean value of obsn. The ratio
of variance of the errors to the variance of observations
measures the fraction of the error variance of the
observed data explained by the relative magnitude of
the residual variance to the variance of the observed data.
Its value is 0.0 when the simulated data match the
observed data.
[16] Use of different error functions has little impact on

the selection of optimal parameters and uncertainty esti-

mates of model parameters for all CHASM parameters.
This result is consistent with that derived by Leplastrier
et al. [2002]. Therefore E2 was used for all following
analyses.

3. Experiment Design

[17] Table 1 lists 13 CHASM model parameters and
their feasible ranges. In order to reduce the computing
burden, we used a traditional perturbation method (one
factor at a time) as used by Jackson et al. [2003] to make
an error profile analysis, to select sensitive parameters,
and to remove insensitive parameters. Individual parame-
ter sensitivity analysis is shown in Figure 1. For different
calibration variables, sensitive parameters are different
because these variables are related to different physical
processes and parameters. For example, WRMAX and
Z0V are very sensitive parameters for soil moisture
simulations but are less sensitive for evapotranspiration
and runoff simulations when compared to other most
sensitive parameters. ALBN is most sensitive for runoff
simulations but not sensitive for soil moisture simulations.
However, overall results showed that snow albedo
(ALBN), vegetation albedo (ALBV), vegetation cover
fraction (VEGM), vegetation cover seasonality (VEGS),
minimum stomatal resistance (RCMIN), maximum water
holding capacity (WRMAX), and vegetation roughness
length (Z0V) are sensitive to the simulations of monthly
evapotranspiration, runoff and soil moisture. In our ex-
periment design, six insensitive parameters were assigned
to default, fixed values, while the remaining seven sensi-
tive parameters were allowed to vary according to the
specified ranges.
[18] The impacts of spin-up on optimal parameter

estimates and uncertainties were investigated for three
calibration variables (i.e., evapotranspiration, runoff, soil
moisture). For each of these calibration variables there
was one pair of experiments, the first experiment having
a one-year spin-up [Schlosser et al., 2000] and the other
no-spin-up but the initial state variables (soil moisture,
ground temperature, and snow water equivalent) being
used as optimization parameters. In the one-year spin-up
experiment, CHASM was run continuously for 18 years
(1966–1983), but the last 17 years (1967–1983) of
calibration data were used to calculate error functions.

Table 1. Descriptions and Ranges of 13 CHASM Parameters and 3 Initial Variables

Parameter Description Minimum Value Maximum Value

ALBG bare ground albedo 0.15 0.25
ALBN snow albedo 0.65 0.85
ALBV vegetation albedo 0.15 0.25
LEFM maximum leaf area index 3 5
LEFS maximum LAI seasonality 0 3
VEGM maximum fractional vegetation cover 0.70 0.95
VEGS fractional vegetation cover seasonality 0.00 0.50
RCMIN minimum canopy resistance (s/m) 40.0 200
RHON snow density (kg/m3) 50 450

WRMAX available water holding capacity (mm) 200 300
Z0G ground roughness length (m) 1.0 
 10�3 0.01
Z0N snow roughness length (m) 1.0 
 10�3 4.0 
 10�3

Z0V vegetation roughness length (m) 0.00 0.20
TS initial soil temperature (K) 260 265
SW initial soil wetness 0.70 1.00
SWE initial snow water equivalent (mm) 30.0 80.0
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In the no-spin-up experiment, CHASM was continuously
run for 17 years starting from 1967, and these 17 years
of calibration data were used to calculate error functions.
Compared to the one-year spin-up experiment, the no-
spin-up experiment has three additional parameters (initial
soil moisture, initial ground temperature, initial snow
water equivalent). Therefore no-spin-up experiment has
a total of 10 parameters.
[19] In order to investigate the impacts of calibration data

lengths on optimal parameter estimates and uncertainty of
model parameters, we designed 44 experiments to run the
CHASM model using 7 model parameters (see Table 2). In
each experiment, a one-year spin-up period was used to
minimize initialization errors. For the simulations of monthly

runoff and soil moisture, model runs were conducted using
three independent samples with lengths of 1, 2, 3, 4, and 6
consecutive years, two independent samples with lengths of
8 consecutive years, and one independent data set with a
length of 17 years. To objectively assess these impacts, three
samples were randomly selected from the 18-year data set
and abnormal years (e.g., the driest year or the wettest year)
were excluded in this study for 1-yr calibration. Because we
have only 8 years of evapotranspiration data, we used three
independent samples with lengths of 1 year and 2 years,
two independent samples with lengths of 3 years, and one
independent sample with length of 7 years.
[20] Performance of the CHASM model was assessed

using two criteria: percent bias and Nash-Sutcliffe efficiency.

Figure 1. Sensitivity analysis of 13 CHASM parameters for monthly evaporation (solid line), runoff
(dashed line), and root zone soil moisture (dashed-dotted line). Y axis values were computed as a ratio of
difference between calculated and minimum error values to minimum error values.

Table 2. Independent Data Samples Used in Sensitivity Study of Data Length for Three Calibration Variablesa

Data Length Sample 1 Sample 2 Sample 3

Calibration Variable = Monthly Evapotranspiration
1 year 1967 1970 1973
2 years 1967–1969 1970–1971 1972–1973
3 years 1967–1970 1971–1973 –

Calibration Variable = Monthly Runoff or Soil Moisture
1 year 1967 1977 1983
2 years 1970–1971 1978–1979 1982–1983
3 years 1967–1969 1975–1977 1980–1982
4 years 1967–1970 1972–1975 1978–1981
6 years 1967–1972 1973–1978 1978–1983
8 years 1967–1974 1976–1983 –
aSample 1967–1973 for monthly evapotranspiration and 1967–1983 for monthly runoff and soil moisture, and total 44

samples were used in this study.
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These two criteria used by Yapo et al. [1996] are defined

100%

PN
n¼1

obsn�simn
ð Þ=

PN
n¼1

obsn; and 1:0�

PN
n¼1

obsn�simnð Þ2

PN
n¼1

obsn�obsð Þ2
,

respectively. In these two definitions, obsn is the observed
data, simn is the simulated data, obs is a mean value of
obsn, and N is the number of observed data. Percent bias
measures the tendency of the simulated data to be larger
or smaller than their observed counterparts. Its optimal
value is 0.0, positive values indicating underestimation
and negative values indicating overestimation. Nash-Sut-
cliffe efficiency measures the fraction of the variance of
the observed data explained by the model in terms of the
relative magnitude of the residual variance (‘‘noise’’) to
the variance of the observation (‘‘signal’’).

4. Results

4.1. Comparison Against Observations

[21] Figure 2 shows the ability of the CHASM model
in reproducing the observed evapotranspiration, runoff
and soil moisture. The simulations are generated using
the optimal parameters derived by the BSI method and
available calibration data (e.g., 17-year for runoff and soil
moisture, 8-year for evapotranspiration). Uncertainty esti-
mates of simulated evapotranspiration, runoff, and soil
moisture at the 95% confidence level were derived by the
selected best parameter sets. These best parameter sets
were selected from over 50,000 parameter sets using the

BSI method and estimated s in section 2.3. It should be
noted that one-year spin-up has been used for the above
results when the CHASM model was run. The results
show that the optimal simulations agree well with the
observations for the three calibration variables. The opti-
mal simulations were enveloped by the uncertainty ranges
for the three variables with the exception of the observed
evapotranspiration and runoff in January, March and
December and observed soil moisture in June. These
poor uncertainty estimates of winter evaporation and
runoff and early spring runoff may be mainly due to
crudeness of the snow model. The snow scheme uses
only one layer to represent the vertical structure, and
excludes snow melting and refreezing processes.

4.2. Impacts of Spin-Up

[22] Figure 3 shows the impacts of spin-up on normal-
ized optimal parameters and the simulations of runoff,
evapotranspiration, and soil moisture. These optimal
parameters are normalized such that for each parameter
and each calibration experiment, the difference between
the optimized and the minimum parameter values is
divided by the difference between the maximum and
minimum parameter values (see Table 1). Three conclu-
sions are in order. First, the optimal parameter values
derived by the observed evapotranspiration are very
similar for one-year spin-up and no-spin-up runs
(Figure 3a), and therefore generate the similar simulations
(Figure 3b). Second, all of the optimal parameter values
derived by the observed runoff are similar for one-year
spin-up and no- spin-up runs except for WRMAX

Figure 2. The 17-year average of observed and simulated monthly evapotranspiration, runoff, and root
zone soil moisture and their uncertainty envelopes calculated with the BSI at 95% confidence level
(observations, open circle; simulated, solid line; uncertainty envelope, dotted line).
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(Figure 3c). These similar optimal parameter values lead to
similar runoff simulations (Figure 3d) because WRMAX is
less sensitive to runoff simulation. Third, most of the
optimal parameter values derived by the observed soil
moisture are similar for one-year spin-up and no-spin-up
runs except for WRMAX and Z0V (Figure 3e). However,
because WRMAX and Z0V are two of most sensitive
parameters for soil moisture simulations, differences
between spin-up and no-spin-up runs for these two param-
eters lead to different soil moisture simulations (Figure 3f).
The results in Figure 3 show that spin-up has little impact
on the selection of optimal parameters when monthly
evapotranspiration and runoff were calibrated. However,
spin-up significantly impacts the selection of optimal
parameters when root zone soil moisture was calibrated.
This may be because initial conditions (e.g., initial soil
moisture) may impact simulations of root zone soil for
longer than one year. An examination of the multiyear
impact of spin-up on root zone soil moisture can be found
in the work of Cosgrove et al. [2003]. Marginal PPDs of
seven CHASM parameters show that spin-up and no-spin-
up runs have almost the same PPD distributions for each
CHASM parameter and calibration variable, meaning that
spin-up and no-spin-up runs result in similar parameter
uncertainties. Most of the previous works used 1 year of
data for calibration, and therefore a similar analysis was
performed using 1 year of (i.e., 1967) data. The results
support the above conclusion except for the runoff case
where initial snow water equivalent had significant effects

on optimal parameter and uncertainty estimates of model
parameters.

4.3. Impacts of Data Length

[23] The issue explored in this section is how many years
of data are required to obtain a consistent optimal parameter
set and uncertainty estimate of model parameters. The
impacts of data length were evaluated by analyzing nor-
malized optimal parameter values, empirical cumulative
distribution functions, and marginal PPD distributions. This
evaluation was performed for monthly runoff, soil moisture
and evapotranspiration.
4.3.1. Impacts on Optimal Parameters
[24] The normalized optimal parameter values for 1-year,

2-year, 3-year, 4-year, 6-year, 8-year and 17-year calibrations
are shown in Figure 4 when monthly runoff was used as a
calibration variable. In the case of 1-year and 2-year calibra-
tions, the optimal parameter values vary widely among the
three samples. Sample 3 (the year 1983) in the 1-year
calibration run produces the lowest value of snow albedo
among the samples. All the conditions being equal, the lowest
snow albedo leads to the most absorbed solar radiation, and
hence the earliest snowmelt and runoff peak [Slater et al.,
2001] because runoff at Valdai is mainly determined by
snowmelt process [Schlosser et al., 2000]. Indeed, the ob-
served snow ablation and runoff in sample 3 peaked in
March, the earliest among the three samples (Figure 5).
[25] As the calibration lengths increase from three to eight

years, the optimal parameter values of the three independent

Figure 3. Normalized optimal parameters and 17-year (1967–1983) averages of simulated
evapotranspiration, runoff, and soil moisture using the optimal values (one-year spin-up run, solid;
no-spin-up run, dashed; albn, ALBN; albv, ALBV; vegm, VEGM; rcmin, RCMIN; wrmax, WRMAX;
z0v, Z0V).
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Figure 4. Normalized optimal parameters for three independent samples for one-year, two-year, three-
year, four-year, six-year, and eight-year calibrations when observed monthly runoff was used (sample 1,
dashed-dotted; sample 2, dashed; sample 3, dotted; solid, 17-year calibration; albn, ALBN; albv, ALBV;
vegm, VEGM; rcmin, RCMIN; wrmax, WRMAX; z0v, Z0V).

Figure 5. Observed runoff and snow water equivalent for the years 1967, 1977, and 1983 (1967,
dashed-dotted line; 1977, dashed line; 1983, dotted line).
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samples merge toward those of 17-year calibration for all
parameters except for WRMAX and Z0V. Differences in
optimal values of WRMAX and Z0V exist for the three
samples even though 8-year data were used. Despite these
differences, the variations in the values of the two param-
eters do not significantly affect the model output (Figure 1).
Another special case is the 6-year calibration where ALBN
and ALBV show some differences for three samples.
However, these small differences have little impact on the
runoff simulations. This result is confirmed by comparing
the runoff simulations from a series of 17-year runs. In each
of these runs, the optimal parameters derived from an n-year
runoff calibration run were used, where n is 1, 2, 3, 4, 6, 8,
or 17. It is found that all the runoff simulations are similar
when more than three years of calibration data were used.
Therefore we conclude that, in the case of runoff, three
years of calibration data are required to obtain the optimal
parameters that are insensitive to the period selected.
[26] In the case of evapotranspiration, 1-year calibration

data are required to obtain the optimal parameters which are
insensitive to the period selected. Indeed, all the optimal
parameter values except WRMAX and Z0V are similar for
the three samples after 1-year data were used. The variations
in WRMAX and Z0V values do not affect the simulations
of evapotranspiration. This conclusion was also confirmed
by a series of 17-year runs. In the case of root zone soil
moisture, 8-year calibration data are required to obtain the
optimal parameters which are insensitive to the period
selected.
[27] In conclusion, the lengths of calibration data required

to generate consistent optimal parameter values and model

outputs may depend on the calibration variables because
these variables are closely related to model physical pro-
cesses which have different timescales. Furthermore, the
calibration variables may depend on site-specific character-
istics concerning vegetation, site and climate. Therefore the
minimal lengths of calibration data may be different at
different sites. More discussion on this point can be seen
in section 4.4. It is clear that longer calibration data may
give more consistent optimal parameter values and result in
more consistent simulations. However, due to huge cost for
measurement and collection of calibration and forcing data,
1-year long calibration data sets have often been used in
previous land surface modeling studies. Our results here
indicate that 1-year data sets may be adequate for deriving
the optimal parameter values if evapotranspiration is cali-
brated at midlatitude grassland such as Valdai, but not so if
runoff or root zone soil moisture is calibrated.
4.3.2. Impacts on Uncertainty Estimates
[28] The empirical Cumulative Distribution Functions

(CDFs) were constructed for different statistic measures
(e.g., Nash-Sutcliffe efficiency, percent bias) and for differ-
ent data lengths (Figures 6 and 7). Each CDF indicates an
uncertainty estimate of results simulated by all parameter
sets (over 50,000). If a specific percentage of the best
parameter sets was given, say, 10% [Franks and Beven,
1997], we are able to use the selected parameter sets to
estimate uncertainties of simulated runoff. Figures 6a–6f
show that the CDFs of the Nash-Sutcliffe efficiency merge
as the data length increases from 1 to 8 years. The closer
CDFs mean more consistent uncertainty estimates of the
simulated runoff. When 8-year calibration data are used,

Figure 6. Empirical cumulative distribution functions (CDFs) of the Nash-Sutcliffe efficiency (NSE)
for different calibration data lengths when observed monthly runoff was used as a calibration variable
(sample 1, dashed-dotted; sample 2, dashed; sample 3, dotted; solid, 17-year calibration).
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CDFs are closest for all cases. This result is more obvious
for the percent bias analysis (Figure 7). As the length of
calibration data increases from 1 to 8 years, CDFs for three
independent samples merge toward those for the 17-year
data. Significant differences exist for CDFs when 1-, 2-, 3-,
4- or 6-year calibration data are used. However, the 8- and
17-year CDFs are very similar. Therefore 8-year calibration
data may be required to estimate the uncertainties that are
insensitive to the period selected.
[29] Similar conclusions may be drawn in the analysis of

a marginal posterior probability density function because it
can be used to quantify uncertainties in the derived
parameter sets. Figures 8 and 9 show that marginal PPDs
for the seven CHASM model parameters evaluated by
three independent 1-year calibration data and two inde-
pendent 8-year data. The marginal PPDs calculated by
17-year data are also shown in Figures 8 and 9 for
comparison. For 1-year analysis (Figure 8), the width of
the PPD distribution varies broadly for three samples for
ALBN, ALBV, VEGS, WRMAX and Z0V if a specific
percentage of best parameter sets (e.g., 10%) is given.
Furthermore, the marginal PPDs are also significantly
different for 1-year and 17-year results. Therefore differ-
ent marginal PPDs calculated from three independent
samples would have resulted in different estimates of
parameter uncertainties. However, for 8-year analysis
(Figure 9), the width and shape of the PPD distribution
are similar for three samples (two 8-year samples and one
17-year sample) for seven CHASM parameters except for
WRMAX and Z0V. The possible reasons for the peculiar
behavior of WRMAX and Z0V include (a) parameter
interdependency (parameters interact with each other), (b)

criterion inadequacy (the objective function does not
properly extract the information contained in the data),
and (c) insensitivity (variations in the values of the
parameters do not significantly affect the model output).
Our correlation matrices for parameters showed that none
of correlations was large enough to support parameter
interaction as the dominant reason for this inconsistency
although the matrices only represent linear relationships
between parameters. In addition, a comparison of two
error functions also showed that PPDs are not sensitive to
the selection of error functions as discussed in section
2.4. Therefore the insensitivity of WRMAX and Z0V to
runoff simulation is a dominant reason. Therefore use of
8-year calibration data may be required to obtain consist-
ent PPD estimates which are not sensitive to the period
selected.
[30] Again, the conclusion above is dependent on the

calibration variables. The CDFs of the percent bias for
monthly evapotranspiration show that they merge as the
data length increases from 1 to 3 years (Figure 10). Analysis
of marginal PPDs for different data lengths also shows
similar PPDs for 3-year calibration data. Therefore 3-year of
data may be sufficient to estimate consistent uncertainties
for monthly evapotranspiration. The similar analysis for
monthly soil moisture shows that 8-year calibration data
are needed for obtaining a consistent uncertainty estimate.

4.4. Discussion

[31] It should be noted that this study was performed
using a single criterion method (e.g., one calibration vari-
able at a time) instead of a multicriteria method [Gupta et
al., 1998, 1999]. Therefore the use of a multicriteria method

Figure 7. Same as Figure 6 but for percent bias (PBIAS).
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Figure 8. Calculated PPDs for three 1-year independent calibration samples and 7 CHASM model
parameters when observed monthly runoff was used as calibration variables (sample 1, dashed-dotted
line; 2, dashed line; sample 3, dotted line; solid line, 17-year calibration).

Figure 9. Same as Figure 8 but for two 8-year independent calibration samples.
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in uncertainty analysis of land surface models will be
addressed in the future.
[32] In addition, this study focused on one site and one

model. It remains to be addressed how the optimal data
length depends on site characteristics concerning vegeta-
tion, soil and climate as well as on land surface models.
However, the calibration results of monthly evapotranspi-
ration at the Valdai site show that only one year of
calibration data is required, suggesting that the interannual
variability of evaporation at this site may be very low.
Further insight will be gained from the ongoing PILPS San
Pedro (see www.sahra.arizona.edu/pilpssanpedro) which
involves the use of different sites, long-term data records,
and different land surface models.

5. Conclusions

[33] The primary goal of this study is to demonstrate the
importance of calibration data (e.g., data length, different
calibration variables, and initial conditions) to estimates of
optimal parameters and uncertainty of the CHASM model.
The paper has shown that the optimal parameters give
relatively accurate simulations of evapotranspiration, runoff
and soil moisture. The BSI method also gives a relatively
reasonable uncertainty envelope for evapotranspiration,
runoff and soil moisture at the 95% confidence level. We
have shown that one year of data for evapotranspiration,
three years of data for runoff and eight years of data for root
zone soil moisture are required to obtain consistent optimal
parameters which are insensitive to the period selected.
Approximately three-year data for evapotranspiration,

eight-year data for runoff and root zone soil moisture may
be needed to obtain a consistent uncertainty estimate which
is insensitive to the period selected. The sensitivity of
optimization process and uncertainty estimates to calibra-
tion data length is dependent on the calibration variables.
This conclusion is physically reasonable because these
variables are closely related to different physical processes
which have different timescales.
[34] Both spin-up and no-spin-up runs have similar opti-

mal parameter values for monthly evapotranspiration and
runoff. For monthly soil moisture, the two runs result in
different optimal values for Z0V and hence different simu-
lations. However, they lead to similar PPD distributions for
all seven model parameters regardless of calibration varia-
bles. Analysis of one-year (e.g., 1967) and 17-year calibra-
tions give similar conclusions except for the simulation of
runoff where initial snow water equivalent has a significant
effect on the selection of optimal parameters and marginal
PPD distributions of model parameters.
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