Spatial Interpolation & Geostatistics

Kriging – Step 1
- Describe spatial variation with Semivariogram

Kriging – Step 2
- Summarize spatial variation with a function
- Several choices possible; curve fitting defines different types of Kriging (circular, spherical, exponential, gaussian, etc.)

Kriging – Step 2
- Key features of fitted variogram:
 - Nugget: semivariance at \(d = 0 \)
 - Range: \(d \) at which semivariance is constant
 - Sill: constant semivariance beyond the range
Kriging – Part II

- **Goal:** predict values where no data have been collected
- Relies on first establishing:
 - DEPENDENCY – z is, in fact, correlated with distance
 - STATIONARITY – z values are stochastic (except for spatial dependency they are randomly distributed) and have no other dependence – use "detrending" or transformation tools if not Gaussian
 - DISTRIBUTION – works best if data are Gaussian. If not they have to first be made close to Gaussian.

ESRI Geostatistical Analyst Products

- Map types:
 - Prediction – contours of interpolated values
 - Prediction Standard Errors – show error distribution, as quantified by minimized RMS error (see below)
 - Probability – show probability of values exceeding a specified threshold
 - Quantile – show where thresholds overestimate or underestimated predictions

ESRI Geostatistical Analyst Products

- Some Kriging Products
 - Prediction map – interpolated values
 - Probability map: showing where critical values exceeded

Figure from ESRI "Intro. to Modeling Spatial Processes Using Geostatistical Analyst"

Figure from ESRI "Using Geostatistical Analyst"

Dark orange and red indicate a probability greater than 62.5% that radiocesium contamination exceeds the critical threshold in forest berries.

Prediction map of radioceasium soil contamination levels in Belarus after the Chernobyl nuclear power plant accident.

Probability Map
Prediction Map
Kriging – Part II

- **Goal**: predict values where no data have been collected
 - Relies on first establishing:
 - **DEPENDENCY** – z is, in fact, correlated with distance
 - **STATIONARITY** – z values are stochastic (except for spatial dependency they are randomly distributed) and have no other dependence – use "detrending" or transformation tools if not Gaussian
 - **DISTRIBUTION** – works best if data are Gaussian. If not they have to first be made close to Gaussian.

Spatial Dependence:

Semivariogram and Semivariogram Surface

- Figures from ESRI “Intro. to Modeling Spatial Processes Using Geostatistical Analyst”

Spatial Dependence:

Cross-Validation Diagnostic
- Use a subset of the data to test measured vs. predicted values

Kriging – Part II

- **Goal**: predict values where no data have been collected
 - Relies on first establishing:
 - **DEPENDENCY** – z is, in fact, correlated with distance
 - **STATIONARITY** – z values are stochastic (except for spatial dependency they are randomly distributed) and have no other dependence – use "detrending" or transformation tools if not Gaussian
 - **DISTRIBUTION** – works best if data are Gaussian. If not they have to first be made close to Gaussian.
1. SPATIAL DEPENDENCY

- Test with semivariogram & cross-validation plots
- Violates Stationarity: detrend first

2. STATIONARITY - Randomness

- Data variance and mean is the same at all localities (or within a neighborhood of nearest points); data variance is constant in the neighborhood of investigation
- Correlation (covariance) depends only on the vector that separates localities, not exact locations, number of measurement or direction

California Ozone Demo.

- Data in "Geostat_demo" folder

ArcGIS Kriging Processing Steps

1. Add and display the data
2. Explore the data’s statistical properties
3. Select a model to create a surface – make a prediction map!
4. Assess the result
5. Compare to other models
Data Exploration

1. Examine the distribution – normal (Gaussian)?
 Transformation to normal required?
 - Histograms and QQPlots

2. Identify trends, if any
 - Trend Analysis

3. Understand spatial autocorrelation and directional influences
 - Semivariogram analysis

Data Exploration:

Examine the Distribution

- Normal (Gaussian) distribution? (central value, spread, symmetry; mean and median the same?)
- Histogram tool, QQPlot tool (compare real and standard normal distributions)

11/8/2018

Data Exploration:

Identify Trends, If Any

- Underlying trends affect Kriging assumption of randomness – remove and work with “residuals”
- Trend Analysis tool

11/8/2018

Data Exploration:

Spatial Autocorrelation & Directional Influences

- Variogram Analysis:
 - Look for correlation with distance
 - Look for directional trends among pairs of points
 - Semivariogram/Covariance Cloud tool

11/8/2018
ArcGIS Kriging Processing Steps

1. Add and display the data
2. Explore the data's statistical properties
3. Select a model to create a surface – make a prediction map!
4. Assess the result
5. Compare to other models

Mapping Ozone Concentration

1. Incorporate results of Data Exploration into Model selection
 - This example:
 - Remove underlying trends discovered during data exploration that have a rational explanation. (Analysis is then performed on residuals and trend surface is added back into final surface) = “Detrending”
 - Remove directional trends between pairs of points in certain directions closer points are more alike than in other directions = “anisotropy removal”

Mapping Ozone Concentration – Interpolation & Cross Validation

2. Define search neighborhood for interpolation (c.f. I.D.W.)
 - Use a search ellipse (or circle) to find nearest neighbors; specify radii of ellipse, min. & max. number of points per sectors

3. Examine Cross Validation plot
 - Predicted vs. Measured for subset(s) of the data
 - “Mean error” should be close to zero
 - “RMS error” and “mean standardized error” should be small
 - “RMS standardized error” should be close to one.
Comparing Model Results

- Cross validation comparisons:
 - "Mean error" should be close to zero
 - "RMS error" and "mean standardized error" should be small
 - "RMS standardized error" should be close to one.

Probability Mapping with Indicator Kriging

- Task: Make a map that show the probability of exceeding a critical threshold, e.g. 0.12 ppm ozone for an 8 hr. period
- Technique:
 - Transform data to a series of 0s and 1s according to whether they are above or below the threshold
 - Use a semivariogram on transformed data; interpret indicator prediction values as probabilities