Georeferencing & Spatial Adjustment

Aligning Raster and Vector Data to the Real World

The Problem

How are geographically unregistered data, either raster or vector, made to align with data that exist in geographical coordinates?

OR

How are arbitrary coordinates transformed into geographical coordinates?

For Example:

Align raster image to vector map of state outline

Nature Of The Problem:

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Texas Example:

Geo327G/386G: GIS & GPS Applications in Earth Sciences Jackson School of Geosciences, University of Texas at Austin

General Problem Is Then:

Geo327G/386G: GIS & GPS Applications in Earth Sciences

How Solved?

- Geometric Transformations
 - 1. First-order ("*Affine*") transformation
 - Accomplishes translation, distortion and rotation
 - Straight lines are mapped onto straight lines, parallel lines remain parallel, e.g. square to rectangle

Geometric Transformations

Affine transformation:

$$X_1' = Ax_1 + By_1 + C$$

 $Y_1' = Dx_1 + Ey_1 + F$

Where:

x₁, y₁ = coords. of pt. in source layer
X₁', Y₁' = coords. of same pt. in destination layer
A, B, C ... F = unknown **constants** giving best fit of all points (minimize Root Mean Square [RMS] error)

Affine Transformation

Affine transformation constants:

 $X_1' = Ax_1 + By_1 + C$ $Y_1' = Dx_1 + Ey_1 + F$

- A, E = scale factors
- B, D = rotation terms
- C, F = translation terms
- With six unknowns, need minimum of three points (yielding 6 equations).

Affine Transformation

Goodness of Fit" given by RMS error:

Jackson School of Geosciences, University of Texas at Austin

Geometric Transformations

Second- or Third-order Transformations

- Fit with more constants (12 or 20)
- Allow straight lines to map to curves
- More displacement links (6 or 10 minimum) required

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Transformation Characteristics

Image from ESRI Help file

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

Other Transformation Types

- Spline For local fits only
 - Source control pts. match reference pts. *exactly* at expense of global fit. 10 pts. required
- Adjust For global and local fitting
 - Relies on polynomial fitting adjusted to a TIN. 3 pts. required
- Projective For imagery or scanned maps that differ from source primarily by the map projection
 - Minimum of 4 pts required, RMS given.

Geometric Transformation of Raster Data

The Problem: Square cells must remain square after transformation. How?

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Geometric Transformation of Raster Data – Raster Projection

Related Problem: Square cells must remain square after projection. How?

Geometric Transformation of Raster Data

Solution: "Resampling" – Create and fill a new matrix of empty destination cells with values from source raster. Tag remaining cells as "no data" (null).

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Creating New Cells: Resampling Techniques

- 1. Nearest Neighbor use value of source cell that is nearest transformed destination cell
 - Fastest technique; use for categorical (nominal or ordinal) or thematic data
- 2. Bilinear interpolation combine 4 nearest source cells to compute value for destination cell
- **3. Cubic Convolution** same, but combine 16 nearest cells

Methods 2 and 3 are weighted average techniques – *use for continuous data* (slope, elevation, rainfall, temp. rainfall, etc.)

Implications of Resampling

- Cell size, and number of rows and columns, will change on projection and/or georeferencing
- Minimize problems by georeferencing with a reference layer that closely matches projection of the layer being georeferenced
- Raster datasets must be in same projection and coordinate system for analysis.

Where Are New Coordinates Stored?

"Update Georeferencing" writes transformation parameters to a new, small, separate file of same name as raster but with a different extension (e.g. .jpw, .aux, .xml), depending on original file type

"Control of the section of the se

Georeferencing in ArcMap

Image from ArcGIS georeferencing help file

Procedure

- See Help File on Georeferencing
 - Remember:
 - Align to data that has GCS and PCS of interest.
 - Finish by "Update Georeferencing" or "Rectify..." to ensure coordinates are saved with file

Georeferencing Vector Files

- □ Take C.A.D. (e.g. .DXF, .AI, .CDR) drawings into a GIS
- Conceptually simpler, in practice more difficult? No.
 - Three equally useful techniques:
 - By writing or making reference to a 2 line text ("world" .wld) file
 - By entering transformation coordinates in the drawing Layer Properties
 - By importing vector layers into a Geodatabase and using the Spatial Adjustment (see below) toolbar!

Vector World File format

□World text file format is as follows:

Line 1:

<x,y location of pt. 1 in CAD drawing> <space> <x,y location of pt. 1 in geographic space>

Line 2:

<x,y location of pt. 2 in CAD drawing> <space> <x,y location of pt. 2 in geographic space>

E.g. 3.52,4.43 710373,3287333 -0.05,4.3 710062,3288033

See Help on World Files and CAD transformations

Transform by Coordinates

- Enter same information interactively
- Use georeferencing tools to create 2 link points, then "Update Georeferencing"
 - See Help file on "Transforming CAD datasets"

Layer Properties				
General Source Cabels Dr	Selection	Display S Tran	iymbology	Fi
Enable Transformations				
Transform By :	From :	To:		
C World File	x: 3.52	×: 710373		
Coordinates	y: -4.43	y: 3287333		
C Rotate, Scale, Translate	x: -0.05	x: 710062		
	y: 4.3	y: 3288033		
				1

"Spatial Adjustment" of Vector Data

- Via special editing toolbar permits:
 - Transformations ("Warping")
 - Affine
 - Similarity
 - Projective
 - "Rubber Sheeting"
 - "Edge Matching"
 - (Attribute transfer)

"Georeferencing" vs. "Spatial Adjustment"

Georeferencing – raster and vector data

- Best fit of all source control points to all destination control points – transformation ("Warping") of data for overall best fit
- Alignment of data to map coordinates
- R.M.S. error given
- "Spatial Adjustment" vector data
 - More versatile; can "Warp", also "Rubbersheet" and "Edgematch"
 - Adjustment by latter two is piece-wise fitting; point by point matching but no overall warping.

Georeferencing Demo

Practice georeferencing scanned geologic map for Lab 4 & 5

Download:

Geo-327g_386g>Georeferencing_Demo>2019WMA to begin