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Estimating erroneous parameters in ensemble based snow data assimilation system has been given little
attention in the literature. Little is known about the related methods’ effectiveness, performance, and
sensitivity to other error sources such as model structural error. This research tackles these questions
by running synthetic one-dimensional snow data assimilation with the ensemble Kalman filter (EnKF),
in which both state and parameter are simultaneously updated. The first part of the paper investigates
the effectiveness of this parameter estimation approach in a perfect-model-structure scenario, and the
second part focuses on its dependence on model structure error. The results from first part research dem-
onstrate the advantages of this parameter estimation approach in reducing the systematic error of snow
water equivalent (SWE) estimates, and retrieving the correct parameter value. The second part results
indicate that, at least in our experiment, there is an evident dependence of parameter search convergence
on model structural error. In the imperfect-model-structure run, the parameter search diverges, although
it can simulate the state variable well. This result suggest that, good data assimilation performance in
estimating state variables is not a sufficient indicator of reliable parameter retrieval in the presence of
model structural error. The generality of this conclusion needs to be tested by data assimilation experi-
ments with more complex structural error configurations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

As an important land feature, snow affects the land surface en-
ergy balance via its unique thermodynamic properties (e.g., high
albedo, low thermal conductivity) that vary spatially and tempo-
rally. Snow is also an important freshwater resource, as runoff from
snow melting is indispensable for many drought prone regions in
spring and summer. Accurately characterizing snow conditions is
critical for hydrological forecast, diagnosing hydroclimatologic
trends and subsystem interactions (e.g., land snow cover-atmo-
sphere interaction), and monitoring floods and droughts, among
other applications. Although this need is pressing, the in situ obser-
vation of snow has been limited, in part because the cold environ-
ment is often prohibitive for extensive ground survey efforts.

In recent years data assimilation methods have provided a new
opportunity for snow estimation. In particular, the ensemble Kal-
man filter (EnKF) methods have been used to estimate snow water
equivalent (SWE) and other cold region variables (e.g., [7,13,12]).
Various work has focused on different spatial scales, while using
the same error-covariance based algorithm to sequentially adjust
model simulations. Theoretically, the EnKF method requires that
model and observation function (the function relating observations
and model simulations) are free of systematic error to accurately
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propagate ensemble and avoid bias in the update equation. How-
ever, land surface model (LSM) and observational functions applied
in the above studies may have system errors that originate from a
broad range of sources including, e.g., incomplete representation of
snow properties and associated dynamical processes, uncertainties
in model parameters, and scaling or physical discrepancy [4] be-
tween observation and model estimates, etc. Each of the related
sources is linked to a different stage of model development or re-
mote sensing data processing. The mixture of these errors in the
highly non-linear LSM simulation makes their individual effect
hard to isolate and interpret [9]. Affected by these uncertainties,
the snow data assimilation system is vulnerable to systematic er-
ror and unrealistic updates. In particular, parametric errors are
common in LSMs and observational functions, yielding negative ef-
fects on the EnKF algorithm. One significant consequence could be
a mismatch between model predication and observation, since the
(artificial) model systematic errors are neither represented in
observations nor dealt with in the traditional ensemble perturba-
tion scheme in the EnKF.

To tackle this issue, recent studies have examined the impacts
of parameter uncertainty in multi-scale snow simulation that in-
cludes electromagnetic signatures [3]. However, few studies have
focused on a method to correct parameter uncertainty in ensemble
snow data assimilation systems. In most of the EnKF experiments,
those critical parameters characterizing snowpack dynamics were
simply treated as perfectly known or by inflating with prescribed
noise. Viewed in a boarder context, the issue of parameter error
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in ensemble data assimilation has been investigated in some
hydrological and meteorological studies (e.g., [1,2,16,20,23]). A
common strategy adopted in these studies is to combine parame-
ters and states in an “augmented vector” and reduce the parame-
ter-state optimization to a state-variable filtering problem.
Following the same general method, this study concentrates on
reducing parameter uncertainties in a snow model forced with pre-
scribed meteorological data.

In this research we also investigate how state-space based
parameter estimation is dependent on the model physical struc-
tures (the physical structural error in the system). By definition,
the model structure refers to model physical and dynamical formu-
lation and parameterization. Currently it is unclear weather the
parameter estimation with problematic model structure can
achieve comparable performance (compared to results from those
using perfect-structure model) in updating snowpack state vari-
ables and parameters. The insights gained from addressing this
question benefit the snow data assimilation in a broad sense. Cur-
rently there is a wide range of physical structures (including
parameterization) in different snow models [14], reflecting the dis-
tinct (or incompatible) perspectives taken to understand the same
real world process. These different perspectives are usually results
of limited predicative capability for a given model structure, and
the availability and quality of measurements. It is difficult to fully
rank the physical appropriateness of these model structures, and
each model structure (describing physically equivalent process)
may only capture part of the truth. Understanding the impact of
their differences on the parameter estimation is important to eval-
uating the sensitivity of snow data assimilation performance to
model structure error. Further, according to Clark [9], for stream-
flow simulation at given climate regime, the selection of the model
structure could be just as important as selection of the model
parameters. Our research concerns whether parameter estimation
can fully compensate for the model structural error in the EnKF
snow estimation system. If not, what is the signature of model
structural error? Could it influence the identification of the param-
eters for individual model structure given that true (or most appro-
priate) structures and parameters are often unknown (or partially
known) for the tested region?

This paper is structured as two parts. First the performance of
simultaneous state and parameter estimation in a synthetic EnKF
snow data assimilation system is comprehensively evaluated. In
this part the model physical structure is assumed to be perfectly
known. Built on the similar data assimilation infrastructure, a rel-
atively simple model structure error is introduced in the second
part and the performance of parameter estimation is compared
to that of the perfect-model-structure run. The next section intro-
duces the LSM, the EnKF method, and the parameter estimation
scheme. Two different snow data assimilation experiments are de-
scribed in Sections 3 and 4. Discussions and results are given in
Section 5 with concluding remarks in Section 6.

2. Methodology

The Community Land Model (CLM 2.0, [5]) is used to propagate
land state variables. CLM numerically simulates energy, momen-
tum and water exchanges between the land surface and the over-
lying atmosphere. It employs 10 soil layers to resolve soil moisture
and temperature dynamics and uses plant functional types (PFTs)
to represent sub-grid vegetation heterogeneity. Its snow model
simulates a snowpack with multiple layers (1-5 layers) depending
on its thickness, and accounts for processes such as liquid water
retention, diurnal cycling of thawing-freezing, snowpack densifi-
cation, snow melting, and surface frost and sublimation. Besides
these features, the CLM used in this research includes a new snow

cover fraction (SCF) parameterization which dynamically adjust
the relationship between grid averaged SWE and SCF [19]. Estimat-
ing a related parameter in this parameterization is one of the cen-
tral topics in our experiments. More discussion about this
parameter and the associated equation is given in Section 3. The
general performance of CLM2.0 in cold region simulations is given
by Bonan et al. [5] and Niu et al. [18,19].

The EnKF was first introduced by Evensen [15] as a Monte Carlo
approach to accomplish the Kalman filter updating scheme in
numerical modeling systems. It uses ensemble approach to repre-
sent model errors (e.g., forcing error). It propagates estimations of
errors in state and fluxes variables with model physics in temporal
and spatial spaces, and updates these estimations in state space
with conditional distribution approach (Bayesian formulation). In
this paper the EnKF is implemented as follows: (a) each sample
(i.e., ensemble member) of model state variables is propagated at
every time step using prognostic equations; these simulations
are driven by perturbed meteorological forcing data (the method
of sampling forcing is introduced in Section 3); (b) each sample
of the LSM forecast variables is updated (e.g., SWE in this study)
using Eq. (1):

Xip =X + Ky, — HOXQ + 00) (1)

where x¢, denotes the filter updated states (e.g., SWE), x?, the model
simulated states, i the ensemble index, y; the observation, and H the
observational operator. ¢ is randomly drawn from a Gaussian dis-
tribution (with zero mean and the variance equal to R; as described
below) to ensure an adequate spread of the analysis ensemble
members [6]. Additional discussion of the EnKF scheme in CLM is
given by Su et al. [22]. Modifications to include parameter estima-
tion are incorporated in the same mathematical framework. Eq.
(2) gives a brief statement of the parameters-augmented EnKF
analysis

(X, 317)" = (%6, 01) + Ke(ye — H([ie, 01]")" + v3) )

where the symbols have the same meaning as in Eq. (1) and 6 rep-
resents parameter vectors.

To deal with the problems of variance reduction in parameter
ensemble space and filter divergence, we adopt the “conditional
covariance inflation” method proposed by Aksoy et al. [1], which
prescribes a threshold for the parameter ensemble variance, with-
out augmenting the ensemble spread at each system propagation
step. Eq. (3) gives the formulation of this inflation method, i.e.,
the evolution equation of the parameter ensemble &

oL =0 if Var(s") = Qq
ob =0 +e if Var(s") < Qo, &€ N(0,Qq — Var(5%)) 3)

4

In which N(0, Q, — Var(s;)) represents the normal distribution with
zero mean and variance of Qq — Var(s7). Qo is the prescribed vari-
ance threshold. This inflation approach has been shown successful
in a highly non-linear and flow-dependent meteorological data
assimilation system [1], where the proper constraints on parameter
ensemble variance are shown to be important for the accurate EnKF
update. Because there is no prior knowledge about the evolution of
parameters, Qg largely controls the parameter ensemble trajectory.
The selection of Qg and its implications are discussed in following
sections.

3. The performance of parameter estimation with
perfect-model-structure

The first group of simulations is a synthetic experiment in
which a single grid simulation for six months (November-April)
is created with CLM driven by ensemble meteorological forcing.
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In the experiment, the true state of related variables is known.
Table 1 provides a list of these simulations. The model time step
is 30 min, which is small enough to characterize major snowpack
dynamic processes. For simplicity, only one vegetation tile type
(grass) is used in the grid. Therefore the parameters involved in
the forest-snowpack thermodynamic interactions are neglected.
In addition, the subgrid snow cover heterogeneity is included.
Since the patch of snow cover can drive similar process across a
diverse range of scales in influencing snowpack radiative energy
balance, the related experiments in this one-dimensional synthetic
study can have some degree of spatial representativeness. Ensem-
ble forcing is produced by perturbing nominal precipitation and air
temperature with 50% and 3 °C (rms) Gaussian error, respectively.
The ensemble runs contain 59 members and an additional run is
conducted to represent synthetic truth. The forcing data to con-
struct the synthetic true values are arbitrarily taken from the same
sampling set that generates the ensemble run. This makes the forc-
ing error parameters assumed in the EnKF capture the statistics of
true uncertainty. The resultant synthetic true values provide a
benchmark for quantitatively understanding parameter estimation
effects. Synthetic SWE observations are produced every two days
by adding Gaussian perturbations (20 mm rms) to the true state.

We consider estimation of two parameters that are typically
difficult to determine from measurements. These are: (1) the expo-
nent o in the snow cover fraction parameterization described by
Eq. (4) [19]; and (2) the liquid water holding capacity 0 (the max-
imum volume, in percentage, of liquid water in snowpack, Eq. (6)).
The parameter o governs the relationship between the snow depth
(or SWE) and the snow cover fraction (SCF), strongly influencing
grid averaged albedo and snowpack energy processes (Eq. (5)).
Niu and Yang [19] have demonstrated the significant sensitivity
of CLM performance in simulating cold region variables to this
parameterization (4) and the parameter «, implying their potential
importance to the snow data assimilation

h
SCF = tanh <$) 4
2~520(psno/pnew)a ( )
Atotat = Asnow * SCF +Agrass * (1 - SCF) (5)

Odruinage = eliquid—snowpack - 67 if Qliquid—snowpack >0 (6)

Here hs;,, and z, are the snow depth and the ground surface rough-
ness length, respectively; ppe. is a prescribed fresh snow density;
and psp, is the model calculated snow density [19]. Asorar is the grid
averaged albedo to calculate the ground energy balance, Agpo, and
Agrass are the snow and grass albedo, respectively (with Agpey much
larger than Ag,,). With other conditions unchanged, increasing o
generally leads to a decrease of SWE, and vice versa. The parameter
0 sets the threshold for the variability of liquid water content in the
snowpack, thus controlling its thermodynamic properties, strati-
graphic characteristics (e.g., snow density), and melting process.
With other conditions unchanged, increasing 6 generally leads to
an increase of SWE, and vice versa. In previous research, this param-
eter is often given an empirical number without quantitative meth-
od to derive application specific value. The main reason could be

Table 1
Description of simulations in experiments.

that there is few physical law, if any, to estimate 0. While, it can ex-
ert significant effects on the dynamical processes. In Section 3, it
would be shown how an erroneous 6 can influence the simulation
of snowpack.

A further reason to select these parameters is that we assume
they are representative for the parametric uncertainty in this non-
linear model structure, and the demonstrated system behaviors
could be typical in the scope defined by our central objectives in
Section 1. Considering that our purpose here is to preliminarily as-
sess the overall performance of the parameter estimation approach
and not to enumerate parameters in different components of the
model and comprehensively characterize their joint estimation,
increasing the number of analyzed parameters may be less impor-
tant than the need of keeping the system tractable by limiting the
size of parameter vector. Accordingly the interaction among multi-
ple parameters and their differing ensemble trajectories are not fo-
cused in this research (while the relationship between above two
parameters and their different impacts to data assimilation are
interpreted), although we recognize the potential importance of
analyzing larger parameter vector in obtaining more insights of
the system.

There are six simulations designed in this section (see Table 1
for description of these simulations). In SYN_TRUE the true values
of o and 0 are 1.6 and 0.01, respectively. For the imperfect model
simulations (SYN_CR, DA_PAR_CR, DA_PAR_«, DA_PAR_0) o and 0
are set as 0.6 and 0.08, respectively, representing parameter errors.
According to Aksoy et al. [1], the initial standard deviation for
parameter ensemble is set to the difference between the initial
mean parameter value and the true parameter value (1.0 and
0.07 for o and 0, respectively), while the prescribed standard devi-
ation (square root of Qg in Eq. (2)) is set to 1/4 of the initial stan-
dard deviation. Other Qg values have been tested and the results
of both variables and parameters are very similar (refer to figure
in Section 4 for more details about this sensitivity). So we present
the results with the above Qg which is representative.

Fig. 1 compares ensemble mean results of SWE from SYN_CR,
DA_PAR_CR and SYN_TRUE. Table 2 gives Nush-Sutcliffe efficiency
for ensemble mean of different simulation shown in Fig. 1, repre-
senting their integrated performance. The SYN_CR begins to devi-
ate from the true values around the early stage of snow
accumulation. This is mainly due to overestimation of SCF (due
to the error in «). During the melting stage, deviation from the true
state increases nonlinearly, reaching hundreds of mm. This occurs
because errors in SCF parameterization produce a positive feed-
back in the melting process. A greater SCF results in a higher albe-
do, causing a decrease in absorbed solar radiation and further
increase in SCF. The 0 error further reduces melting amount, be-
cause more liquid water is allowed to stay in the snowpack than
the true value. In consequence, large error persists in estimated
SWE even when observations are assimilated (DA_PAR_CR).

Simultaneously estimating o and SWE with Eq. (1) improves the
results of SWE simulation (Fig. 1, DA_PAR_«). The innovation (dif-
ference between observations and model simulation) in the EnKF
updates the parameter ensemble at every time step when observa-

SYN_CR (Section 3)
DA_PAR_CR (Section 3)
DA_PAR_o (Section 3)
DA_PAR_0 (Section 3)
DA_TRUE (Section 3)
SYN_TRUE (Section 3)
DA_STRUCT_TRUE (Section 4)
DA_STRUCT_NEW (Section 4)

Synthetic ensemble simulation with parameters error but without synthetic data assimilation

Synthetic ensemble simulation with parameters error and synthetic data assimilation

Synthetic ensemble simulation with parameters error, synthetic data assimilation and parameter estimation of o
Synthetic ensemble simulation with parameters error, synthetic data assimilation and parameter estimation of 0
Synthetic ensemble simulation with true parameters and synthetic data assimilation

Synthetic truth from a particular forcing set and true parameters

Synthetic ensemble simulation with parameter error in o, other feature same to DA_TRUE

Synthetic ensemble simulation with parameter error in Zg, also with Eq. (6), other feature same to DA_TRUE

Note: In all the tables, SYN refers to “synthetic”, CR refers to “control run”, DA refers to “data assimilation”, PAR refers to “parameter”, STRUCT refers to “structure”.
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250
SYN CR
DA PAR CR
200 DA PAR o
DA PAR @
DA_TRUE
£ 150 SYN_TRUE
[sa]
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Fig. 1. Ensemble mean simulations of SWE (mm) for SYN_CR, DA_PAR_CR and SYN_TRUE, DA_PAR_o, DA_PAR_6, DA_TRUE. (see Table 1 for the description of these

simulations).

Table 2

The Nush-Sutcliffe efficiency for ensemble mean of different simulation shown in
Fig. 1. The value equal to 1 represents the perfect simulation, with the value the larger
the better.

DA_TRUE DA_PAR_a DA_PAR_0 DA_PAR_CR SYN_CR
0.98 0.96 0.61 0.22 -1.21

tion is available (every two days). The success of this EnKF in sim-
ulating SWE largely depends on an accurate statement of correla-
tions between parameters and observations. This is partly
achieved in the representation of energy feedback processes. Sim-
ilarly, simultaneously estimating 0 and the usual SWE state vari-
able improves the results (Fig. 1, DA_PAR_0). DA_PAR_x provides
better results than DA_PAR_0, indicating the system'’s greater sen-
sitivity to errors in o. DA_PAR_0 probably does not fully compen-
sate for bias in related energy processes. When both « and 0 are
adjusted the performance is similar to DA_PAR_q, and the experi-
ment results are not shown here.

Meanwhile we are interested in that if our method obtains the
right results (as shown above) by addressing the right problem. In
another word, there should appear “concurrent convergence”, i.e.,
both the state variables and parameters converge to their true val-
ues respectively, in the EnKF simulation. Figs. 2 and 3 demonstrate
how the mean of parameter ensembles evolves with the sequential

EnKF adjustment. True values of o and 0 are approached in the cor-
responding simulations. Further analyses show that parameter
identification depends on a “biased innovation” (which can be inter-
preted as the difference between the imperfect model run and true
state in Fig. 1), and the ensemble estimated correlation between the
parameters and observed variables. The “biased innovation” forces
the parameter ensembles to vary in a non-stationary mode (chang-
ing mean value), while the correlation contributes to controlling the
direction and magnitude of that variability. It is noted that estimat-
ing both o and 0 leads to good estimates of o and overestimation of 6,
for which the ensemble mean remains near 0.06. This suggests com-
peting mechanisms in multi-parameter estimation (especially in a
single measurement variable situation), which may favor a few
dominant parameters with others not being properly retrieved.

A follow-up question is that whether this EnKF update (note
that only SWE and parameters are updated in Eq. (1)) can transfer
these benefits to simulation of other snowpack related variables,
especially, those related to ground energy balance. Fig. 4 gives
the ensemble mean of daily averaged ground radiative tempera-
ture for all runs in Table 1, from April 2004 to June 2004 (their re-
sults are similar in the accumulation season). In this melting
period, as expected, SYN_TRUE and DA_TRUE agree with each
other, indicating the ability of data assimilation to accurately esti-
mating the temperature and associated longwave emission of
snowpack in the absence of parameter error. And this is achieved

18

J\_i

alé
14
121

1
08

0.6
0.4

0.2

“Nov03  Dec03 Jan04

Feb04 Mar04 Apr04 May04 JunO04

Fig. 2. Parameter ensemble mean of o in DA_PAR_o.
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Fig. 3. Parameter ensemble mean of 0 in DA_PAR_0.

indirectly by adjusting SWE, which influence the radiative emis-
sion calculation through model physics (better calculation of SCF
and absorbed solar radiation in energy balance equation). For
SYN_CR and DA_PAR_SYN, the estimation qualities are low. These
deficiencies are attributed to the parameter errors that degrade
the ground energy balance calculation. The largest gap between
these two simulations and the truth appears during the period
when ground is snow-free as in SYN_TRUE, implying that whether
snow cover is present is a dominant factor to the radiative temper-
ature estimation. For DA_PAR_« and DA_PAR_0, the simulations are
improved by different degrees, with DA_PAR_x much closer to the
true value, indicating the stronger influence of « on calculating so-
lar radiative balance.

Figs. 5 and 6 present the simulations of ensemble mean ground
sensible heat flux and albedo in daily averaged values. They show
similar patterns as compared with Fig. 4. In the melting period,
sensible heat flux and grid averaged albedo are closely related to
the size of snow area which is linked to SWE in the system. There-
fore they can be better estimated if the errors in simulating ground
snow cover (for albedo) and radiative energy balance (for sensible
heat flux) are resolved. Also, the greater differences in May 2004
(compared to April 2004) between group 1: SYN_TRUE, DA_TRUE,
DA_PAR_x and group 2: SYN_CR, DA_PAR_SYN and DA_PAR_0 re-
sult from their different timing of snow-free conditions.

Fig. 7 presents the ensemble mean of diurnal temperature range
(DTR) of snowpack. In this experiment the DTR is defined as the
temperature (layer averaged) difference between 3 pm and 3 am
(local time). This variable can be used to diagnose the thermody-
namic effects of liquid water refreezing within snowpack. In this
regard the parameter 0 is crucial because it controls the available
amount of liquid water to refreeze at night and influence the
DTR. The larger 0 leads to more heat loss in a phase change form
and decreases the DTR with increased night time snowpack
temperature. The results agree with this by showing lower DTR
along the entire snow season for simulations with erroneous 0
(SYN_CR, DA_PAR_CR). DA_PAR_« also underestimates DTR, dem-
onstrating the independence between o adjustment and the night
time refreezing process. « could also influence DTR by controlling
the solar radiation absorption and changing daily maximum
temperature. This can explain the significant departure of DTR
from the truth in DA_PAR_0 in the late spring where the SCF
decrease.

Adjunct estimations of o and 0 offer results similar to estimating
o only, except for DTR calculation, which is similar to adjusting 0
only. They indicate the dominance of « in simulating solar radia-
tive balance, sensible heat flux, and the dominance of 6 in simulat-
ing refreezing process of snowpack. The detailed results are
omitted.

290
SYN_CR
285l DA PAR CR
a
DA PAR @
280 DA_TRUE
SYN_TRUE
275}

270

Radiative Temperature (K)

260

Apr 04

May 04

Jun 04

Fig. 4. Daily averaged ensemble mean of ground radiative temperature for SYN_CR, DA_PAR_CR and SYN_TRUE, DA_PAR_o, DA_PAR_6, DA_TRUE.
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Fig. 5. Daily averaged ensemble mean sensible heat flux for SYN_CR, DA_PAR_CR and SYN_TRUE, DA_PAR_x, DA_PAR_0, DA_TRUE.

0.9
0.8
0.7
a 06
05 SYN CR
04 DA PAR CR
a
030 pArR o
o2 DA_TRUE
SYN_TRUE

0.1

mﬂ

Nov03 Dec03 Jan04

Feb04 Mar04 Apr04 May04 Jun04

Fig. 6. Daily averaged ensemble mean albedo for SYN_CR, DA_PAR_CR and SYN_TRUE, DA_PAR_o, DA_PAR_6, DA_TRUE.
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Fig. 7. Ensemble mean of DTR (diurnal temperature range) for SYN_CR, DA_PAR_CR and SYN_TRUE, DA_PAR_o, DA_PAR_0, DA_TRUE.

4. Effects of structural error on parameter estimation

its effects. Here one primary goal is to keep the diagnostic frame-
work simple and tractable, recognizing that complicated structural

In this section we only consider a simple case of structural error error behavior may result from incorporating multiple processes
in snowpack simulation, to facilitate a straightforward diagnose of =~ and their nonlinear interaction. Situations consisting of more
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complex structure errors are valuable topics for further research.
Another SCF parameterization (replacing Eq. (3)) is introduced
and represents the structural error. It is shown in Eq. (7). In addi-
tion to the above mentioned simplicity, at least two reasons are
considered to construct the error in this way. First, both two
parameterizations share the common role in the model architec-
ture, i.e., representing the same physical process (grid-scale snow
cover-snow depth relationship), so they are comparable. Second,
they differ greatly in their formulation, representing significant
structural difference.

Two simulations are designed. The DA_STRUCT_TRUE is the per-
fect-model-structure run using Eq. (4), and starts with an errone-
ous 0=0.6. The DA_STRUCT_NEW uses Eq. (7) with Z; as the
adjustable parameter. Z; characterizes the roughness length of
ground and is assumed uncertain in DA_STRUCT_NEW. This
parameterization was used in the default version of CLM2.0 [5],
reflecting the assumption that SCF is lower at uneven ground given
same amount of snow. From Eq. (7) it can be easily inferred that
SCF is sensitive to Z; especially in the melting season with modest

hsno (for example keeping hg,, = 0.3 m, Z; ranging from 0.002 to
0.02 can lead to SCF ranging from 0.93 to 0.6).

To construct a comparable framework, all other structural and
parametric features in DA_STRUCT_TRUE and DA_STRUCT_NEW
are the same as in SYN_TRUE. Both of them assimilate a com-
mon dataset of SWE generated with the same approach in Section 3

hSHO

1OZd + hsno (7)

SCF =

As mentioned in Section 2, the selection of Qp in Eq. (3) influ-
ences the trajectory of parameter ensemble. To ensure a fair com-
parison, we run the above simulations with different Qo, to obtain
enough spread to lead to the dependable results. In addition, the
dependence of system performance and parameter retrieval on
the selection of initial value of Z; has been considered. Our preli-
minary test found that varying this input did not affect the simula-
tion too much, so we use Zyo = 0.01 (a default value for CLM2.0, Z4o
denotes the initial value of Z,).

120
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Figs. 8 and 9 display the error (ensemble mean SWE minus cor-
responding true value) of DA_STRUCT_TRUE and DA_STRUCT_-
NEW, respectively, for each of their own Qg used to constrain the
parameter ensemble variance. Note that each curve is given in
the same color as the label showing magnitude of square root of
Qo (std). Here std is represented by a number multiplying the ini-
tial value. Tables 3 and 4 give the temporal mean of these errors (in
absolute value) for DA_STRUCT_TRUE and DA_STRUCT_NEW,
respectively. Agreeing with results in Section 3, DA_STRUCT_TRUE
performs well in estimating SWE for most of the Qy selected, ex-
cept for the std equal to half of «g (its SWE error is still much lower
than the data assimilation run without parameter estimation, not
shown here). On the other side, DA_STRUCT_NEW performs almost
equally well in estimating SWE (only with significantly larger error
for std = 1/4Z4, while its SWE error is still much lower than the
data assimilation run without parameter estimation, not shown
here). Moreover, same pattern exists in both figure, i.e., the error
remains low at accumulation period and peaks at melting period.
The evolution of parameter ensemble stops when the ground is
snow-free for every ensemble member.

Figs. 10 and 11 show how the parameters (ensemble mean) are
updated in each simulation. A difference emerges in this compari-
son: & converges at the end of simulation to around 1.7 for differ-
ent Qo while Z; diverges to significantly different values for
different Q,. Further inclusion of broader range of Qp in DA_S-

Table 3

The temporal averaged error in SWE (ensemble mean minus the true value) for
parameter estimation run DA_STRUCT_TRUE with different Q, shown in Fig. 8. Here
Qo is represented by standard deviation (1/Qo), which is equal to R multiplying the
initial parameter: Std = R * .

R 1/4 1/2 3/4 1 3/2
Error (mm) 7.49 11.36 8.08 7.68 7.71
Table 4

The temporal averaged error in SWE (ensemble mean minus the true value) for
parameter estimation run DA_STRUCT_NEW with different Q, shown in Fig. 9. Here
Qo is represented by standard deviation (1/Q,), which is equal to R multiplying the
initial parameter: Std = R * .

R 1/4
19.96

12
8.86

3/4 1
8.61 8.63

312
8.62

Error (mm)
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TRUCT_NEW (including std = 1/8 to 3Z,, which can give a reason-
able performance in SWE estimation) do not result in an evident
convergence zone. This has been shown in Tables 5 and 6, where
a broad spectrum of Qg have been tested and the retrieved param-
eter have been given for DA_STRUCT_TRUE and DA_STRUCT_NEW.
These results imply that DA_STRUCT_NEW is likely to reduce the
transferability of estimated parameter because no consensus can
be made about Z,.

5. Discussion
5.1. Parameter estimation convergence/divergence

In a perfect-model-structure run, parameter estimation in the
ensemble snow data assimilation has shown promise in accurately
estimating a suite of land surface variables. In this scenario, both
variables and parameters converge to the true value simulta-
neously, which is in contrast to the result in the imperfect-mod-
el-structure run.

A hypothetical explanation for the above result is that, driven
by model structural error, each Qo, a degree of freedom constrain-
ing the parameter variance, seems to become an independent con-
dition and leads the stochastic update to a unique value in the
parameter space, while to the structure-error free case (DA_S-
TRUCT_TRUE), the effects of Q, on parameter retrieval appear to
be refrained, with different Qo amounting to largely equivalent
constrains, which leads to parameter convergence.

The insensitivity of parameter estimation to the magnitude of
prescribed parameter error Qg in the perfect-model-structure run
(in which the forcing and observation error are also perfectly rep-
resented) is somehow analogous to results shown in previous re-
search, e.g, Crow and Loon [10], where their experiment
demonstrated that, if the single error (only refer to random error,
the model structure is perfect) source and observation error are
both perfectly represented in the EnKF soil moisture data assimila-
tion system, the overestimation of model error has little impact on
the accuracy of retrieved state variable (Fig. 4 in their paper). This
linkage implies that the results of parameter convergence (or not)
shown here can be interpreted from the observational control per-
spective, where the structural accuracy might foster a robust rela-
tion between observation (invariant for different Qy) and the
parameter update. This relationship is important to the availability
of a relatively consistent trajectory for the sequential parameter
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Fig. 10. Parameter ensemble mean for DA_STRUCT_NEW with different Qo constraining the parameter variance. Here Qy is represented by standard deviation (1/Q,), which is

equal to R multiplying the initial parameter: Std = R x .
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Fig. 11. Parameter ensemble mean for DA_STRUCT_NEW with different Qo constraining the parameter variance. Here Qo is represented by standard deviation (1/Qy), which is

equal to R multiplying the initial parameter: Std = R * Zgo.

Table 5

The ensemble mean of o retrieved in DA_STRUCT_TRUE when ground is snow-free in
May (for every ensemble member), as a function of different Qg constraining the
parameter variance. Here Qo is represented by standard deviation (1/Qo), which is
equal to R multiplying the initial parameter: Std = R * 0.

R 18 14 12 34 1 11/4 32 2 52 3
& 170 172 173 177 178 179 181 183 189 1.96

Satmiin = .152,

search against the variation of Q. In this experiment, this connec-
tion can be partly reflected by the refrained updates of « (in the
ablation stage) where Qg have been increased (Fig. 10, also Table 5,
same observation data are used in different simulations). On the
other side, the structural error may distort the representation of
parameter uncertainty through ensemble and attenuate this con-
nection between observation (structural invariant) and parameter
(in the problematic structure), therefore hinder the presence of a
consistent parameter evolution among different Qo. This deficiency
can be well characterized by an excessively broad divergence zone
in the corresponding Q, space (Fig. 11 and Table 6, same observa-
tion data are used in different simulations).

The detailed features associated with the Qp space may be
dependent on a number of complex issues, e.g., the structural role
in parameter estimation, which is modulated by the EnKF effects
associated with ensemble space dynamics (e.g., using ensemble
covariance to calculate increments), also the observation control
on parameter evolution. The verifications of the above potential
explanation warrant further investigation, which may include
how to quantitatively measure these connections and mechanisms
(e.g., between the degree of freedom Qg and parameter evolution),
whether they are ad hoc, and what they are conditioned on.

In addition, the above parameter search divergence in DA_S-
TRUCT_NEW could be alleviated by developing a more physically
based method to estimate Qg or predict the variance of parameter

Table 6

ensemble, for example, linking them to the flow-dependent error
covariance of state variables (an approach similar to bias estima-
tion in De Lannoy et al. [11]). When Qg or parameter variance could
be calculated through a physically robust scheme, this divergence
problem becomes trivial, and the optimal parameter can be identi-
fied. However, a fully dynamical parameterization of Qg can be dif-
ficult, considering the nature of parameter (a physically constant
value) in the snow hydrological system.

5.2. Several limitations in current research

This study may have limitations in several aspects. First, there
are alternative approaches to achieve the simultaneous state and
parameter estimation that do not require time varying parameter
(ensemble) (e.g., [23,8]). The relative strengths and limitations
among these algorithms are still not clear, and their optimal design
and application are important for further research [20].

We also recognize that the structural error and associated
parameter adopted in our research are simplistic. In this regard
an extended study with a complex structure error configuration
is suggested. Niu and Yang [17] discussed several important phys-
ical processes governing snowpack evolution and their various rep-
resentation in LSM, for example, canopy interception (with or
without), radiation transfer (traditional scheme or revised two-
stream), and below canopy turbulence. The uncertainties in simu-
lating these processes can be incorporated into current framework
as structural error. The interactions among these structural compo-
nents may give rise to far more complicated results (e.g., different
relation between Qg and parameter search convergence) than
those revealed in this work. In addition, because parameters in
LSM can have significant and complex interactions ([21]), it is wor-
thy to investigate the appropriate size of parameters involved in
this estimation framework, for example, weather to use all snow-
pack related parameters or to select part of them.

The Z, retrieved in DA_STRUCT_NEW when ground is snow-free in May (for every ensemble member), as a function of different Qo constraining the parameter variance. Here Qq is
represented by standard deviation (1/Qg), which is equal to R multiplying the initial parameter: Std = R * Z4o.

R 1/8 1/4 1/2 3/4 1

11/4 32 2 5/2 3

Zq 0.0026 0.0042 0.0070 0.0090

0.0108

0.0129 0.0142 0.0181 0.0266 0.0362

Zgwa—Zawin — 129,
dMin
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6. Concluding remarks

This study investigates the performance of parameter estimation
in snow data assimilation experiments, and its dependency on the
model structure. In the synthetic EnKF simulation without model
structure error, simultaneous state and parameter estimation is
effective. The algorithm reduces the systematic error in SWE esti-
mates and accurately retrieves the parameter values. Further, a
suite of other land surface variables, especially those related to
snowpack (and ground) energy balance, are better estimated when
the parameters are correctly updated. Another important implica-
tion from this research is that, in the presence of model structural
error, parameter search convergence and accurate estimation of
state variables estimation may not be simultaneously achieved,
indicating the potential caveat brought by structure error. In partic-
ular, we introduce a new degree of freedom, parameter variance
constraint, in the parameter estimation framework, and find that
imperfect-model-structure run leads to parameter divergence over
abroad zone in this constraint space. This is in contrast to the clearly
retrieved parameter convergence in the perfect-model-structure
run. These results demonstrate that with a problematic model
structure, good performance in estimating state variable does not
necessarily reflect that the associated parameter estimation is
reliable. In this sense, our investigation may provide a way for diag-
nosing structural robustness in the ensemble snow data assimila-
tion system. It is also emphasized that the generality of this result
should be investigated with a more complex structural error config-
uration (e.g., a combination of multiple structural components).
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