Lecture 14. Climate Data (Chapter 2, p. 17-31)

Tools for studying climate and climate change

DataInstrumental measurements (direct)Historical documentsNatural recorders of climate or proxy data

Climate models

Understand climatic cause and effect External factors → climate system Feedbacks

Test hypothesis

Quantitative (put numbers on ideas) and Predict the future

Instrumental Measurements (Direct)

Historical documents

The Hunters in the Snow by Pieter Brueghel the Elder (Kunshistorisches Museum, Vienna)

Proxy Records of Climate

- Uses of proxy records of climate depend on both
 - time span of record
 - resolution of record

Proxy Records of Climate

- Lighter, thicker wood tissue formed by rapid growth in spring and much thinner, darker layers marking cessation of growth in autumn and winter
- Limited to land areas outside of tropics

• Variations of tree ring width and density act as recorders of year to year changes in temperature and rainfall

Varved Lake Sediments

Photos: Above: Steinsee, Switzerland, A. Lotter upper right: annually laminated sediments from Soppensee, Switzerland, A. Lotter

• Complement tree ring records; most common in coldtemperature environments

• Occur in deeper parts of lakes that do not support bottom-dwelling organisms that would obliterate annual layers with their activity

• Layers usually result from seasonal alternation between light, mineral-rich debris and dark, organic rich material brought in by runoff – act as proxy of precipitation amount

At UT Austin

Prof. Shanahan

Varves: sediments deposited annually on the bottoms of lakes that freeze in winter and thaw in summer. Winter varve: fine sediments; summer varve: coarse sediments. Varve **thickness** - length of freeze-free period - summer temperature.

• Texture of calcite (CaCO₃) incorporated in skeletons varies; lighter parts during periods of rapid growth in summer and darker layers during winter

• Measurements of oxygen-18 isotope concentration records sea surface temperature and salinity (precipitation and runoff) variations

• Limited to tropical oceans

- Limited to polar latitudes and mountain glaciers
- Darker and lighter layers are more or less dust blown in seasonally
- Measurements provide information on temperature, snowfall, atmospheric composition (gases, dust, volcanic aerosols), sunspots, ...

Speleothems (cave deposits)

Mineral formations occurring in limestone caves (most commonly stalagmites & stalactites, or slab-like deposits known as flowstones) Primarily calcium carbonate, precipitated from ground water Uranium can be used to determine the age

Fossils of Past Vegetation

- Climate can be inferred from distinctive vegetation types
- Palm-tree like fossil in Wyoming 45 Myrs ago indicating the Cretaceous warm climate
- Climate can be inferred from leaf size and shape.

• Climate can be inferred from pollen in sediments: All flowering plants produce pollen grains with distinctive shapes.

Marine Sediments

• Dating only accurate to about 40,000 years ago and can resolve climate changes that occur on century scale or longer

Marine Sediments

• Isotopes in shells of **foraminifera** can reveal temperature, salinity, and ice volume

• Granular debris from land can indicate icebergs breaking off of continental ice sheets, suggesting cold climates

Proxy Records of Climate

• Recent times: instrumental

• More recent times: historical, tree rings, ice cores

• Proxies for more ancient climates are found in sediments or inferred from fossils and land forms

• Can generally only resolve changes that occur over 100 years or greater