
ESRI* Object Models; Data Capture

Conceptual Models

Characterized all features or phenomena as:

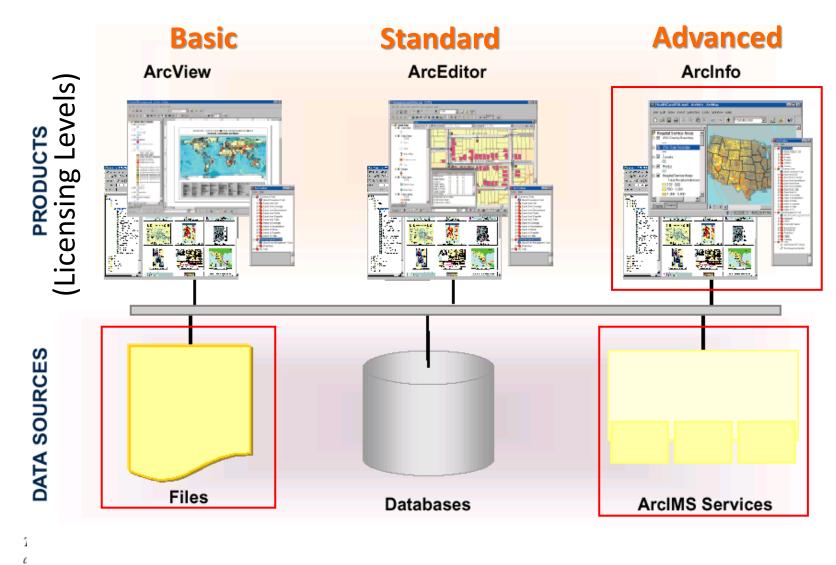
Discrete objects; e.g. wells, roads, rock bodies, etc.

Object-based models

Continuous phenomena; e.g. gravity, topography, temperature, snowfall, soil pH, etc.

Field-based models

Outline


- ESRI Software Family
- ESRI Object Data Models
 - History
 - Data Organization Physical Models
 - Coverage
 - Shapefile
 - Geodatabase
- Data Capture
 - 🗋 Digitizing
 - "Heads Down"
 - "Heads Up"
 - 🗋 Building Topology

ESRI = Environmental Systems Research Institute, Inc.

Some ESRI History...

ESRI	Arc/Info	ArcView	ArcGIS Desktop	ArcGIS Pro
Date	1980-1999	1993- 1999	2000 — 2025 (not supported after 2025)	2015-present
Versions	1-7	1–3.2	8.0 - 10.8	1.0-2.8
Data Model	Coverage	Shapefile	Geodatabase	Cloud, Geodatabase
0.S.	Unix, PC DOS	Windows	Windows	Windows
Scripting Language	Arc Macro Language (AML)	Avenue Scripting	Vis. Basic for Appl. (VBA), Python	Python
Database Software	Proprietary; Arc Tables	DBase	M.S. Access, ArcSDE for Oracle, etc.	M.S. SQL, Oracle, PostgreSQL, etc.

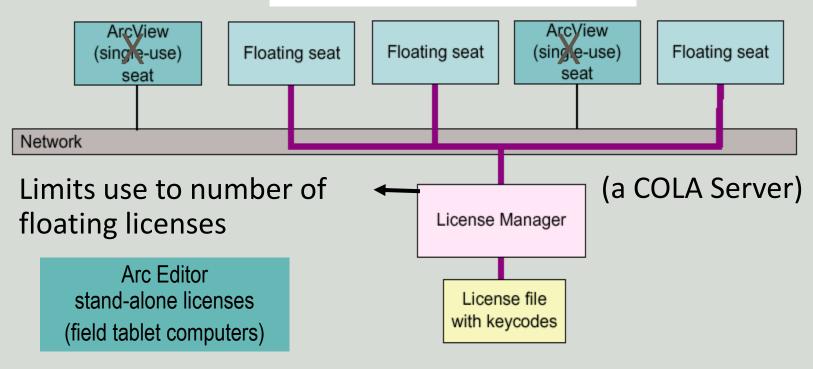
ArcGIS Desktop

ArcGIS Licensing Levels

Basic – Entry level; make maps, do queries, some spatial analysis, some editing (shapefiles, personal geodatabases) – included with GTK ArcGIS Desktop

Standard – midlevel; advanced editing, multi-user geodatabases; more tools in toolbox

Advanced – full functionality; control of "all aspects of data building, modeling, analysis and map display UT D.G.S. licenses


ArcGIS Extensions

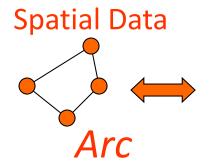
	ArcView, ArcEditor, and ArcInfo		ArcInfo only
ArcGIS Spatial Analyst	 Advanced raster modeling ARC GRID calculator with ARC GRID algebra VBA for raster analysis 	+	 ARC GRID program in ArcInfo Workstation ARC GRID commands in Arc program
ArcGIS 3D Analyst	 ArcScene™–real-time interactive three- dimensional scenes Scene views in ArcCatalog Three-dimensional modeling tools ARC TIN tools 	+	 ARC TIN™ commands in Arc program Surfacescene command
Geostatistical Analyst	 Advanced kriging and surface modeling Exploratory spatial data analysis tools Probability, threshold, and error mapping 		

Others available: Network, Tracking, Survey, Maplex, (ERDAS Image Analyst)

Licensing and "Floating Seats"

This Lab (40 floating seats)

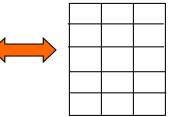
ESRI Data Models


Topologic:

- ArcInfo Coverage
- ArcInfo ".EOO" export format for coverage
- ArcGIS Geodatabase

Non-Topologic:

ArcView (legacy) - Shapefile


Early ESRI Data Models

Geographic coordinates and attributes are stored in **separate** but linked files

Aspatial Data

Info

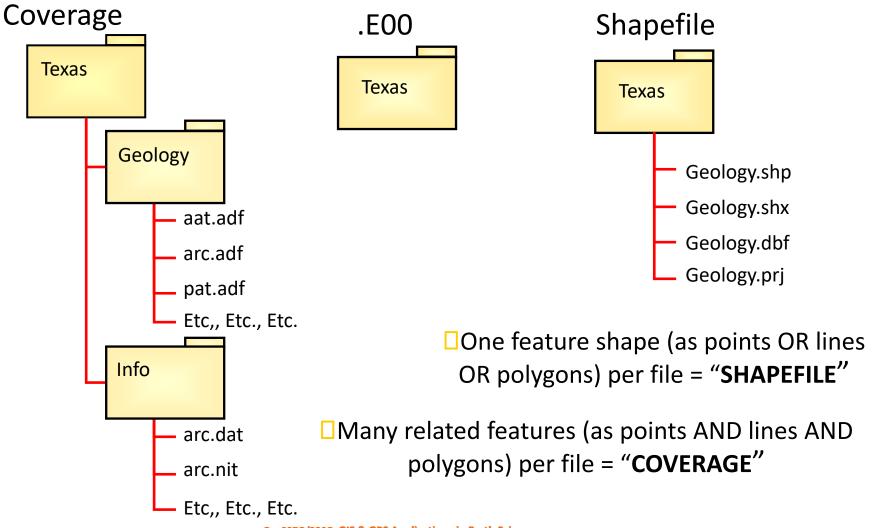
Coverage

- Developed for workstation Arc/Info ~ 1980
- Complex structure, proprietary format
- Attributes in Info tables

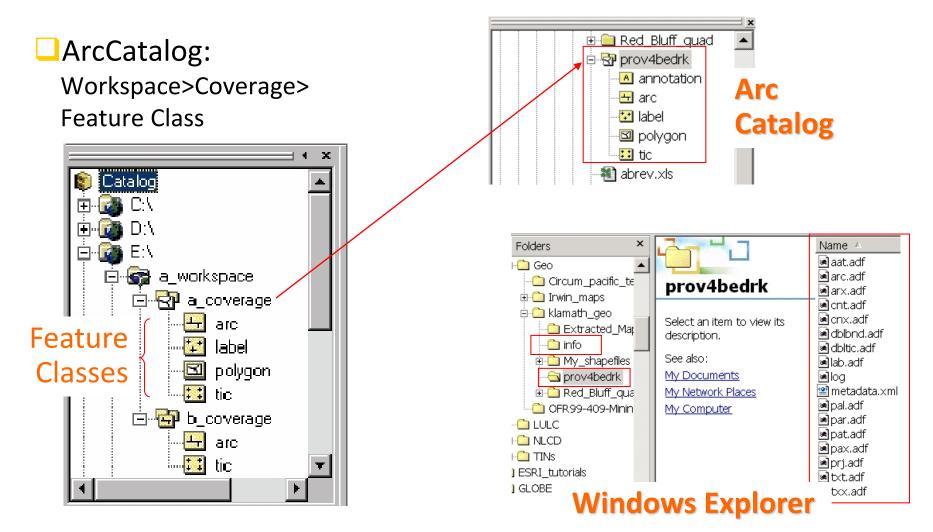
Shapefile

- Developed for ArcView ~ 1993
- Simpler structure in public domain
- Attributes in dBase (.dbf) tables

Data Organization

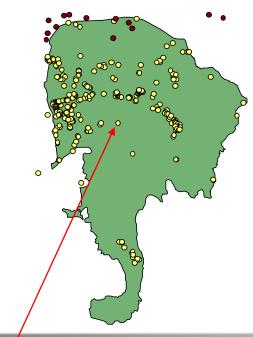

Coverage

- Data split between coverage and INFO *folders*
- Common boundaries between polygons stored once
- Topology explicitly stored
 - Planar graph maintained
- As in previous lecture


Shapefile

- Data divided among three or more *files* (.shp, .shx, .dbf, .sbx, .sbn, et al.)
- Common boundaries between polygons stored twice
- Topology created on-the-fly
 - Planar graph not required

Folder/File Organization



Data Organization: <u>Coverage</u> in Windows Explorer and ArcCatalog

Feature Class

- A collection of geographic objects with the same geometry (i.e. point, line, polygon) that share the same attributes.
- A shapefile contains one feature class
- A coverage can contain many feature classes

🏼 Attributes of Condrey_samples_NAD27

_		<u> </u>					
	FID /		Shape*	ld	Number	NAD27 East	NAD27North
E		0	Point	0	230	490921	4636832
		1	Point	0	123	491124	4637700
		2	Point	0	124	491375	4638149
		3	Point	0	125	491522	4638902
		- 4	Point	0	126	491653	4638751
		- 5	Point	0	127	492872	4639489
		6	Point	0	128	492963	4639515

Sample location (points) Feature Class

ArcInfo Coverage

An integrated, homogeneous set of feature classes (pts., lines, polygons) stored together

Feature classes unified by a theme, e.g. hydro

- Spatial (coordinate) data stored in binary files;
- Attributes and topologic data stored in INFO tables
- Stored within a "Workspace"

ArcInfo Coverages can contain:

Primary feature classes:

- Points, with attributes in PAT (point attribute table)
 - Nodes, with attributes in NAT
 - Arcs, with attributes in AAT

Polygons, with interior label points and attributes in PAT

Coverages feature classes can contain:

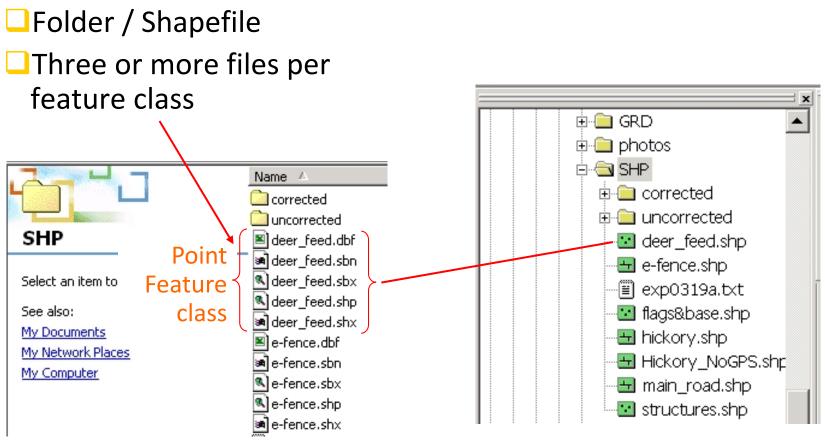
Secondary features:

- Annotations text for map
 - Links vectors used for adjusting local area to known
 - locations (spatial adjustment)

Coverages can also contain:

Composite features:

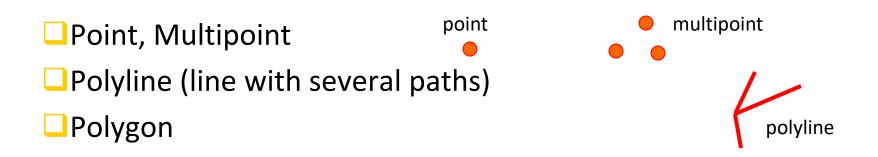
Routes – collections of Arcs with measurement system


Regions – collections of polygons; adjacent, noncontiguous or overlapping

Shapefile format

Simpler than coverage; doesn't store topology

- Feature classes stored independently i.e. points, lines and polys. stored in physically separated files (e.g. no shared INFO table)
- For each type, spatial data stored in a .shp file, attribute data in a .dbf table.
- "Null" or "No Data" numerical values not supported in attribute tables


Shapefiles in ArcCatalog/Explorer

Window Explorer

ArcCatalog

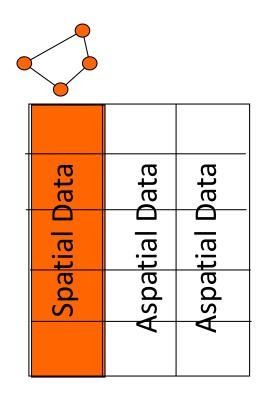
Shapefile feature class types:

Ring – closed, nonintersecting path – simple poly.

Disjointed Rings – multiple polygons define feature

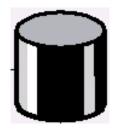
Nested Rings – "Island" or "Atoll" polygons

Shapefile Topology


- Shapefiles don't store information about adjacency
- Topology is generated on the fly vertices stored in systematic fashion to deal with containment and adjacency
- Planar enforcement can be broken by editing not required in structure of shapefile
- But...tools available to maintain planar enforcement when digitizing in heads-up mode

Geodatabase Model

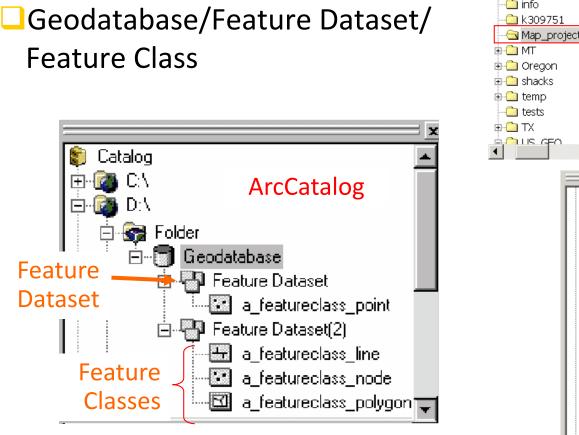
Stores geographic coordinates as one of many attribute in a relational database table; no separation between aspatial and spatial data, as in earlier models

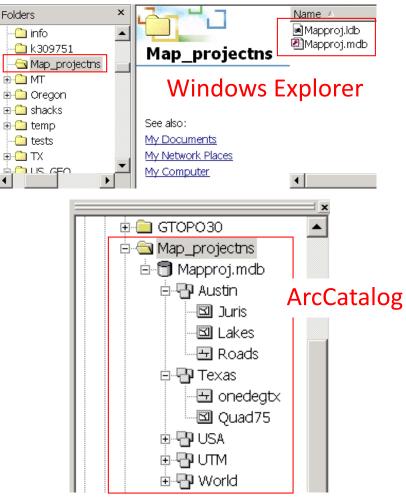

Uses MS Access for "Personal Geodatabase" (single user)

Uses Oracle, DB2 or other commercial relational databases for "Enterprise GIS" (many simultaneous users).

Slide courtesy of D. Maidment

Geodatabase Model




Data structure capable of storing objects with behaviors and relationships, not merely graphical shapes with topology and attributes

All spatial and attribute data for a feature are stored in a row of a single table

A Geodatabase is a top-level container for feature classes, coverages, shapefiles, rasters, et al. (more later) – ALL DATA CAN BE IN ONE CONTAINER AND ARE THUS PORTABLE

Geodatabases in ArcCatalog/Windows Explorer

Feature classes in Geodatabase include:

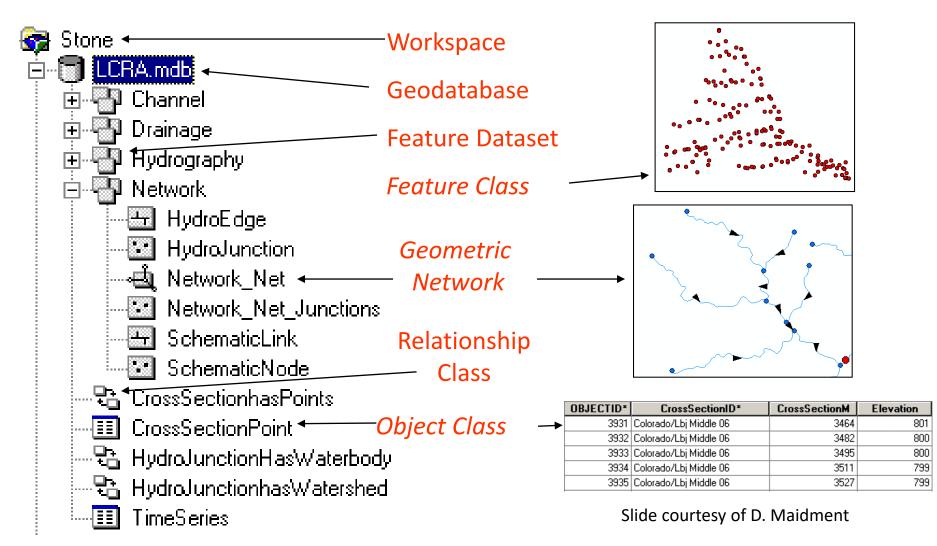
Points, Multipoints (groups of points)

Lines

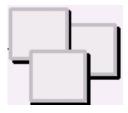
Polygons

Plus

Network Junctions (special Nodes)


Network Edges

For geometric networks Plus other classes


Relationship classes

Object Classes – tabular data without geography

ArcGIS Geodatabase

Geodatabase Feature Datasets

Set of Feature Classes, some with topologies, that share the same spatial reference

- All feature classes with topologies must be stored within a Feature Dataset
- Analogous to coverage

Object Class

A collection of *nonspatial* objects that share the same attributes and are stored in a table (i.e. a simple table)

Number	Age_Ma	1_sigma	Rx_Type	Size_kg
123	142	1.5	B_schist	3.4
124	136	2.0	G_schist	1.3
125				

Object Class (nonspatial table)

Relationship

A relationship is an association or link between two objects in a database.

A relationship can exist between spatial objects (features in feature classes), non-spatial objects (objects in object classes), or between spatial and non-spatial objects.

Relationship class

E.g. relationship between spatial and non-spatial objects

	Tattellutes of Condeau complet NAD27							
	Attributes of Condrey_samples_NAD27							
	FID	Shape*	ld	Number	NAD27 East	NAD27North		
F	0	Point	0	230	490921	4636832		
	1	Point	0	123	491124	4637700		
	2	Point	0	124	491375	4638149		
	3	Point	0	125	491522	4638902		
	4	Point	0	126	491653	4638751		
	5	Point	0	127	492872	4639489		
	6	Point	0	128	492963	4639515		

Feature Class (spatial table)

Number	Age_Ma	1_sigma	Rx_Type	Size_kg
123	142	1.5	B_schist	3.4
124	136	2.0	G_schist	1.3
125				

8

0

Paper Map → Files Of Coordinates

□How are they organized?

Data Models, Topology

How are they stored?

Data Organization

How are coodinates captured?

Data Entry, Encoding

Digitizing is:

Conversion of spatial data to digital form

- Lines, points or polygons are traced to record coordinates of their locations
- Term conventionally used to denote the process of creating VECTOR data
 - Scanning produces raster data ("bit maps")
 - But software exists to convert raster to vector so can digitize ("vectorize") scanned images

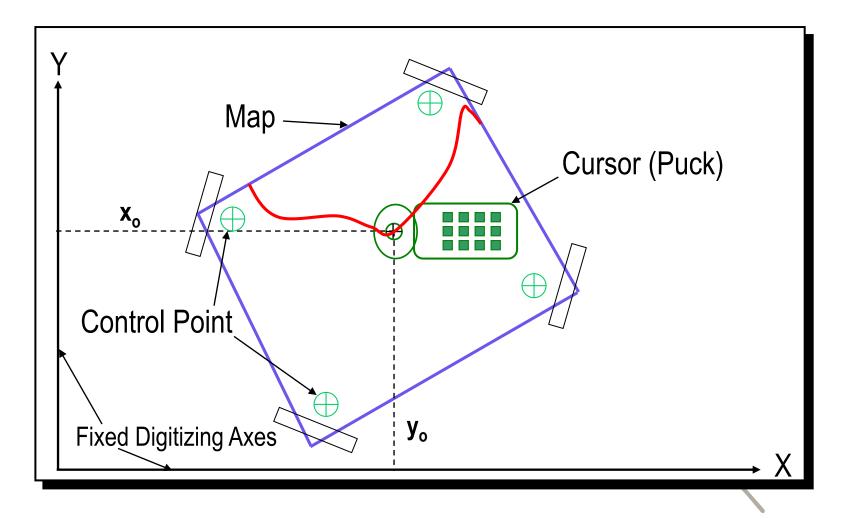
Digitizing is accomplished via:

Digitizing table or tablet

"heads-down" digitizing

Large digitizing table

A mouse, on screen


"heads-up" digitizing

Aerial photos, other raster or vector sources as base to digitize from

Software that converts raster to vector

Vectorization – batch or interactive modes, e.g. ArcScan extension

Digitizing table

Digitizing with a tablet involves:

- Digitize 3 reference points define position of map w.r.t. digitizing table
- Establishing 4 or more control points distinctive features at known locations that can be used to register the map to ground coordinates (e.g. UTM, lat./lon.) = "georeferencing"
- Separating features as point, line or polygon and tracing them to separate files (themes)
- (Heads-up digitizing starts with georeferencing)

Digitizing strategies governed by:

Will data be used for queries and analysis or just visual display?

□i.e.Topology important or not?

"True" G.I.S. functionality or not?

□What are accuracy requirements and how much generalization is permitted?

Spaghetti vs. Topologic models

Spaghetti: Points, lines, polygons and their attributes stored in tables

□Topological:

Same, but with corresponding tables of information about what's adjacent or what's within what

"Building Topology"

Clean: Edit to ensure planar enforcement

- Remove sliver polygons & gaps between polygons
- Correct overshoots, undershoots, leaky polygons
- Build: Add topological attributes to spaghetti
 Manual
 - Automatic
- Digitizing with topology performed in ArcInfo or with tools in ArcToolbox, ArcMap and ArcCatalog
- Changes to polygons or lines affect topological attributes – Strict rules for editing coverages in ArcMap (topology tools available)

Heads-up digitizing

Decide whether new file will have planar enforcement

- Create new point, line or polygon feature class(es) in ArcCatalog
- Edit feature class(es) to add features and attributes
- Stop editing
- Save edits as part of new feature class