Lecture 20: Ice Core Records & Carbon Isotopes and Orbital Changes in Deep Water

Reading: Chapter 10 (p. 175-190); Appendix II: p. 363-364

Ice Core and Instrumental CO₂ and CH₄ Measurements

Temperatures over last 400,000 years

Carbon dioxide has varied from ~ 180 - 310 ppmv.
385 ppmv (in 2008)

- Inferred temperature has varied from ~ 8°C cooler than present during glacial periods to ~ 4°C warmer during interglacial periods.
- Methane has varied from $\sim 350 800$ ppbv;
 - ~ 1790 ppbv (in 2008)

Orbital-Scale Changes in CO₂

Vostok Ice in Antarctica

Years ago

Four 100,000-year cycles 23,000-year cycle not prominent Maxima: 280-300 ppm Minima: 180-190 ppm

Ice volume

Major CO₂ cycles match marine δ^{18} O (ice volume) cycles in an overall sense

Which is driving which?

Difficulties:

Low accuracy in dating in Antarctica

Dust reacts with CO₂ bubbles in Greenland

How do we determine the carbon sources/sinks? - Carbon Isotope Ratios

Isotopes are forms of a chemical element that have the same atomic number but differ in mass.

Carbon is made up of two stable isotopes: carbon 12 (also known as ${}^{12}C \rightarrow 6$ protons + 6 neutrons; a "light" carbon);

Carbon 13 (aka ${}^{13}C \rightarrow 6$ protons + 7 neutrons; a "heavy" carbon).

12 and 13 are atomic masses of isotopes ¹²C and ¹³C.

The relative amounts of these two isotopes in a sample of water, air, vegetation is a function of climate/environment

 $^{12}C \sim 99\% \qquad ^{13}C \sim 1\%$ $\frac{^{13}C/^{12}C = 0.01}{}$

The relative amounts are expressed as $\delta^{13}C$, which compares ${}^{13}C/{}^{12}C$ with a laboratory standard.

Typical δ^{13} C Values in the Climate System

Enrichment process (isotope fractionation): The lighter ¹²C is incorporated in living tissues more easily during photosynthesis.

Land (2160)

 δ^{13} C values:

All land: -25‰ All oceans: 0‰

How Could CO₂ Vary Over Orbital-Scales?

Atmosphere: 30% decrease (90 ppm)

Temperature and salinity of surface oceans explains 10% of the reduction.

Strong carbon pump, iron fertilization and stronger upwelling of deep ocean water.

The atmosphere (and other) carbon is stored in deep ocean. TABLE 11-1Physical Causes of Lower CO2in the Glacial Atmosphere

Properties of ocean surface waters	CO ₂ change (parts per million)
Cooling by ~2.5°C	-22
Increase in salinity by 1.1%	bo +11
All physical properties	-11

Carbon Transfers During Glaciations

 $δ^{13}$ C (carbon transfer) matches $δ^{18}$ O (ice volume) cycles. More negative $δ^{13}$ C → more positive $δ^{18}$ O

Temperatures over last 400,000 years

Methane has varied from ~ 350 - 800 ppbv;
~ 1790 ppbv (in 2008)

Carbon dioxide has varied from ~ 180 - 310 ppmv.
385 ppmv (in 2008)

Iron Hypothesis: Iron fertilization of ocean biota

During glacial periods, more dust \rightarrow more iron fallout into the oceans \rightarrow more phytoplankton \rightarrow more photosynthesis \rightarrow lower CO₂ \rightarrow colder climate \rightarrow windier \rightarrow more dust

Orbital-Scale Changes in CH₄

Feedbacks between dust, climate and CO2

Discussion-Summary:

- How is air bubble formed in ice core? Why is air bubble formed in ice core about a few hundreds to 2000 years younger than the ice itself?
- What control the carbon isotope fractionation? What are the typical d13C values for deep and surface ocean, land, grass and tree? Why is deep ocean rich in ¹³C and vegetation and surface water is more ¹³C depleted?
- What might cause decrease of atmospheric CO₂ during glacier maximums? List of mechanisms and key evidences.
- What cause methane change on glacial-interglacial scale? Do you thin that methane response to climate change would be faster or slower than carbon?