
ESRI Object Models; Data Capture

	FID	Shape*	ld	Number	NAD27 East	NAD27North
•	0	Point	0	230	490921	4636832
	1	Point	0	123	491124	4637700
	2	Point	0	124	491375	4638149
3	3	Point	0	125	491522	4638902
1	4	Point	0	126	491653	4638751
	5	Point	0	127	492872	4639489
-	6	Point	0	128	492963	4639515

Feature Class (spatial table)

Number	Age_Ma	1_sigma	Rx_Type	Size_kg
123	142	1.5	B_schist	3.4
124	136	2.0	G_schist	1.3
125				

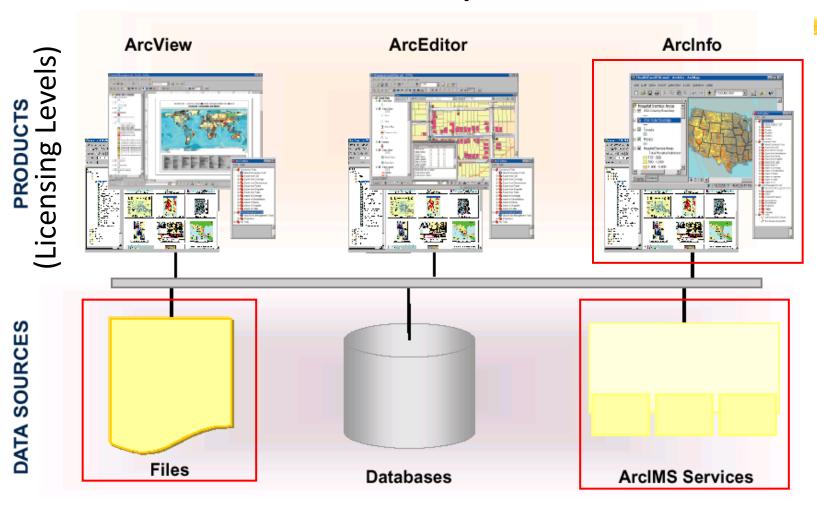
Object Class (nonspatial table)

Conceptual Models

Characterized all features or phenomena as:

- # Discrete objects; e.g. wells, roads, rock bodies, etc.
 - Object-based models
- Continuous phenomena; e.g. gravity, topography, temperature, snowfall, soil pH, etc.
 - Field-based models

Outline

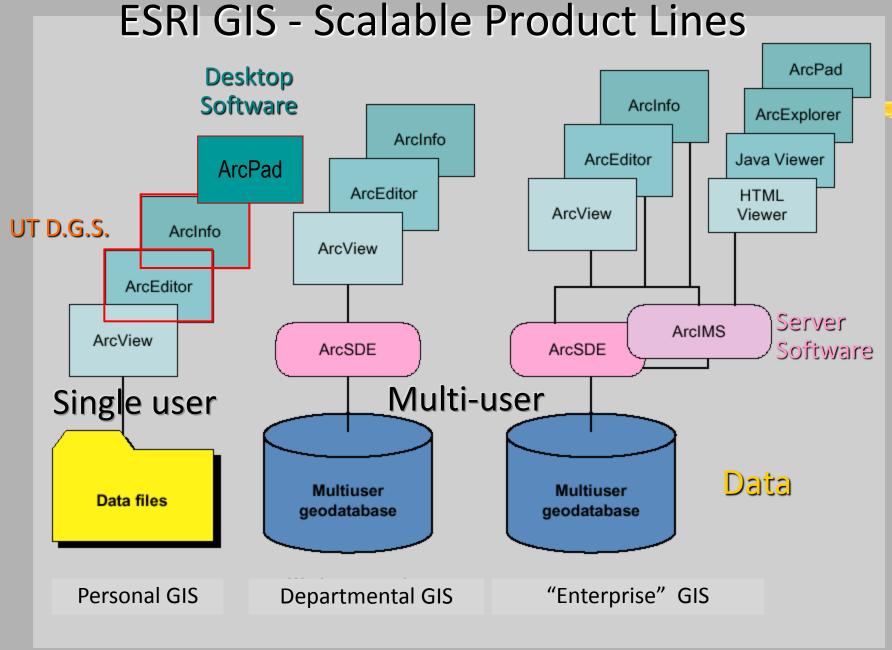

- **ESRI Software Family**
- # ESRI Object Data Models
 - History
 - □ Data Organization Physical Models
 - Coverage
 - Shapefile
- # Data Capture
 - Digitizing
 - "Heads Down"
 - "Heads Up"
 - Building Topology

ESRI = Environmental Systems Research Institute, Inc.

Some ESRI History...

ESRI	Arc/Info	ArcView	ArcGIS
Date	1980-1999	1993-1999	2000 - present
Versions	1-7	1–3.2	8.0 – 10.2
Data Model	Coverage	Shapefile	Geodatabase
O.S.	Unix, PC DOS	Windows	Windows
Scripting Language	Arc Macro Language (AML)	Avenue Scripting	Vis. Basic for Appl. (VBA), Python
Database Software	Proprietary; Arc Tables	DBase	M.S. Access; ArcSDE for Oracle, etc.

ArcGIS Desktop Levels


9/18/2014

ArcGIS Licensing Levels

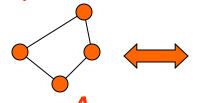
- **ArcView** Make maps, do queries, some spatial analysis, some editing (shapefiles, personal geodatabases) included with GTK ArcGIS Desktop
- ****ArcEditor** plus edit multi-user geodatabases; more tools in toolbox
- ****ArcInfo** full functionality; comes with ArcInfo Workstation (i.e. "legacy" ArcInfo v. 7). *UT D.G.S. licenses*

ArcGIS Extensions

	ArcView, ArcEditor, and ArcInfo		Arcinfo only
ArcGIS Spatial Analyst	 Advanced raster modeling ARC GRID calculator with ARC GRID algebra VBA for raster analysis 	+	 ARC GRID program in ArcInfo Workstation ARC GRID commands in Arc program
ArcGIS 3D Analyst	 ArcScene™-real-time interactive three-dimensional scenes Scene views in ArcCatalog Three-dimensional modeling tools ARC TIN tools 	+	 ARC TIN™ commands in Arc program Surfacescene command
Geostatistical Analyst	 Advanced kriging and surface modeling Exploratory spatial data analysis tools Probability, threshold, and error mapping 		

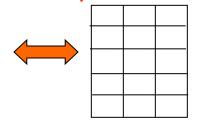
ESRI Data Models

#Topologic:


- ArcInfo Coverage
- △ ArcInfo ".EOO" export format for coverage
- ArcGIS Geodatabase

****Non-Topologic:**

ArcView (legacy) - Shapefile


Early ESRI Data Models

Spatial Data

Geographic coordinates and attributes are stored in **separate** but linked files

Aspatial Data

Info

Coverages

- Developed for workstation Arc/Info ~ 1980
- Complex structure, proprietary format
- Attributes in Info tables

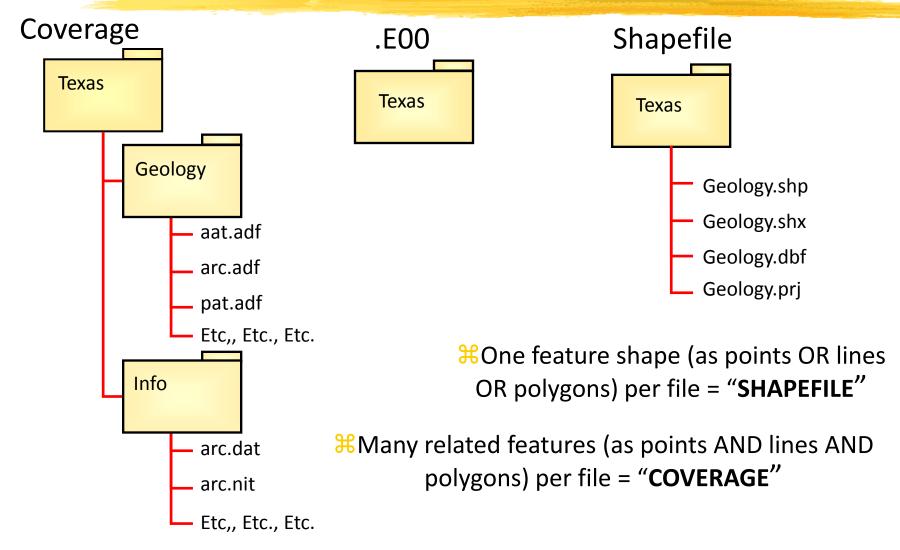
Shapefiles

- Developed for ArcView ~ 1993
- Simpler structure in public domain
- Attributes in dBase (.dbf) tables

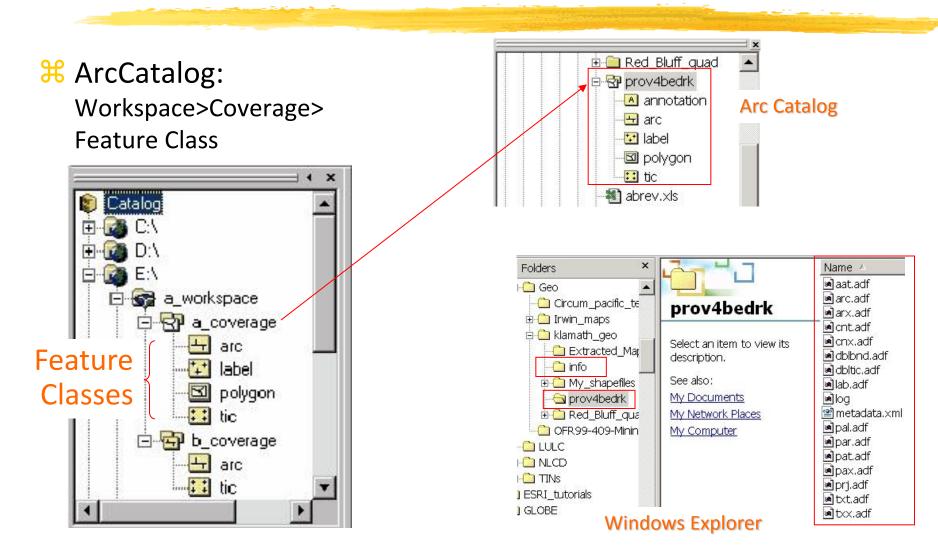
Slide courtesy of D. Maidment

Data Organization

Coverage


- Data split between coverage and INFO folders
- Common boundaries between polygons stored once
- Topology explicitly storedPlanar graph maintained

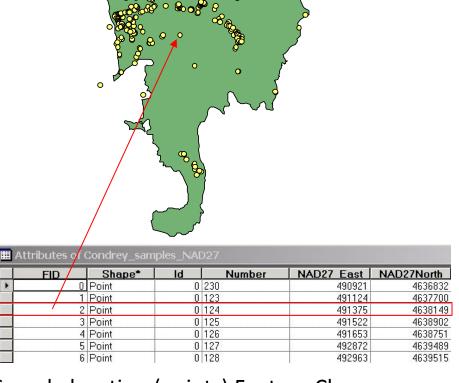
As in previous lecture


Shapefile

- Data divided among three or more *files* (.shp, .shx, .dbf, .sbx, .sbn, et al.)
- Common boundaries between polygons stored twice
- Topology created on-the-flyPlanar graph not required

Folder/File Organization

Data Organization: Coverage in Windows Explorer and ArcCatalog



Feature Class

A collection of geographic objects with the same geometry (point, line, polygon) that share the same attributes.

X A shapefile contains one feature class

A coverage can contain many feature classes

Sample location (points) Feature Class

ArcInfo Coverage

- **X**An integrated, homogeneous set of feature classes (pts., lines, polygons) stored together
 - Spatial (coordinate) data stored in binary files;
 - Attributes and topologic data stored in INFO tables
 - Stored within a "Workspace"

ArcInfo Coverages can contain:

#Primary feature classes:

- Points, with attributes in PAT (point attribute table)
- Nodes, with attributes in NAT
- Arcs, with attributes in AAT
- Polygons, with interior label points and attributes in PAT

Coverages feature classes can contain:

Secondary features:

Tics – registration points for digitized data

Annotations – text for map

Links – vectors used for adjusting local area to known locations (spatial adjustment)

Coverages can also contain:

#Composite features:

Routes – collections of Arcs with measurement system

Regions – collections of polygons; adjacent, noncontiguous or overlapping

Shapefile format

- Simpler than coverage; doesn't store topology
- #Feature classes stored independently i.e. points, lines and polys. stored in physically separated files (e.g. no shared INFO table)
- #For each type, spatial data stored in a .shp file, attribute data in a .dbf table.
- # "Null" or "No Data" numerical values not supported in attribute tables

Shapefiles in ArcCatalog/Explorer

Folder / Shapefile # Three or more files per feature class ⊕ @ GRD 🕀 🦲 photos B SHP Name / corrected corrected uncorrected uncorrected SHP deer_feed.dbf deer feed.shp **Point** deer feed.sbn 🔠 e-fence.shp Select an item to Feature 1 deer_feed.sbx 🖺 exp0319a.txt deer_feed.shp class See also: flags&base.shp deer_feed.shx My Documents hickory.shp e-fence.dbf My Network Places 🛅 Hickory_NoGPS.shp e-fence.sbn My Computer e-fence.sbx main_road.shp e-fence.shp structures.shp ■ e-fence.shx

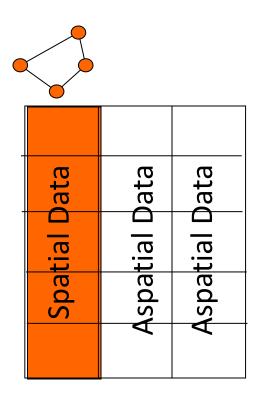
Window Explorer

ArcCatalog

Shapefile feature class types:

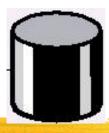
- **#Point**, Multipoint
- point

- multipoint
- **#Polyline** (line with several paths)


- **#Polygon**
- Ring closed, nonintersecting path simple poly.
- Disjointed Rings multiple polygons define feature
- Nested Rings "Island" or "Atoll" polygons

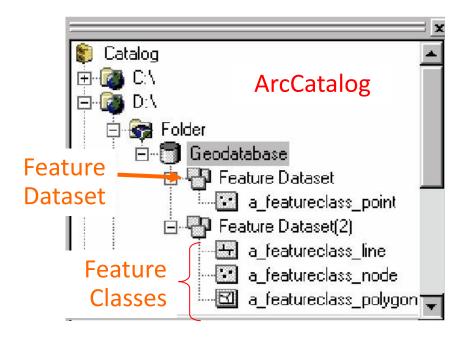
Shapefile Topology

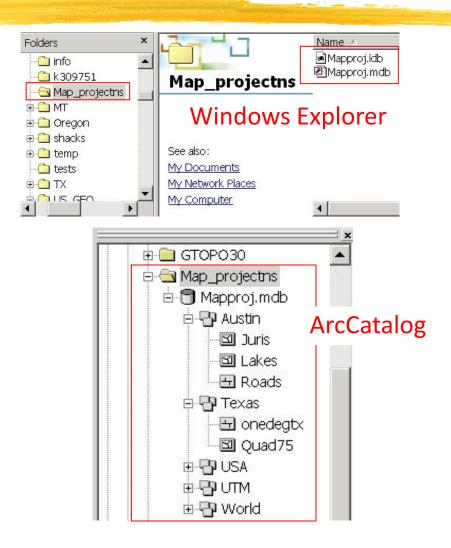
- **Shapefiles don't store information about adjacency**
- #Topology is generated on the fly vertices stored in systematic fashion to deal with containment and adjacency
- # Planar enforcement can be broken by editing not required in structure of shapefile
- ## But...tools available to maintain planar enforcement when digitizing in heads-up mode


Geodatabase model

- Stores geographic coordinates as one of many attribute in a relational database table; no separation between aspatial and spatial data, as in earlier models
- **33** Uses MS Access for "Personal Geodatabase" (single user)
- Uses Oracle, DB2 or other commercial relational databases for "Enterprise GIS" (many simultaneous users).

Slide courtesy of D. Maidment


Geodatabase Model



- HOBITAL Data structure capable of storing objects with behaviors and relationships, not merely graphical shapes with topology and attributes
- #All spatial and attribute data for a feature are stored in a row of a single table
- ## A Geodatabase is a top-level container for feature classes, coverages, shapefiles, rasters, et al. (more later) ALL DATA CAN BE IN ONE CONTAINER AND ARE THUS PORTABLE

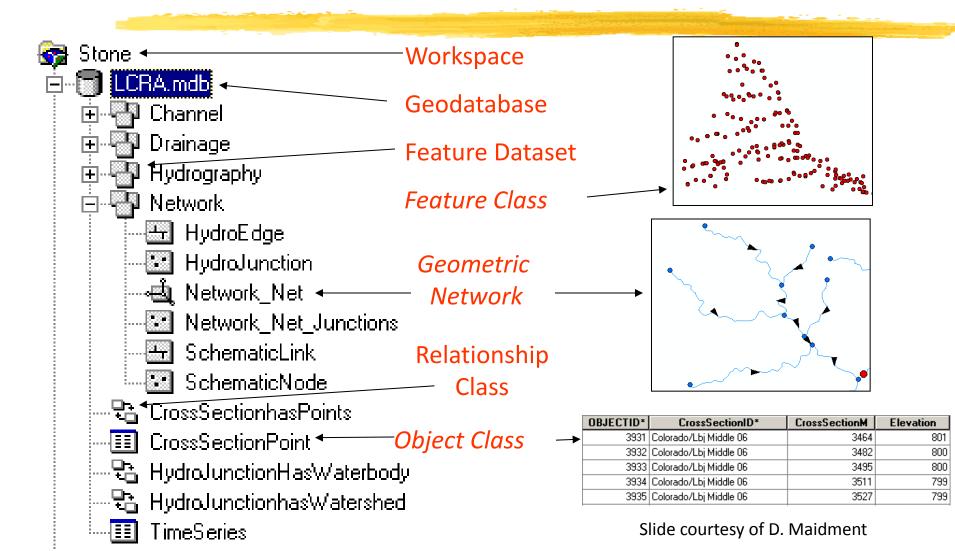
Geodatabases in ArcCatalog/Windows Explorer

Geodatabase/Feature
Dataset/Feature Class

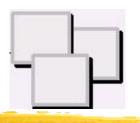
Feature classes in Geodatabase include:

- # Points, Multipoints (groups of points)
- **#** Lines
- **#** Polygons

Plus


- Network Junctions (special Nodes)
- Network Edges

For geometric networks


Plus other classes

- Relationship classes
- Object Classes tabular data without geography

ArcGIS Geodatabase

Geodatabase Feature Datasets

- **Set of Feature Classes, some with topologies,**that share the same spatial reference
- **X** All feature classes with topologies must be stored within a Feature Dataset
- # Analogous to coverage

Object Class

#A collection of *nonspatial* objects that share the same attributes and are stored in a table (i.e. a simple table)

Number	Age_Ma	1_sigma	Rx_Type	Size_kg	
123	142	1.5	B_schist	3.4	
124	136	2.0	G_schist	1.3	
125					

Object Class (nonspatial table)

Relationship

- **#A relationship** is an association or link between two objects in a database.
- A relationship can exist between spatial objects (features in feature classes), nonspatial objects (objects in object classes), or between spatial and non-spatial objects.

Relationship class

E.g. relationship between spatial and non-spatial objects

## Attributes of Condrey_samples_NAD27							
	FID	Shape*	ld	Number	NAD27 East	NAD27North	
•	0	Point	0	230	490921	4636832	
0 5	1	Point	q	123	491124	4637700	
No.	2	Point	0	124	491375	4638149	
100	3	Point	0	125	491522	4638902	
100	4	Point	0	126	491653	4638751	
8	5	Point	0	127	492872	4639489	
	6	Point	0	128	492963	4639515	

Feature Class (spatial table)

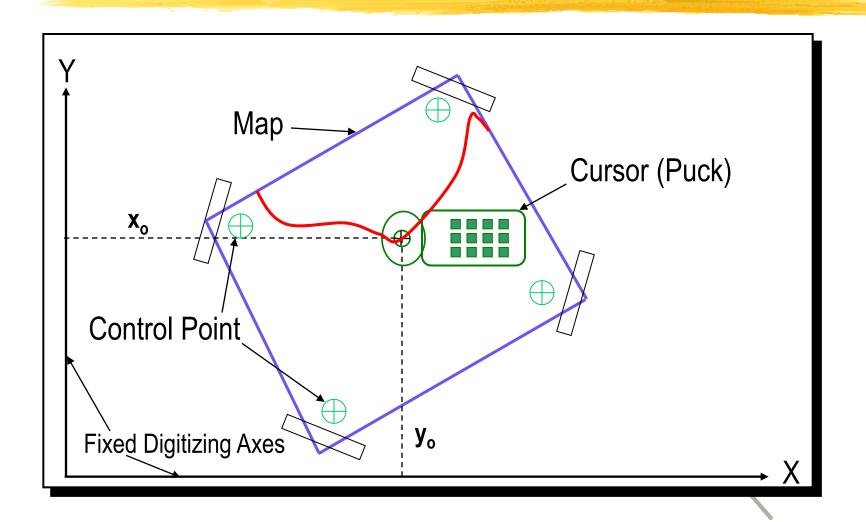
Number	Age_Ma	1_sigma	Rx_Type	Size_kg
123	142	1.5	B_schist	3.4
124	136	2.0	G_schist	1.3
125				

Object Class (nonspatial table)

Paper Map → Files Of Coordinates

- **#How are they organized?**
 - Data Models, Topology
- **#How are they stored?**
 - Data Organization
- **#How are coodinates captured?**

Data Entry, Encoding


Digitizing is:

- **#**Conversion of spatial data to digital form
 - Lines, points or polygons are traced to record coordinates of their locations
- #Term conventionally used to denote the process of creating VECTOR data
 - Scanning produces raster data ("bit maps")
 - But software exists to convert raster to vector so can digitize ("vectorize") scanned images

Digitizing is accomplished via:

- # Digitizing table or tablet
 - "heads-down" digitizing
 - △ Large table once available in Rm. 6.202
- #A mouse, on screen
 - "heads-up" digitizing
 - Aerial photos, other raster or vector sources as base to digitize from
- **Software** that converts raster to vector
 - ✓ Vectorization batch or interactive modes, e.g. ArcScan extension

Digitizing table

Digitizing with a tablet involves:

- ## Digitize 3 reference points define position of map w.r.t. digitizing table
- Establishing 4 or more control points distinctive features at known locations that can be used to register the map to ground coordinates (e.g. UTM, lat./lon.)
- Separating features as point, line or polygon and tracing them to separate files (themes)

Digitizing strategies governed by:

- #Will data be used for queries and analysis or just visual display?

 - "True" G.I.S. functionality or not?
- ****What are accuracy requirements and how much generalization is permitted?**

Spaghetti vs. Topologic models

Spagnetti: Points, lines, polygons and their attributes stored in tables

#Topological:

Same, but with corresponding tables of information about what's adjacent or what's within what

"Building Topology"

- #Clean: Edit to ensure planar enforcement
 - Remove sliver polygons & gaps between polygons
 - Correct overshoots, undershoots, leaky polygons
- # Build: Add topological attributes to spaghetti
 - Manual
 - Automatic
- # Digitizing with topology performed in ArcInfo or with tools in ArcToolbox, ArcMap and ArcCatalog
- #Changes to polygons or lines affect topological attributes Strict rules for editing coverages in ArcMap

Heads-up digitizing

- #Decide whether new file will have planar enforcement
- Create new point, line or polygon feature class(es) in ArcCatalog
- **#**Edit feature class(es) to add features and attributes
- **#**Stop editing
- **Save** edits as part of new feature class