Geo. 347k M. Helper

SNELLS LAW AND THE CRITICAL ANGLE

Snells Law states

n_r/n_i = sin i/sin r

Where

 $\mathbf{n}_{\mathbf{r}}$ = the refractive index of the medium that light is passing into.

 \mathbf{n} = the refractive index of the medium that light is passing out of.

i = the angle that the incident light ray makes with the normal.

 \mathbf{r} = the angle the light ray is refracted to relative to the normal.

Air has a refractive index of 1.0003, which we will round off to 1. Thus, for <u>light passing from air into a gem</u> (Fig. 1) n_i is 1 and Snells Law simplifies to:

Figure 1

For <u>light passing from a gem into air</u> (Fig. 2) the incident ray is within the gem and the medium that light is passing into is air. Thus n_r is 1 and Snells Law is:

 $1/n_i = \sin i / \sin r$ or $n_i = \sin r / \sin i$

We define a special angle, the **Critical Angle (CA)**, as the angle of incidence <u>within a gem</u> for which light is refracted parallel to the surface it is incident upon (Fig. 3). By this definition, the angle of refraction (r) at the critical angle is 90^o. Plugging this special relationship into Snells Law yields the following:

Figure 3

The sine of 90° equals 1, which reduces the equation to:

1/n_i = sin CA

This equation simply states that high refractive index materials have small critical angles and vise versa.