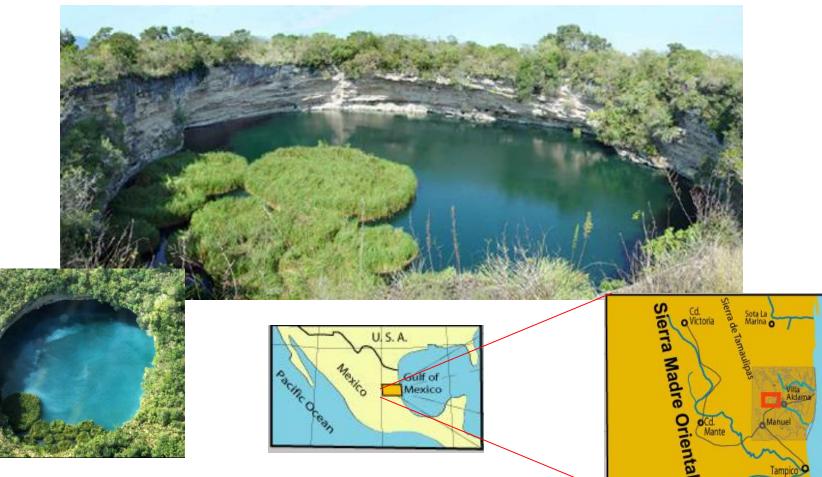

The Global Positioning System II Examples, Caveats

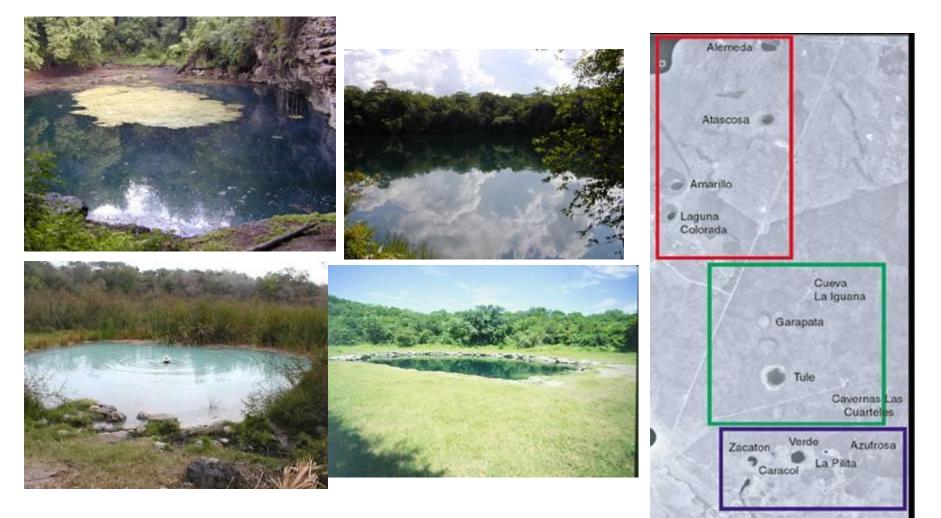


Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

Mexico DGPS Field Campaign

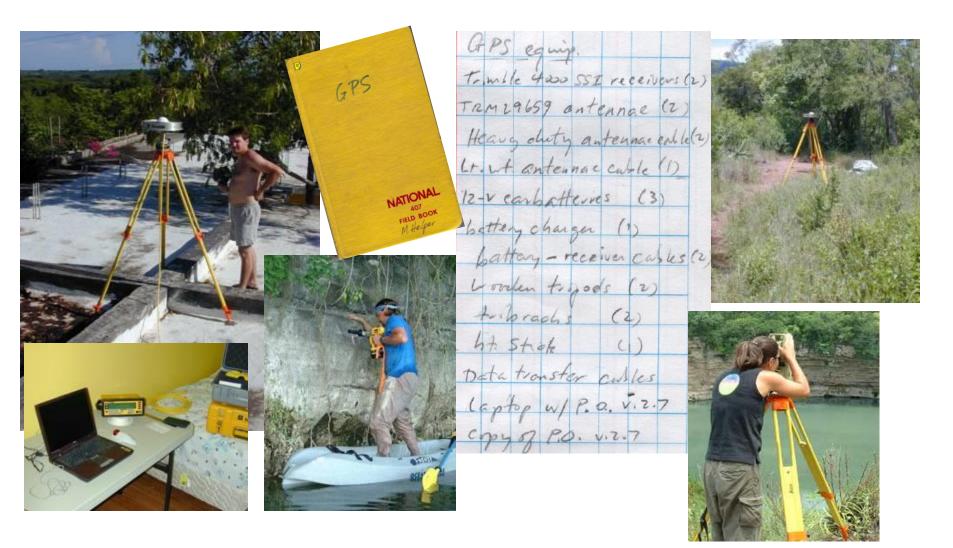
Cenotes in Tamaulipas, MX, near Aldama



Geo327G/386G: GIS & GPS Applications in Earth Sciences

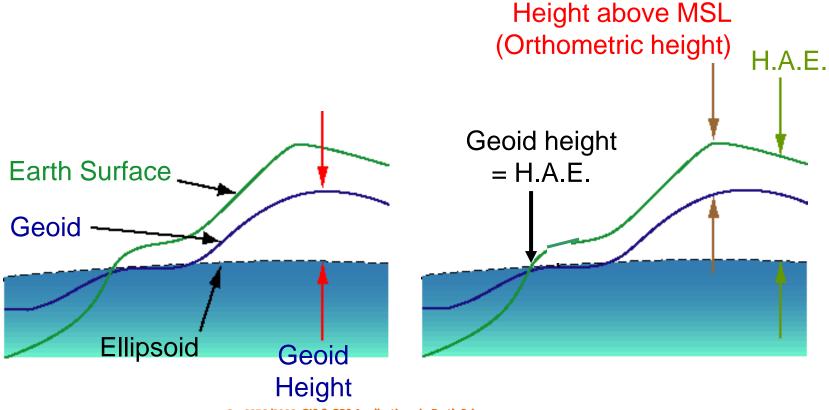
Jackson School of Geosciences, University of Texas at Austin

MEXICO


Are Cenote Water Levels Related?

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin


DGPS Static Survey of Cenote Water Levels

Geo327G/386G: GIS & GPS Applications in Earth Sciences Jackson School of Geosciences, University of Texas at Austin

Determining Orthometric Heights

Ortho. Height = H.A.E. – Geoid Height

Determining Orthometric Heights

Ortho. Height = (H.A.E. – Geoid Height)

Need:

1) Ellipsoid model – GRS80 – NAVD88

 \Box reference stations: HARN (<u>+</u> 2 cm), CORS (<u>+</u> ~2 cm)

2) Geoid model – GEOID99 (<u>+</u> 5 cm for US)

Procedure: Base receiver at reference station, rover at point of interest

a) measure HAE, apply DGS corrections

b) subtract local Geoid Height

Sources of Error

Geoid error – model less well constrained in areas of few gravity measurements

NAVD88 error – benchmark stability, measurement errors

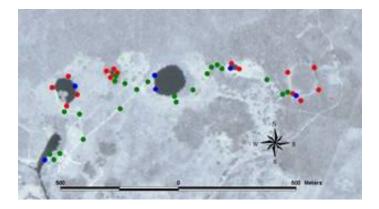
GPS errors – need precise ephemeri, tropospheric delay model, equipment (antennae should be same for base and rover)

Static Carrier-phase solutions obtained by:

Commercial post-processing software

e.g. Trimble Pathfinder office

Web-based Precise Point Position Services


□<u>SCOUT</u> – Scripps, UCSB - global

OPUS – NGS (US and territories)

All services require files in RINEX format

Results

Horizontal accuracies of <1 cm - 1 cm
 Vertical accuracies of 2-5 cm for 4 hrs of data

Table 5. Final Results - all relative to WGS84					 					
Station	Receiver	Processng	Lat_dd	1_sigma_m	Lon_dd	1_sigma_m	HAE_m ¹	1_sigma_m	Geoid_m ²	OH_m ³
CASA	4000SSI	AutoGipsy	22.990188255	0.0030	-98.165971883	0.0096	189.621	0.0213	-16.961	206.582
ZA01	4000SSI	AutoGipsy	22.992668149	0.0107	-98.165717957	0.0269	189.762	0.0463	-16.962	206.724
ZA02	4000SSI	AutoGipsy	22.993538927	0.0046	-98.166153000	0.0282	190.261	0.0341	-16.960	207.221
AL01	4000SSI	AutoGipsy	23.032566367	0.0154	-98.163756591	0.0228	220.069	0.0515	-16.978	237.047
VD01	4000SSI	AutoGipsy	22.992981335	0.0107	-98.161039826	0.0156	188.536	0.0415	-16.985	205.521
CA02	4000SSI	SCOUT	22.993787630	0.0091	-98.163902080	0.0373	190.506	0.0322	-16.971	207.477
LP01	4000SSI	SCOUT	22.994028670	0.0098	-98.158618590	0.0413	174.950	0.0321	-16.997	191.947
LPWL	GeoExp3	P02.7	22.994152995	0.1165	-98.158917839	0.1165	174.760	0.0965	-16.997	191.757
Robin_skylight	GeoExp3	P02.7	22.995796460	0.4680	-98.155486623	0.4680	185.210	0.4680	-17.013	202.223
¹ HAE is the Height Above the GRS80 Ellipsoid of the Ground Reference Point.										
² "Geoid" is the height of the Geoid (relative to the NAD83 ellipsoid) at the GRP, as derived from the NGS Mexico97 geoid										
model. GRS80 and the NAD83 ellipsoid are virtually identical and can be used interchangable in this instance.										
³ OH is orthometric height, or more commonly mean sea level elevation. It equals [HAE] - [Geoid ht.].										

GPS Applications Today

- Surveying Tectonics, Cadastre, Geodesy
- Map Making georeferencing, field studies
- Navigation vehicles, missiles, robots, etc.
- Tracking people, vehicles, pets
- "Geotagging" apply coordinates to digital data (photos, etc.)
- Clock Synchronization (<u>+</u> 10 ns)

GPS and Geologic Mapping

Two techniques:

GPS receiver and separate, gridded paper maps

"Mapping-grade" receiver with mapping software and interactive touch screen, e.g. Mobile devices and dedicated mapping devices

Low-Tech Mapping

Gridded maps/photos, pencil, GPS receiver

Ó

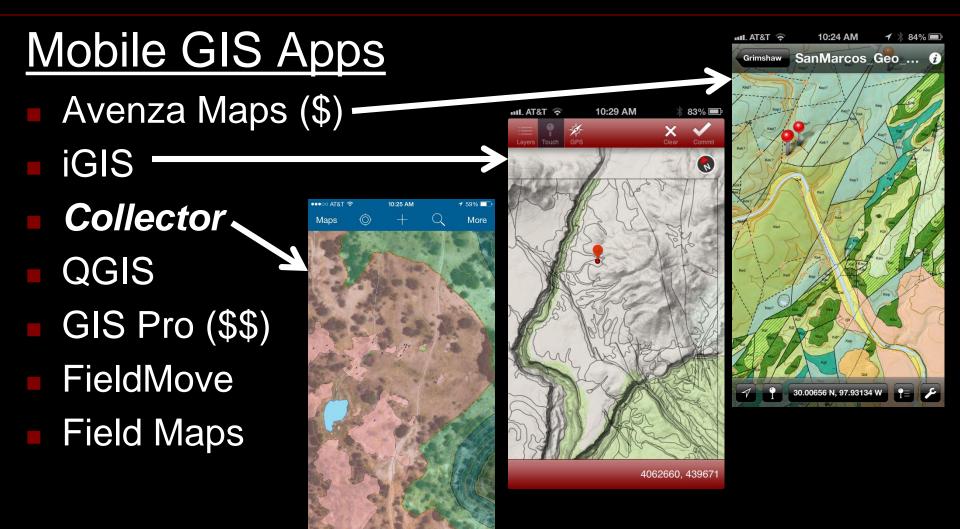
tel 120 A3 ox

3/1/2022

High-Tech Mapping Tools

Field Hardware

Mobile Devices


Outdoor tablet computers – Windows

Field GIS/GPS Software

- ESRI Software
 - ★ArcMap
 - Collector App
 - ★Field Maps

High-Tech Mapping Tools

High-Tech Mapping Tools

App Distinctions

- Will it accept custom georeferenced maps? (geotifs, shapefiles, PDFs)
- * Will maps work offline?
- Will GPS work offline?
- Does it drop pins, geotag photos, notes etc.? E.g.
 Avenza Maps and many others free Apps
- Does it allow capture of lines and polygons too? E.g. iGIS, FieldMove, Collector and a few others; free to \$\$

Assisted GPS (A-GPS)

Mobile Devices with GPS and WiFi or Cellular Service, e.g. LBS⁺-capable phone

- GPS Almanac provided from Server; TTFF* faster – position found by phone (Mobile Station Assisted: "MSA GPS")
- GPS data sent to server, position sent back (Mobile Station Based: "MSB GPS")

* TTFF – Time to First Fix +LBS - location-based services

Receiver attributes

of Channels

- One channel required for each frequency (L1, +/- L2)
- 8 minimum (4 SVs); 12 or more desirable
- 🗆 Antenna
 - 🖵 Remote, fixed
- Power source
 - Internal, external

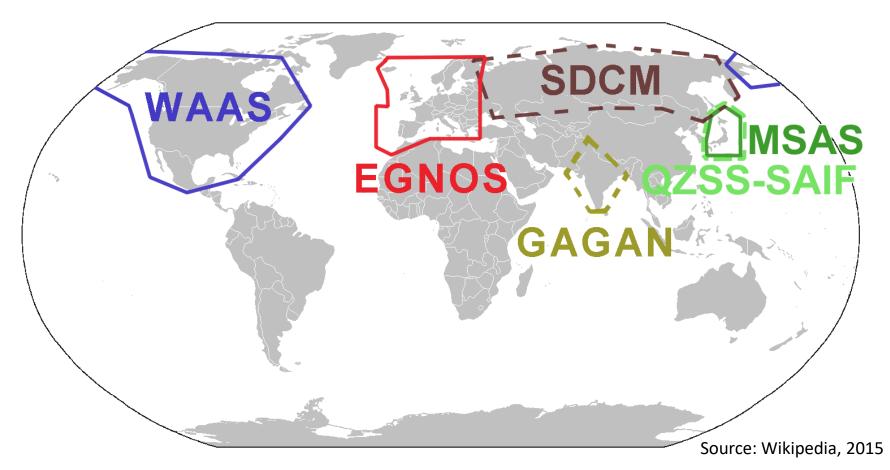
🔲 Data Storage

- Way-points vs. data logging
- Positions vs. raw data
- Data upload & download
 - Data dictionary upload for storing positions by attributes (pt., line, area)

Receiver attributes

DGPS capable

- Beacon antenna for real-time DGPS
- Download and post-process


WAAS capable

- Ionosphere Correction or model
 - Dual channel vs. single channel receiver
- Troposphere model?

Recent Developments

- Hand-held equipment Field GIS
- UWAAS, LAAS
- Other Global Navigation Satellite Systems (GNSS)
 - European Union Galileo System (2014) and EGNOS SBAS
 - Russia GLONASS (23 SVs) + SBAS services
 - Chinese BeiDou Navigational System (BDS); 14 SVs, 35 by 2020; +SBAS services)
- Regional Satellite Systems
 - 🖵 Gagan India (2012)
 - Japan –MSAS (QZSS?)

SBAS Service Areas

SBAS = Satellite Based Augmentation Systems

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin