Metamorphic Rocks

- METAMORPHISM: a process that occurs typically at elevated temperature and pressure to produce changes in <u>texture</u> and <u>assemblage of</u> <u>minerals</u> present in the original, or <u>parent</u> rock
- Includes <u>recrystallization</u>: making new minerals from original minerals, or changing the texture of the rock
- Metamorphism is a solid state transformation.

Factors of Metamorphism

- **High temperature**: lower limit ~150°C (diagenesis) and upper limit ~ 700°C to 900°C (melting of granite or basalt)
- **High pressure**: commonly due to overlying rock or force applied during mountain building
- Shear stress: deformation of rock, typically in association with mountain building
- **Presence of fluids** (especially H₂0): active in making and breaking chemical bonds

Styles of Metamorphism

• Contact metamorphism

- Achieved as heat energy passes from a cooling body of magma into the enclosing (or host) rock
- Occurs at high temperature and (typically) low pressure
 Normally affects a small area.

Regional metamorphism

- Associated with mountain-building
- High temperature, high pressure and shear stress
- Affects a large area.

Metamorphic Grade

- Low-grade (mild) metamorphism: small changes in texture and/or mineralogy of parent rock (150-200°C)
- High-grade (extreme) metamorphism: radical changes in texture and/or mineral composition of the rock

Metamorphic Texture

- Foliation: Parallel alignment of platy or elongate mineral grains (mica/amphibole) in a rock caused by directed stress.
- · Foliated textures:
 - slaty cleavage: parallel alignment of microscopic platy minerals (mainly mica). LOW-GRADE METAMORPHISM
 - phyllitic texture: parallel, but wavy, foliation of fine-grained platy minerals (mainly mica and chlorite) exhibiting a shiny or glossy luster. LOW-GRADE METAMORPHISM
 - schistosity: parallel to sub-parallel foliation of medium to coarse-grained platy minerals. INTERMEDIATE TO HIGH-GRADE METAMORPHISM
 - gneissic layering: discontinuous light and dark layering due to mineral segregation. INTERMEDIATE TO HIGH-GRADE METAMORPHISM

Metamorphic Texture (continued)

• Nonfoliated texture:

- absence of parallel layers of platy minerals
- may exhibit stretched grains (ductile deformation
- normally composed of stubby, interlocking grains approximately the same size

Textural Changes

- Other changes that can occur during metamorphism:
 - Crystals grow in size.
 - Minerals can become segregated from one another to form compositional layering (as in gneiss).
 - Crystal shapes can become distorted (ductile deformation).
 - New minerals can form:
 - polymorphic transformation
 - reshuffling of atoms to form new minerals with <u>no</u> <u>change in bulk chemical composition</u>

Mineral Assemblages

Depend upon:

- chemical composition of parent rock
- intensity of metamorphism (involving temperature, pressure, shear stress)
- Mineral assemblage can change with <u>no</u> <u>change in bulk chemical composition</u>.

Shear Stress (directed stress)

- Distortion or deformation (change in shape or size, or both)
- Development of lineation: single, preferred orientation of elongated crystals (such as hornblende)
- Development of foliation: crystals with platy habit (such as mica) lining up parallel

Index Minerals

- Diagnostic minerals indicate restricted range of pressure-temperature conditions of metamorphism.
- General appearance with increasing metamorphism:

 - H₂O-rich-----→ H₂O-absent

Increasing Metamorphic Grade

Mudstone/shale \rightarrow slate \rightarrow phyllite \rightarrow schist \rightarrow gneiss

(fine-grained) \rightarrow (medium-coarse grained)

Bulk Composition

- Although a mineral assemblage may change with an increasing grade of metamorphism, the bulk chemical composition of the original parent rock commonly does <u>not</u> change (except for loss of water).
- Examples:
 - Quartz sandstone-----quartzite
 - Limestone/dolomite-----marble
 - Basalt-----amphibolite
 - Granite-----granite gneiss