Water Volume Calculation of Hill Country Trinity Aquifer Blanco, Hays, and Travis Counties, Central Texas

GIS and GPS Applications in Earth Science Saya Ahmed

December, 2010

Introduction:

Trinity Aquifer is one of the major aquifers and one of the most extensive and highly used ground water resources in Texas. It extends across much of the central and northeastern part of the state. The Trinity aquifer discharges to a large number of springs, with most discharging less than 10 cubic feet.

The Trinity section dips gently to the south east until intersected by early Miocene – age faulting of the Blacons fault zone. It composed of several individual aquifers within trinity group, about 1000ft thickness and consists of 3 clastic - carbonate cycles. Mostly, carbonate rocks (Limestone and dolomite) with sandstone in between.

In order to calculate the volume of water in this aquifer, I have divided the whole section in two four members: Figure (1)

Upper member:	Upper Glen Rose (Kgru)L and Lower Glen Rose (Kgrl) formations.
Middle member1:	Hensel (Khe) formation.
Middle member 2:	Cow Creek (Kcc) and Hammett formations.
Lower member:	Sligo (Ksl) formation.

Figure 1: Schematic Geologic Cross section showing Trinity Group from Northwest to Southeast

Objectives of the project:

A study has been made by Wierman et al, 2010 on Hill country trinity aquifer within Blanco, Hays and Travis counties, central Texas. In this study, new data was collected from water wells as well was compiling the existing data to define the geologic structure and frame work of the aquifer. To understand the occurrence, movement and availability of ground water in the study area; surface and groundwater data were interpreted within the geologic, stratigraphic, and structural setting.

The objective of this project is to use the collected and updated data of 198 wells from the above mentioned study in order to calculate the volume of water in Trinity aquifer within Blanco, Hays and Travis counties. Furthermore, creating surfaces using the ArcGIS interpolation techniques to understand the artifact of gridding algorithm of the software and compare them with the hand contoured maps of the same study.

Data Collection:

The data for this project was collected from different sources:

1- Capital Area Council of Governments

http://www.capcog.org/information-clearinghouse/geospatial-data/#aquifers

- County boundaries: shapefile (I couldn't open the metadata link for counties)
- Aquifer: ESRI Geodatabase and shapefile
 - *Geographic coordinate system name:* GCS_North_American_1983
 - This dataset consists of the major and minor aquifers within the CAPCOG 10 county region (Hays, Travis, Bastrop, Blanco, Llano, Williamson, Caldwell, Fayette, Burnet, and
 - Lee counties)This data was created by TWDB and edited for redistribution by CAPCOG.
- City Limits: ESRI Geodatabase and shapefile
 - Projected coordinate system name: NAD_1983_StatePlane_Texas_Central_FIPS_4203_Feet
 - Geographic coordinate system name: GCS_North_American_1983
 - This file was compiled from the city limits provided by CAPCOG by the ten county database coordinators
- Hydrology: ESRI Geodatabase and shapfile
 - > Map Projection Name: Lambert Conformal Conic
 - Data obtained from USGS/EPA National Hydrography Dataset. This metadata was created by CAPCOG and is not the original metadata
- 2- USGS: http://tx.usgs.gov/GAT/
 - Faults: shape files
 - Texas faults are from the Geologic Atlas of Texas, digital version available through the Texas Natural Resources Information Service

3- **An Excel file from DVD:** D.A. Wierman, A.S. Broun, and B.B Hunt, 2010, Hydrogeologic Atlas of the Hill Country Trinity Aquifer, Blanco Pedernales Groundwater Conservation Districts, July 2010.

State Well Grid Number	Name	Control Type	Abbreviation	y latitude (DD)	x longitude (DD)	y latitude (DMS)	x longitude (DMS)	Lat/Long Source	Elevation	Elevation Source	UGR Top Depth	UGR Top Elevation	UGR Isopach
Comal	11010 Hy 46	well	HW46	29.7882	-98.3121				1271		0	0	0
	57457-G1	well	G1	30.2618	-98.4939				1431		0	0	0
	6240 Hwy 290 West	well	6240	30.2362	97.8581	30-14-10.3	97-51-29.3	welling	802	driller's log	110	692	443
	Anne Wynn	well	Ann	30.1223	-98.3861	30-7-20.2	98-23-10.1	well log	1345	driller's log	0	0	0
	AquaTx Well No. 23	well	Aqua	30.0391	-98.1437	30-02-20.6	98-08-37.2	welling	1050	GPS	0	0	0
57-63-7AP	Arrowhead Point Well No.1	well	Arr	30.0306	-98.2164	30-01-50.3	98-12-59.0	well log	990	earth google	0	0	0
58-49-78D	Barsana Dhanm Well	well	Bars	30.1517	-97.9633	30-09-0-6.20	97-57-48	welling	932	earth google	23	909	220
57-63-98W	Bass Well No. 1	well	Bass	30.0319	-98.1647	30-01-54.90	98-09-52.80	welling	1146	google earth	0	0	0
58-49-4FR	No. 1	well	Belti	30.1981	-97.9803	30-11-53	97-58-49	driller report	1083	estimate	0	0	0
	Beulah Well No. 1	well	Beui	30.2142	-98.1118	30-12-51.1	98-08-14.3	Well log	1323	google earth	0	0	0
57-63-38W	Bischoff Well No. 1	well	Bis	30.2417	-98.0167	30-14-30.0	98-01-11.0	driller's log	1032	earth google	0	0	0
Blanco	Blanco River	well	Blan	30.0946	-98.4323	30-05-40.6	98-25-56.2	well log	1316		0	0	0
Blanco	Bleakley No. 2	Well	Blek	30.2122	-98.1509	30-12-43.8	98-9-31	welling	1400	well log	0	0	-
38-49-58Z	Bohm No.1	well	Bohm	30.1895	-97.9448	20.44.82.8		and less	980	deilleste lan	50	930	0
	Bous well	wei	800	50.1982	-90.23/1	50-11-35.3	36-13-23.3	weiring	1342	uniter situg		•	
68-08-8SP	Bridlewood Well No. 1	well	Brid1	29.8956	-98.0595	29-53-44.04	98-3-34.14	GPS	960	topo sheet est.	200	760	530
Bianco	Browning Ranch No. 1	wei	Browl	30.2562	-98.3346	30-15-22.3	98-20-04.7	welling	1168	earth google	0	0	0
Blanco	Browning Ranch No. 3	well	Brow3	30.2668	-98.3313	30-16-0.5	98-19-52.8	well log	1080	dnillers log	0	0	0
BT3	Brushy Top Well No. 3	well	Bru3	30.1624	-98.3955	30-09-44.6	98-23-43.9	welling	1435	earth google	0	0	0
Blanco	Brushy Top No. 13A	well	BrusisA	30.1693	-98.4089	30-10-09.3	98-24-32.1	welling	1750		88	1662	347
Blanco	Brushy Top No. W3A	well	BrusW3A	30.1516	-98.4017	30-09-05.7	98-24-06.1	welling	1535		0	0	0
Blanco	Brushy Top No.16A	well	Brus16A	30.1642	-98.3954	30-09-51.3	98-23-43.3	well log	1485		0	0	0
Bianco	Brushy top No.W1A	well	BRUSWIA	50.155	-98.3957	30-09-10.8	98-23-44.6	well log	1484		0	0	0
57-56-2RB1	Estates)	well	Burri	30.2496	-98.0529	30-14-58.52	98-3-10.3		1148		0	0	0
68-08-4CR	Cielo Ranch Well No. 1	well	Ciel1	29.9253	-98.1196	29-55-31.1	98-7-10.7	GPS	1137		36	1101	487
Blanco	Cielo Springs 158	well	Cie	30.0855	-98.439	30-05-07.7	98-26-20.5	welling	1370		0	0	0
Bianco	Cielo Springs Fence	well	CleF	30.0737	-98.4161	30-04-25.2	98-24-58.1	well log	1397		0	0	0
38-45-615	Circle C doir Course	wei	uc	50.1001	-57.5114	30-11-10	3/-34-41	сороттар	505	соротнар	°.	•	, e
Comal	(0-1	well	60-1	29.8008	-98,4997				1465		0	0	0
Comer	00-2	WEI	00-2	47.0337	-20.4370				041			0	
68-08-4CW	Coats Well	well	Cost	29.8574	-98.0707				919		180	0	0
58-49-7CW	Colony Well No. 2	well	colo	30.1456	-97.9633				1060		20	1040	0
57-62-3cb	Corbula bed 150' S of Red Corral Ranch Rd 100' E of Blanco County line 2.0 miles S of RR 2325	outcrop		30.0841	-98.2795				1259.76		٥	0	٥
57-47-7cb	Corbula bed Hammett's Crossine Map 01	outcrop		30.25	-98.2428				1090		0	0	0
57-47-5cb	Corbula bed Hammett's Crossing Map 03	outcrop		30.2917	-98.1861				1060		0	0	0
57-47-6cb	Corbula bed Hammett's Crossing Map 04	outcrop		30.3078	-98.1431				1020		0	0	0
57-47-6cb2	Corbula bed Hammett's Crossing Map 05	outcrop		30.325	-98.1522				1000		0	0	0
57-55-1cb	Corbula bed Henly Map 01	outcrop		30.2314	-98.2464				1140		0	0	0

Table 1: Geologic data base for Hydrologic Atlas of the Hill Country Aquifer, July 2010

Method

- Import the excel file and convert it to ArcGIS format
- Project data in common predefined coordinate system: NAD_1983_UTM_Zone_14N
- Use Geostatistical Analyst to create surfaces
- Use 3D Analyst to create Tin and Convert Tin to raster
- Use raster calculator to create Isopach raster
- Calculate volume of rock from 3D special analyst tool
- Multiply volume of rock by average porosity of each formation

Data Processing:

1- Import Excel file:

From ArcMap, using the Add data botton 🔽 I added the xls. file, then add as XY data and convert it to shape file. The special references should be defined. In this case:

Projected coordinate system name: NAD_1983_UTM_Zone_14N

Geographic coordinate system name: GCS_North_American_1983

Add XY Data		1		2	23
A table containi map as a layer	ing X and Y coor	dinate data (can be a	dded to t	he
Choose a table	from the map or l	browse for a	nother ta	ble:	
Geologic 🖽	Database\$'			-	
- Specify the fi	elds for the X and	l Y coordina	tes:		
X Field:	x longitude (D	D)			-
Y Field:	y latitude (DD))			-
Coordinate Sy Description: Projected Co Name: NAI Geographic Name: GC	vstem of Input Co pordinate System D_1983_UTM_Z Coordinate Syste S_North_America	ordinates — : one_14N :m: :n_1983			*
4				÷	Ŧ
Show De	tails			Edit	
Vam me if	the resulting laye	r will have re	estricted f	unctiona	lity
		ОК		Cano	cel

The import of the table is important to be done correctly, when I tried to QC the data, I realized that all the values of one of the columns are zero, I had to retype them in Arc Map because I wanted to create a surface from that column. To do that: Open the attribute table, then from Editor \rightarrow start editing and Start typing in the attribute table. This is time consuming because I had to QC all the data to make sure that all the values are correct, it is not practical in case of having a huge dataset as well.

To avoid this problem, please see the following link that provides tips to use the correct format that is acceptable by ArcGIS:

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Working_with_Microsoft_Excel_files _in_ArcGIS

2- Creating surface:

When I created surface from the points using interpolation methods in the special Analyst tool, there was no way to exclude the zero values that will be displayed as a flat area, and when convert it to raster, the minimum and maximum values exceeds the actual range. I had to find another way to create surface that will be discussed in the following section.

ArcGIS Processing:

In order to calculate the volume of water in Trinity aquifer, we need to first calculate the volume of the rock and multiply the volume of rock by the average porosity of the formation, for this we need to have raster data and use raster calculator. So, **how to create raster from point features / well data?**

The following is the summery of the steps that I followed to create a raster from points and then calculate the volume:

- a- Create a surface from the points using Geostatistical Analyst.
- b- Convert the surface to vector data.
- c- Convert the vector data to Tin.
- d- Convert the Tin to raster.
- e- Create Isopach raster using the raster calculator (subtract 2 rasters)
- f- Calculate the volume of rock for the Isopach raster using 3D Analyst→ Surface Analysis→ Volume--→Calculate statistics.
- g- Multiply the rock volume by the average porosity. (Volume of water in Aquifer=Volume of rock x average porosity of the formation)

The above steps in detail:

Creating Surface from the point features:

There are two ways to create a surface from the point features using the interpolation methods that we discussed in class (Inverse Distance weighted-IDW, Spline and Kriging).

6

The first way is from Spacial Analyst which is not friendly and the second is Geostatistical Analyst.

1- Surface from Spatial Analyst:

Spatial Analyst- \rightarrow Interpolate to raster- \rightarrow spline

Y X 0 0 0	Spatial Analyst • Layer: URG_Top_
3+225 0 0	Distance +
	Dgnaity
Inverse Distance Weighted	Jinterpolate to Raster 🔹 🕨
Spline	Surface Analysis
Kriging	Cell Statistics
	Neighborhood Statistics
	Zonal Statistics
	Zonal Histogram
	Beclassify_
	Rester Calculator
	Convert +
	Options

Input points: select the well data points

Z value fields: select the column that you want to create the surface from, in this case I selected the elevations for Upper Glen Rose formation UGR.

No of points: is the number of the neighboring points

Output raster: (where you want to save the rater to be saved permanently)

line	8 ×	
input points: Z value field: Spline type:	Well_p_UTM VGR_Top_El Regularized	
Veight: Number of points:	0.1	
)utput cell size:)utput raster:	200 <temporary></temporary>	
	OK Cancel	

The area in the middle represent the zero values, it is pretty flat. This is not a reasonable surface because these wells with zero values are not penetrating this formation. Also, when this surface converts to raster, the maximum and minimum elevations exceed the actual range. **We need to find another way!!!!**

After applying different tools and methods, I realized that using the Geospatial analysis tool is the best solution to give us a raster with the actual maximum and minimum elevations.

2- Creating surface from Geostatistical Analyst tool:

From Geostatistical Analyst-→ Geostatistical Wizard

🤶 pr	oject - ArcN	/lap - ArcInfo	
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>B</u> ookmarks	<u>I</u> nsert
Geo	statistical A	nalyst 🔻	
	E <u>x</u> plore Dat	ta	•
Ť	Geostatisti	cal <u>W</u> izard	
- 535	Create <u>S</u> ub	sets	
- 😰	T <u>u</u> torial		
2	Geostatisti	cal <u>A</u> nalyst He	elp

Area of zero values

I used the Local Polynominal Interpolation method:

Input data: select the point shape file

Attribute: select the column that you want to create the surface from (e.g, elevation)

Geostatistical Wizard: Choose Input Data and Met	thod ? X	Ge statistical Wizard - Loca	I Polynomial Interp	alation: Step 1 of 2 - Set	Parameters (Standard	Options)
Methods: Inverse Distance Weighting Global Polynomial Interpolation Local Polynomial Interpolation Dadial Back Encritore	Dataset 1 Validation Input data: 🔶 Well_p_UTM 💌 🚅	Advanced Options >>	Global: 42%	Neighborhood	58% :Local	Power: 3 🛧
kadua dasis Funcuoris Kriging Cokriging	Attribute: LGR_Top_EI X field: Shape Y field: Shape If Use NODATA value: d					
About Local Polynomial Interpolation Local Polynomial (JP) is a moderately quick determin the global polynomial method, but there are more p The method provides prediction surfaces that are o methods do not allow you to investigate the autoor than kriging. There are no assumptions required of	nistic interpolator that is smooth (inexact). It is more flexible than parameter decisions. There is no assessment of prediction errors. comparable to kriging with measurement errors. Local polynomial orrelation of the data, making it less flexible and more automatic the data.			105.00	582.67 940.49	1082.5 1390
Learn more about Local Polynomial Interpolation	<back next=""> Finish Cancel</back>			< Back	Next > Fini	sh Cancel

Power and neighborhood to be defined.

The resulted Surface looks like the following:

But we can't use this surface to do calculations; it is not recognized as a raster. Next step is to convert this surface to vector:

Right click on resulted surface- \rightarrow Data- \rightarrow Export to vector

Vector from surface

Then Create a Tin from vector:

From 3D Analyst select: Create/Modify TIN- \rightarrow Create Tin from Feature Create TIN From Features ? × Inputs Check the layer(s) that will be used to create the TIN. Click a layer's name to specify its settings. Lavers: Settings for selected layer 2 LGR_vector . Feature type: 2D lines co_Cr_iso_contour UTM_q_Well_ Height source: mask river24k_nhd • Triangulate as: hard line Lake -Tag value field: 4 Þ Output TIN: C:\Users\saa2449\AppData\Local\Temp\tin6 È OK Cancel

Tin from vector

9

Then Convert Tin to raster:

Spacial Analyst-- \rightarrow convert- \rightarrow convert Tin to Raster

Convert TIN to	Racter				7 X		Blanco	
Converts a T3	N to a nester of a	enetion, i	dapa, ar i	apect.			1	
Input TINI	101,168				- 🖬			
Attribute:	Devetor		•			1		
Z factors	1.0000							Hays
Cell sizes	200	Raws:	311	Columns	341			
Output rester.	R:1pas244916	15 Projec	TLOR, RA	ster	1			25
			08		Cancel			

Finally, this raster has the actual elevations of the formation. Now we can start using raster calculator.

To calculate the volume of rock, we need to have Isopach/ thickness map. This means the top of the formation subtract from the bottom to calculate the thickness of a given formation. In this case, Trininty aquifier composed of several aquifiers, so, we need to divide the whole section to 4 members because they don't have different lithology that differ the porosity. Please see (figure 1).

Creating Isopach map/raster:

Spacial analyst -→raster calculator

Hammet_Raster	•	7	8	9	=	0	And
Henser Laster LGR_Raster	/	4	5	6	>	>=	Or
Sligo_Raster UGR_Raster	•	1	2	3	<	<=	Xor
Upper_member ∢ ►	+		D		()	Not
[0.0V_vælet] - [Heipet]	raster	Ш					
	1		C	_	C		

For Upper member: GRU raster-Hensel raster- \rightarrow evaluate

The new raster is Isopach, it was projected as NAD_1983_UTM_Zone_14N that makes problem in the X, Y and Z units. They should be all in feet or meter. In this case I changed the projection of the isopach to **NAD 1983_State plane_Texas_Central FIPS_4023_Feet.** Now the units are unified and all in feet and the z factor to be 1.

The Isopach can be used now to calculate the volume of the rock for the Upper member that composed of Upper Glen Rose (GRU) and Lower Glen Rose (LGR).

Open 3D analyst \rightarrow Surface analysis- \rightarrow Area and Volume- \rightarrow

Input the thickness raster- \rightarrow calculate statistics

Area and Volume Statis	tics	? <mark>×</mark>	
Calculates area and vol specified height.	ume statistics for a surface	above or below a reference plane at	a
Input surface: R:\s	aa2449\GIS\Project\Up_UG	_hens_sp 💌 🖬	2
Reference parameters Height of plane: 4	s 75.35		
Input height range Z	min: 475.35	Z max: 929.86	
 Calculate statistic 	s above plane		
C Calculate statistic	s below plane		
Z factor:	0000		
Output statistics			
Calculate statistics			
2D area:	Surface area:	Volume:	
15707496362.72	15707693874.03	1988148292438.03	
Save/append stat	istics to text file		
R:\saa2449\GIS	\areavol.txt		
		Done	

I repeated the above step 3 times to calculate the volume of the other three members that will be explained in Table 2

Area and Volume Statistics	S Area and Volume Statistics
Calculates area and volume statistics for a surface above or below a reference plane at a specified height. Input surface: Rt/saa2449/GIS/Project/Middle1_Iso_ProjectRaster.img Reference parameters Height of plane: -1013.60 Input height range Z min: -1013.60 Calculate statistics above plane Calculate statistics above plane	Calculates area and volume statistics for a surface above or below a reference plane at a specified height. Input surface: R:\saa2449\GIS\Project\Middle2_Iso_ProjectRaster.img Reference parameters Height of plane: -1013.60 Input height range Z min: -1013.60 Z max: 363.49 C Calculate statistics above plane
C Calculate statistics below plane	C Calculate statistics below plane Z factor: 1.0000
Output statistics Calculate statistics	Colculate statistics Calculate statistics 2D area: Surface area: Volume:
20 area: Surrace area: volume: 2940480000.00 2941844670.94 3042194395607.87 Save/append statistics to text file R:\saa2449\GIS\areavol.txt Image: Comparison of the state of	31650936698.00 31652303355.10 32745776961038.81 Save/append statistics to text file
Done	Done

Lower Member: Sligo (Ksl) and Hosston(Kho)

R:	saa2449\GIS\Project\Low	ver_Iso_ProjectRaster.img	2
Reference paramete	ers		
Height of plane:	-602.05		
Input height range	Z min: -602.05	Z max: 364.69	
Calculate statist	ics above plane		
C Calculate statist	ics below plane		
	ca below plane		
Z factor:	1.0000		
Output statistics			
Calculate statistics	1	~	
2D area:	Surface area:	Volumer	
2D area.	Surface area.	volume.	
5264392248.97	5264882072.57	4418015401898.75	
Save/append st	atistics to text file		
	-		602
R:\saa2449\GI	S\areavol.txt		

Now we have the volume of the rocks, we can find volume of water:

	Formations	Volume of rock	Average	Volume of water	Volume of water Cubic	Volume of water Cubic
	Formations	(Cubic Feet)	porosity	Cubic feet	wieter	Kilometer
Upper member	Upper Glen Rose (KGRU)+Lower Glen Rose	1988148292438	0.06	119288897546	3377885426	3.377885426
Middle member 1	Hensel(Khe)	3042194395608	0.11	334641383517	9475988761	9.475988761
Middle member 2	Hammet(Kha)+Cow Creek	32745776961039	0.06	1964746617662	55635428800	55.6354288
Lower member	Sligo(Ksl)+Hosston(Kho)	4418015401899	0.06	265080924114	7506255894	7.506255894
Total				2,683,757,822,839	75995558881	75.99555888

(Volume of water in Aquifer=Volume of rock x average porosity of the formation)

Table 2: Volume of water calculation in Trinity Aquifer

The Total volume is approximately 76 cubic kilometers. Please note that this is a rough calculation or what is called back of the envelope calculation because:

- The barriers such as (faults) have not been taken into account: This might be one of the short comings of ArcGIS, it doesn't work when you input the barriers using any of the methods when creating a surface.
- The average porosity is estimated: to have an accurate percentage, the average porosity should be calculated form type logs for each formation.

The Second objective of this project is to explore the potential of the software and understand what artifact of gridding algorithm does when a contour map of a surface creates and displays.

Using the rasters that I created for the surfaces, I have created counters as flows:

Spatial Analyst: Surface Analysis-→Contour

Contour lines of top of GRL formation.

I created structure maps for each aquifer. As discussed earlier, I couldn't include the faults as barriers, so the offset of the faults will not be displayed. That is one of the differences between my maps and the hand contoured maps by Wierman et al, 2010 study. The following section is a comparison between the maps.

1- Lower Glen Rose Structure Map by Wierman et al, 2010. Northeast structure rotates to east northeast in Travis Co. Normal faulting within the lower Miocene age BFZ truncated the mapped east west plunging nose. Please note the offsets of the faults

Figure 2: Hand contoured Lower Glen Rose Structure map by Wierman et al, 2010 Contour interval = 50 ft

The following is Lower Glen Structure map that I created using the interpolation methods by ArcGIS. Please note that the faults are shown here without being a barrier and showing offsets. In general, the map is displaying the trend (north east structure) and the same range of the highest elevations and lowest which is consistent with the hand contoured map

Lower Glen Rose Structure Map

Figure 3: Lower Glen Rose Structure Map created by ArcGIS Contour interval: 100ft

2- Hammett Structure Map: The map shows regular dip to the east-north east across the study area. Faulting along BFZ truncates the mapped plunging nose.

Figure 4: Hammett structure Hand contoured map by Wierman et al, 2010. Contour interval: 100ft

Figure 5: Hamett Structure map using ArcGIS. Contuor interval: 100ft

3- Hensel structure map Eastward trending structural dip in Blanco County. My map is giving a general trend of the structure.

Figure7: Hensel structure created by ArcGIS. Countour interval 100ft.

Conclusion:

Trinity Aquifer is one of the major aquifers and one of the ground water resources in Texas. It would be interesting if we know the volume of the water in this major aquifer. In this study, I used data from previous studies and used different tools of ArcGIS to calculate the volume of water in trinity aquifer which is approximately 76 cubic kilometers. This study area is within Blanco, Hays, and Travis Counties, Central Texas

This is a rough calculation without taking the barriers into consideration. Also, the used average porosity is estimated. The accurate percentage of the porosity should be found in type logs. If we find a way to include the barriers, ArcGIS will be a very useful tool to find a reasonable estimation of the volume of water in an aquifer which is an important resource.

There are tools to create structure and Isopach maps from point features in ArcGIS. We need to explore to find the way that gives the best or the more realistic display of the structure. After applying a number of tools, I realized that Geostatistical analyst method is a good method to create a surface with no zero values of the points and gives reasonable a trend.

References

D.A. Wierman, A.S. Broun, and B.B Hunt, 2010, Hydrogeologic Atlas of the Hill Country Trinity Aquifer, Blanco Pedernales Groundwater Conservation Districts, July 2010.

http://www.twdb.state.tx.us/GwRD/GMA/PDF/TrinityAquifer.pdf

http://www.capcog.org/information-clearinghouse/geospatialdata/#aquifers