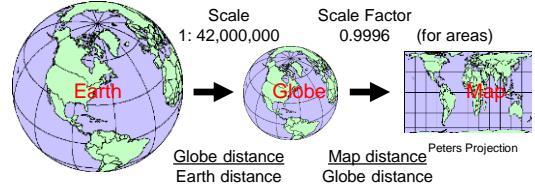


Map Projections & Coordinate Systems

1/25/2018

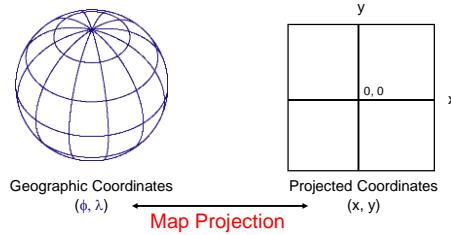

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

1

Laying the Earth Flat

How?

- Projections – transformation of curved earth to a flat map; systematic rendering of the lat. & lon. graticule to rectangular coordinate system.


1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

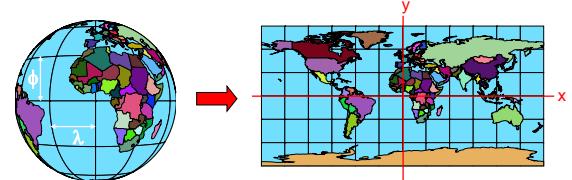
3

Laying the Earth Flat

- Systematic rendering of Lat. (ϕ) & Lon. (λ) to cartesian (x, y) coordinates:

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

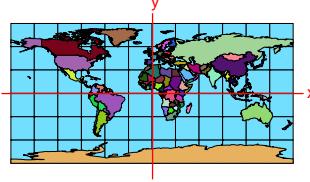

4

Laying the Earth Flat

- “Geographic” display – no projection

$$x = \lambda, y = \phi$$

- Grid lines have same scale and spacing


1/25/2018

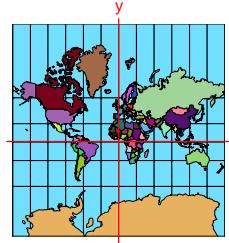
Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

5

“Geographic” Display

- Distance and areas distorted by varying amounts (scale not “true”);
e.g. high latitudes

1/25/2018


Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

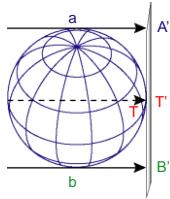
6

Projected Display

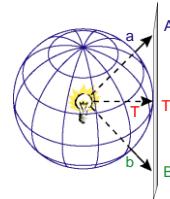
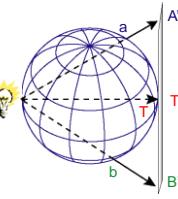
- E.g. Mercator projection:

$$\begin{aligned} x &= \lambda \\ y &= \ln [\tan \phi + \sec \phi] \end{aligned}$$

1/25/2018


Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

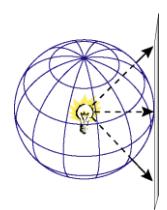
7



Laying the Earth Flat

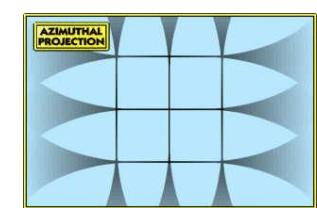
- How?

Projection types (“perspective” classes):

Orthographic

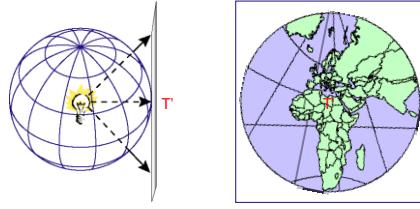

1/25/2018

GnomonicGeo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin**Stereographic**


8

Light Bulb at Center (Gnomic)

- Grid Lines “out of focus” away from point of tangency

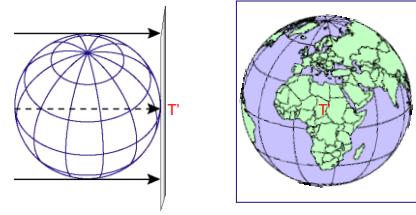

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

9

Gnomonic

- All great circles are straight lines
- Same as image produced by spherical lens

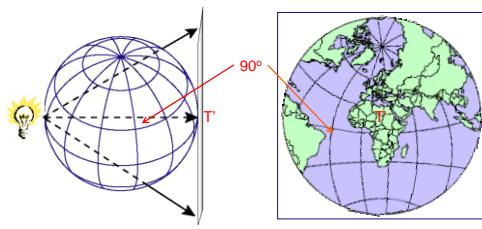

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

10

Orthographic

- Light source at infinity; neither area or angles are preserved, except locally


1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

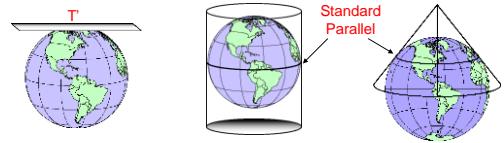
11

Stereographic

- Projection is **conformal**, preserves angles and shapes for small areas near point of tangency, larger areas away from point are distorted. Great circles are circles.

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

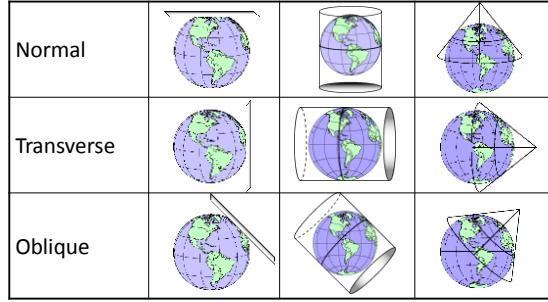

12

Developable Surfaces

- Surface for projection:

- Plane (**azimuthal projections**)
- Cylinder (**cylindrical projections**)
- Cone (**conical projections**)

Cylinder and cone produce a line of intersection (**standard parallel**) rather than at a point



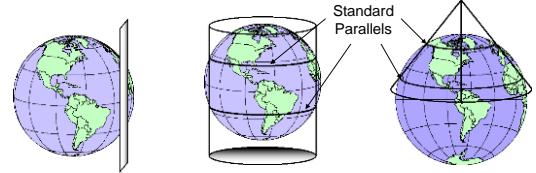
1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

13

3 orientations for developable surfaces

1/25/2018

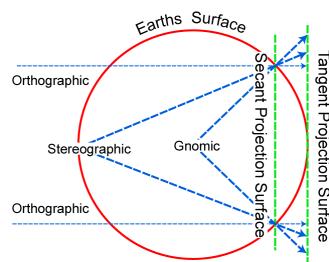

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

14

Tangent or Secant?

- ❑ Developable surfaces can be **tangent** at a point or line, or **secant** if they penetrate globe
- ❑ Secant balances distortion over wider region
- ❑ Secant cone & cylinder produce two standard parallels


1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

15

Tangent or Secant?

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

16

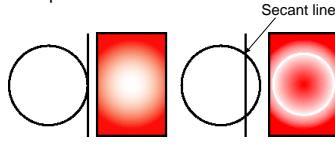
Projection produces distortion of:

- ❑ Distance
- ❑ Area
- ❑ Angle – bearing, direction
- ❑ Shape

Distortions vary with scale; minute for large-scale maps (e.g. 1:24,000), gross for small-scale maps (e.g. 1: 5,000,000)

Goal: find a projection that **minimizes distortion of property of interest**

1/25/2018

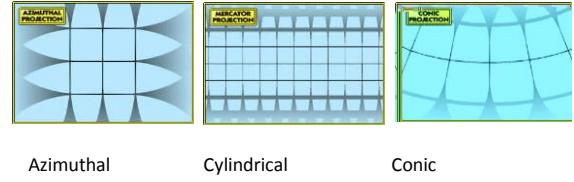

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

17

Where's the distortion?

- No distortion along standard parallels, secants or point of tangency.
- For tangent projections, distortion increases away from point or line of tangency.
- For secant projections, distortion increases toward and away from standard parallels.



Tangent
Geographic Coordinate Systems & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

1/25/2018

18

Distortions

Azimuthal

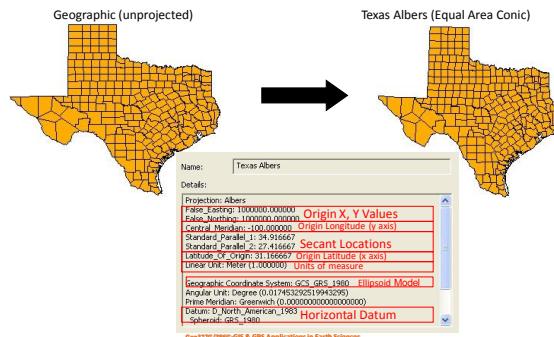
Cylindrical

Conic

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

19

How do I select a projection?


- Scale is critical – projection type makes very little difference at large scales
- For large regions or continents consider:
 - Latitude of area
 - Low latitudes – normal cylindrical
 - Middle latitudes – conical projection
 - High latitudes – normal azimuthal
 - Extent
 - Broad E-W area (e.g. US) – conical
 - Broad N-S area (e.g. S. America) – transverse cylindrical
 - Theme
 - e.g. Equal area vs. conformal (scale same in all directions)

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

20

What needs to be specified?

1/25/2018

21

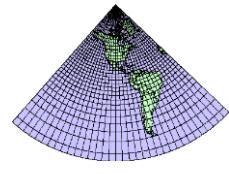
Projections in common use, US

□ Albers Equal Area Conic

- Standard parallels at $29^{\circ}30'$ and $45^{\circ}30'$ for conterminous US. Latitude range should not exceed $30^{\circ}\text{--}35^{\circ}$
- Preserves area, distorts scale and distance (except on standard parallels).
- Areas are proportional and directions true in limited areas.

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences


Institute School of Geosciences, University of Texas at Austin

22

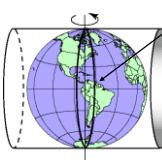
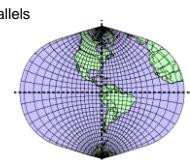
Projections in common use, US

□ Lambert Conformal Conic

- Projection used by USGS for most maps of conterminous US (E-W extent is large)
- Used by SPCS for state zones that spread E-W (Texas)
- Conformal

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences



Institute School of Geosciences, University of Texas at Austin

23

Projections in common use, US

□ Cylindrical

- Transverse Mercator – basis for UTM coordinate system and State Plane Coordinate Systems that spread N-S

Standard Parallels
3° apart

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Institute School of Geosciences, University of Texas at Austin

24

Rectangular Coordinate Systems

□ Universal Transverse Mercator (UTM)

- US military developed for global cartesian reference frame.

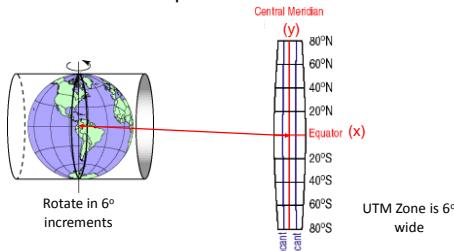
□ State Plane Coordinate System (SPCS)

- Coordinates specific to states; used for property definitions.

□ Public Land Survey System (PLS)

- National system once used for property description
- no common datum or axes, units in miles or fractional miles.

1/25/2018


Geo327G/386G: GIS & GPS Applications in Earth Sciences

Institute School of Geosciences, University of Texas at Austin

25

UTM Coordinate System

- ❑ T. M. secant projection is rotated about vertical axis in 6° increments to produce 60 UTM zones.

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Institutional School of Geosciences, University of Texas at Austin

26

UTM Coordinate System

- ❑ T. M. secant projection is rotated about vertical axis in 6° increments to produce 60 UTM zones.
- ❑ Zone boundaries are parallel to meridians.
- ❑ Zones numbered from 180° (begins zone 1) eastward and extend from 80° S to 84° N.
- ❑ Each zone has a central meridian with a scale factor in US of 0.9996 (central meridian is farthest from secants, meaning scale distortion is greatest here).
- ❑ Secants are 1.5° on either side of the central meridian.

Geo327G/386G: GIS & GPS Applications in Earth Sciences

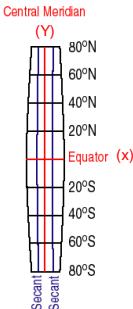
Institutional School of Geosciences, University of Texas at Austin

27

UTM Coordinate System

- ❑ Zone boundaries are parallel to meridians.
- ❑ Zones numbered from 180° (begins zone 1) eastward and extend from 80° S to 84° N.

1/25/2018

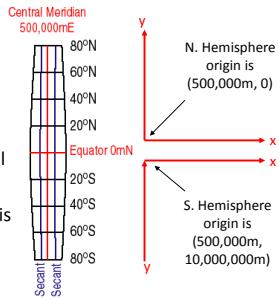

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Institutional School of Geosciences, University of Texas at Austin

28

UTM Coordinate System

- ❑ Central meridian of each zone in US has a scale factor of 0.9996 (max. distortion).
- ❑ Secants are 1.5° on either side of the central meridian.


Geo327G/386G: GIS & GPS Applications in Earth Sciences

Institutional School of Geosciences, University of Texas at Austin

29

UTM Coordinate System

- Locations are given in **meters** from central meridian (Easting) and equator (Northing).



1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

30

UTM Coordinate System

UTM Coordinates for central Austin:

Zone 14
621,000 mE, 3,350,000 mNGeo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

31

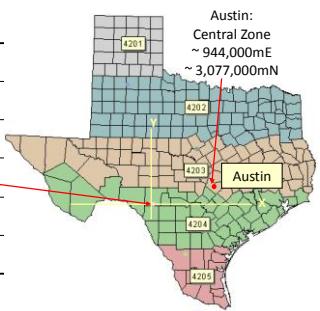
State Plane Coordinate System (SPCS)

- Developed in 1930's to provide states a reference system that was tied to national datum (NAD27); *units in feet*.
- Updated to NAD83, *units in meters*; some maps still show SPCS NAD27 coordinates.
- Some larger states are divided into "zones".
- X, Y coordinates are given relative to origin outside of zone; false eastings and northings different for each zone.

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin

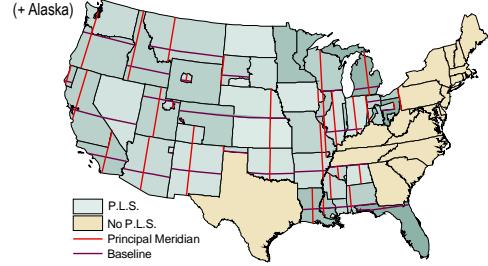
32


Texas NAD83 SPCS (meters)

Zone Code	Stand. Parallels	Origin	F. Easting F. Northing
4201	34.650	-101.50	200,000
North	36.183	34.00	1,000,000
4202	32.133	-98.50	600,000
N. Cent.	33.967	31.67	2,000,000
4203	30.117	-100.33	700,000
Central	31.883	29.67	3,000,000
4204	28.383	-99.00	600,000
S. Cent.	30.283	27.83	4,000,000
4205	26.167	-98.50	500,000
South	27.833	25.67	5,000,000

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institutional School of Geosciences, University of Texas at Austin


33

Public Land Survey System (PLSS)

- ❑ System developed to survey and apportion public lands in the US, c. 1785
- ❑ Coordinate axes are *principal baselines* and *meridians*, which are distributed among the states.
- ❑ Grid system based on miles and fractional miles from baseline and meridian origin.
- ❑ Not in Texas, nor 19 other states
- ❑ Units are miles and fractional miles; feet and yards are also in use.

Principal Baselines & Meridians

1/25/2018

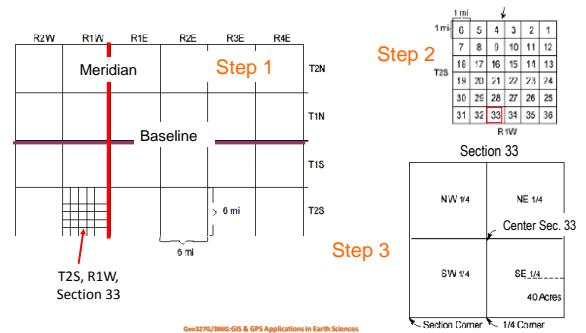
Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

34

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

35


PLSS Nominal Townships and Sections

- **Township:** Nominally 36 mi²
- **Section:** Nominally 1 mi² (640 acres)
- Once surveyed, Section and Township corners, by law, were accepted as "True"
- Adjustments for different Principle Meridians, survey errors & graft resulted in irregularities

30	29	28	27	26	25				8	9	10	11	12	13	14
31	32	33	34	35	36	37	38	39	15	14	13	12	11	10	9
6	5	4	3	2	1	2	3	4	22	23	24	25	26	27	28
7	8	9	10	11	12	13	14	15	27	28	29	30	31	32	33
18	17	16	15	14	13	12	11	10	34	35	36	37	38	39	30
19	20	21	22	23	24	25	26	27	4	3	2	1	0	1	2
30	29	28	27	26	25	24	23	22	9	10	11	12	13	14	15
31	32	33	34	35	36	37	38	39	10	11	12	13	14	15	16
6	5	4	3	2	1	2	3	4	27	28	29	30	31	32	33
7	8	9	10	11	12	13	14	15	34	35	36	37	38	39	30
18	17	16	15	14	13	12	11	10	3	2	1	0	1	2	3
19	20	21	22	23	24	25	26	27	9	10	11	12	13	14	15
30	29	28	27	26	25	24	23	22	15	14	13	12	11	10	9
31	32	33	34	35	36	37	38	39	16	15	14	13	12	11	10

From Boltstad, Fig. 3-50

Public Land Survey System (PLS)

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

36

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Institute School of Geosciences, University of Texas at Austin

37

Summary

- ❑ Projections transform geographic coordinates (ϕ, λ) to cartesian (x, y).
- ❑ Projections distort distance, area, direction and shape to greater or lesser degrees; choose projection that minimizes the distortion of the map theme.
- ❑ Points of tangency, standard parallels and secants are points or lines of no distortion.
- ❑ A conformal map has the same scale in all directions.

Summary (cont.)

- ❑ Projection characteristics are classified by:
 - ❑ Light source location
 - ❑ Gnomonic
 - ❑ Stereographic
 - ❑ Orthographic
 - ❑ Developable surface
 - ❑ Plane (azimuthal)
 - ❑ Cylinder (cylindrical)
 - ❑ Cone (conic)
 - ❑ Orientation
 - ❑ Normal
 - ❑ Transverse
 - ❑ Oblique

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

38

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

39

Summary (cont.)

- ❑ Modern coordinate systems are based on projections that minimize distortion within narrow, conformal zones.
- ❑ UTM is a global system using WGS84/NAD83; others are local with varying datums.

1/25/2018

Geo327G/386G: GIS & GPS Applications in Earth Sciences
Jackson School of Geosciences, University of Texas at Austin

40