Lecture 23: The Last Deglaciation (21-6k yrs ago)

Ch. 13, p. 229-239

- What factors controlled the climate during 21-6k yrs ago?
- When did the ice sheets melt?
- How did sea level respond?
- What happened to deglacial meltwater and landscapes?
- Mid-deglacial cooling: The Younger Dryas

The Earth's Climate History

- 1. Over the last century, the earth's surface temperature has increased by about 0.75°C (about 1.35°F).
- 2. Little Ice Age = 1350 A.D. 1850 A.D. (N.H. temperature was lower by 0.5°C, alpine glaciers increased; few sunspots, low solar output)
- 3. Medieval Warm Period = 950 A.D. 1,250 A.D. (N.H. warm and dry, Vikings colonized Iceland & Greenland)
- 4. Holocene Maximum = 5,000-6,000 ybp (1°C warmer than now, warmest of the current interglacial period)
- 5. Younger-Dryas Event = 12,000 ybp (sudden drop in temperature and portions of N.H. reverted back to glacial conditions)
- Last Glacial Maximum = 21,000 ybp (maximum North American continental glaciers, lower sea level exposed <u>Bering land bridge</u> allowing human migration from Asia to North America)
- 7. We are presently living in a long-term lcehouse climate period, which is comprised of shorter-term *glacial* (e.g., 21,000 ybp) and *interglacial* (e.g., today) periods. There were four periods of lcehouse prior to the current one.
- 8. For most of the earth's history, the climate was much warmer than today.

Causes of Climate Change During Deglaciation

When Did the Ice Sheets Melt?

The North American ice sheets began to retreat 15k ¹⁴C years ago, disappeared completely by 6k ¹⁴C years ago.

The retreat of the ice sheet margins can be determined by radiocarbon dating.

The retreat timing agrees with the Milankovitch theory (Chapter 9).

Glitches in the Deglaciation: Deglacial Two-step

Data from corals off Barbados in the Caribbean

Local Meltwater Pulses

Mid-Deglacial Cooling: The Younger Dryas

Data from corals off Barbados in the Caribbean

The mid-deglacial pause in ice melting was accompanied by a brief cold reversal.

During this episode, Dryas (an Arctic plant) appeared in Europe – the Younger Dryas event. Depth in core (cm)

The Younger Dryas Cold Reversal

Greenland

Proglacial Lakes Moving North

Glacial Lakes

A Total area covered by deglacial lakes

B Lakes during deglaciation

Routes of Meltwater Flow

Deglacial Flooding of Coastlines

Land exposed by drop in sea level
Land created under ice by drop in sea level

The Younger Dryas Cold Reversal

Greenland

Routes of Meltwater Flow

Deglacial Flooding of Coastlines

Land exposed by drop in sea level
Land created under ice by drop in sea level

Climate Change in the Last 7,000 Years

Ch. 13, p. 239-249

- The strength of tropical monsoons
- The warmth of northern high-latitude summers
- Vegetation responses
- Bedrock rebounding and associated sea level change

Causes of Climate Change Since Deglaciation

Climate controls:

21k yrs ago	Large ice sheets	Low CO ₂
21-6k yrs ago	Increasing summer insolation	Increasing
6-0k yrs ago	Decreasing summer insolation	High CO ₂

CO₂

Stronger, Then Weaker Monsoons

C Data-model comparison versus time

Pollen Percentages and Climate on the Continents (Revisit)

Peak Warmth 6000 Years Ago

Summer insolation 6000 years ago was still 5% higher than today, which warmed high latitudes (Canada).

Northward expansion of lowalbedo forest into high-albedo tundra doubles this regional warming (Asia).

C Seasonal and annual averages

Warmer, Then Cooler North Polar Summers

Less frequent summer ice melting in Arctic islands Years ago

Southward shift of tundra/forest boundary in northern Canada

Advances of ice caps on Arctic islands north of Europe

Lower temperatures in the Atlantic Ocean west of southern Norway

The Earth's Climate History

- 1. Over the last century, the earth's surface temperature has increased by about 0.75°C (about 1.35°F).
- 2. Little Ice Age = 1350 A.D. 1850 A.D. (N.H. temperature was lower by 0.5°C, alpine glaciers increased; few sunspots, low solar output)
- 3. Medieval Warm Period = 950 A.D. 1,250 A.D. (N.H. warm and dry, Vikings colonized Iceland & Greenland)
- 4. Holocene Maximum = 5,000-6,000 ybp (1°C warmer than now, warmest of the current interglacial period)
- 5. Younger-Dryas Event = 12,000 ybp (sudden drop in temperature and portions of N.H. reverted back to glacial conditions)
- Last Glacial Maximum = 21,000 ybp (maximum North American continental glaciers, lower sea level exposed <u>Bering land bridge</u> allowing human migration from Asia to North America)
- 7. We are presently living in a long-term Icehouse climate period, which is comprised of shorter-term *glacial* (e.g., 21,000 ybp) and *interglacial* (e.g., today) periods. There were four periods of Icehouse prior to the current one.
- 8. For most of the earth's history, the climate was much warmer than today.