Spatial Analysis of Raster Data

0	0	1	1
0	0	1	1
1	0	1	1
1	1	1	1

	2	4	4	4
∔	4	2	4	4
I	4	4	2	4
	4	4	4	2

- 0 = shale
- 1 = limestone

- 2 = fault
- 4 = no fault

2	4	5	5
4	2	5	5
5	4	3	5
5	5	5	3

- 2 =Fault in shale
- 3 = Fault in limestone
- 4 = no Fault, shale
- 5 = no Fault, limestone

What is Spatial Analysis?

Spatial Query: *"Where is...?"*

Spatial Analysis (e.g. suitability analysis): "Where is the best place for...?" "What is the least costly path between...?"

 "... a set of methods with results that change when the location of objects being analysed changes"
 —the spatial aspect of this form of analysis sets it apart

Why Rasters?

Conceptually simple, easy to implement

- □Well-suited for surface- and field-related phenomena (e.g. elevation, gravity, rainfall, etc.) and for discrete features
- Wide availability of data-sets; all remotely sensed data of this sort
- De facto standard approach oldest, most widely implemented, mature, widest suite of tools and software
- Best suited for "Where" rather than "What" questions

Where do rasters come from?

Converted vector files, e.g. shapefiles, coverages – Tools available

Created from interpolations of point values – Tools available

Directly from raster sources; remotely sensed data, DEMs, meteorological measurements, etc.

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at A

What gets stored?

Cell values may be:

- Nominal integers are attribute codes (tags)
- Ordinal integers are ranks
- Ratio Ratio of values makes sense, e.g. 300 m elevation is twice as high as 150 m; magnitude of ratio has some physical meaning

What gets stored?

Cell values may be:

Nominal – integers are attribute codes (tags). Though numbers, they are dimensionless and without scale.

Numbers as qualitative descriptors.

Mathematical operations on cell values are not meaningful as a measure of scalar magnitudes.

Nominal Raster – e.g. Geologic Map

Each raster cells contains a value of 1 to 18:

1 = water 4 = Huckleberry R. Tuffs 12= Plio.-Pleist. Rhyolite etc.

What gets stored?

Cell values may be:

Ordinal – integers are ranks

- e.g. 1=excellent, 2=good, 3=poor;
 - 1=low, 2=medium, 3=high
- Ranking scheme used for hazard rating, density measures, etc.
- Mathematical & most statistical operations meaningless; Median might be useful measure of central value

Ordinal Raster – e.g. Erosion Ranking

- Each raster cells contains a value of 1-12
- Yellow = 12 = Most Erosive
- Blue = 1 = Least Erosive

What gets stored?

- Cell values may be:
 - Ratio data are organized along a continuum and numbers do have an absolute meaning
 - e.g. lengths, volumes, heights, concentrations, etc.
 - Multiplication/Division, Subtraction/Addition make sense for arriving at meaningful new cell values.

Ratio Raster – e.g. Elevation above MSL

- Each raster cells contains a value of 1544-3578 (meters)
- □ White = 3578 m
- Pale Blue = 1544 m

What Gets Stored?

Depends on raster data model: 2 types-Simple and Extended:

Simple Raster – Binary (nominal values)

- 0 or 1 stored; feature present or not. B & W image. E.g. Limestone or not Limestone.
- requires a different raster for each attribute (e.g. rock type) within a single theme (e.g. Geology)

What Gets Stored?

Raster data model:

Simple Raster – Non-binary, one nominal value per cell

 integer is a code for categorical attribute e.g. limestone = 1, sandstone = 2, mudstone = 3

- requires one raster per theme

Hydrography

Parcels

What Gets Stored?

Raster data model:

Extended Raster - One value per cell but multiple attributes per value in value attribute table (VAT)

1	1	1
1	1	2
1	2	3
1	2	3

VAT for Geology raster						
Value	Count	Туре	Porosity	Cement		
1	7	Limestone	10	Calcite		
2	3	Sandstone	22	Quartz		
3	3 2 Mudstone 2 No data					

What Are the Tools & Techniques?

□ Map Algebra employing:

- Raster Operators
- Raster Functions

Map Algebra takes raster(s) as input and return a result as a new raster.

1. Arithmetic

-, *, / ; for pairs of rasters

Trigonometric, Log, Exponential, Powers for single rasters

Example: Raster Overlay

E.g. "Find wells within limestone"

- Point-in-Polygon Query
- 0 = shale

2 = well

1 = limestone

- 2 = well in shale
- 3 = well in limestone
- 4 = no well, shale
- 5 = no well, limestone

- 2. Relational (e.g. raster comparisons)
 - <, >, =, >=, <=, <>

Compare two rasters. Create a new raster such that if condition is false, return 0, if true 1.

Geo327G/386G: GIS & GPS Applications in Earth Sciences Jackson School of Geosciences, University of Texas at Austin

3/8/2022

Boolean Selections; Or, And, Not

From Bolstad, 4th edition

Boolean 3.

And, Or, Not

- And both true
- Or- either true
- Not switches true for false

Search, compare and/or identify where there are non-zero values in two rasters

1	3	1	1	
0	Ν	2	-1	
1	2	5	0	
0	1	Ν	Ν	

AND

0	1	0	9
0	5	2	5
0	2	Ν	2
0	-3	4	8
	0 0 0	0 1 0 5 0 2 0 -3	0 1 0 0 5 2 0 2 N 0 -3 4

Output

0	1	0	1
0	Ν	1	1
0	1	Ν	0
0	1	Ν	Ν

3	1	1	
Ν	2	-1	
2	5	0	
1	Ν	Ν	

0	1	0	9
0	5	2	5
0	2	Ν	2
0	-3	4	8

1	1	1	1
0	Ν	1	1
1	1	Ν	1
0	1	Ν	Ν

1 0 NOT 1

Ξ

Ξ

From Bolstad, 4th edition

Geo327G/386G: GIS & GPS Applications in Earth Sciences

b)

c)

3. Boolean

And, Or, Not, Xor

E.g. "Xor" (Exclusive Or) finds where there are nonzero values in one or the other raster, but not both.

5		5
0	5	2
5	2	3
5	2	3

4	0	0
0	4	4
0	3	3
	3	3

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

Combinatorial 4)

> Assign value in new raster on basis of the combination of values in compared rasters

R 1	R 2	Out
1	1	0
1	4	1
2	3	2
2	4	3
3	3	4

Raster 1

Raster 2

Output

Logical

Difference (DIFF), Contained In (IN) and OVER

E.g. OVER searches for zeros. All nonzeros from first raster returned; if zero, returns value from second raster.

Geo327G/386G: GIS & GPS Applications in Earth Sciences

Jackson School of Geosciences, University of Texas at Austin

4. Combinatorial - Logical

Conditional Statement – CON – highly versatile; generalized "Over"

- Format is: {Condition to be met; Output value if True, Output value if False}. If no False value specified then "null" is recorded.
- E.g. CON {R1>0, R1, 0.5}; If Raster 1 cell is greater than zero, then write the cell value to the output, otherwise write 0.5 to that cell in the output

CON {R1>0, R1, 0.5}

4	1	1				
1	4	0.5				
1	0.5	3				
1	0.5	3				

Output

- 5) Accumulative
 - **□**+=, *=, -=

Add, subtract, multiply, raster values in specific order.

+=

- 6. Assignment
 - _ =

Assign all cells in a new raster a value by performing operation on old raster

Raster Functions

- Higher-order operations built up of operators just listed; relationship of input to output cells:
 - Local cell-to-cell functions: 1 input cell per output cell
 - Focal by-neighborhood functions
 - Global entire raster
 - Special Types

Raster Functions

Local Functions

Each cell in first raster operated on by an expression or by cell at same location in another raster

Used in:

Reclassification

Overlay Analysis

Local Functions: Reclassification

Make new raster by performing function on old.

- Nominal values reclassed as O or 1 (=binary masking) e.g. Boolian operators
- Reduce range or number of values
 - floating point to integer values
- Change measurement scale to weight values; convert nominal values to rank (ordinal or ratio values).

Reclassification – Binary Masking

Beginning Raster:

5	5	5	5	5	5	5	5
5	5	5	5	2	2	5	5
5	5	5	5	2	2	8	8
5	5	5	5	2	2	8	8
2	2	2	2	2	2	8	8
	2	2	~	~	_	Ŭ	Ŭ
2	2	5	5	5	5	5	5
2	2 2 2	5 2	5 2	5 5	5	5 5	5 5

Simplify to raster with granite and non-granite cells to produce binary raster.

- 2 = limestone
- 5 = sandstone
- 8 = granite

Local Functions: Reclassification

Binary Raster – composed of 0 and 1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Replaced nominal 2 and 5 by 0; 8 by 1.

Simplified raster can be saved and used for further analysis

Reclassification - Weighting

Reclassify to assign weighting factor for further analysis; nominal values become ordinal values for later calculation

5	5	5	5	5	5	5	5
5	5	5	5	2	2	5	5
5	5	5	5	2	2	8	8
5	5	5	5	2	2	8	8
2	2	2	2	2	2	8	8
2	2	5	5	5	5	5	5
2	2	2	2	5	5	5	5
5	2	2	2	5	5	5	5

Lithology	Old Value	Weight	New Value
Limestone	2	10	20
Sandstone	5	2	10
Granite	8	5	40

Granite is weighted 4x sandstone and 2x limestone

□All entities represented by cells;

point = single cell

line = chain of cells

polygon = group of cells

Nominal values identify a related group of cells as an entity

Rasters of continuous variables (e.g. rainfall, temp., elevation) have cells with ratio values

Compare cell value among layers by *Map Algebra*

generate new raster as sum, difference, product, etc. of cells within two layers

2	0	0	0
0	2	0	0
0	0	2	0
0	0	0	2

	_	

2	0	1	1
0	2	1	1
1	0	3	1
1	1	1	3

E.g. "Find faults cutting limestone OR shale"

- Line-in-Polygon Query
- 0 = shale
- 1 = limestone

0	0	1	1
0	0	1	1
1	0	1	1
1	1	1	1

- 2 = fault
- 4 = no fault

- 2 = Fault in shale
- 3 = Fault in limestone
- 4 = no Fault, shale
- 5 = no Fault, limestone

- Operators include nearly all previously listed:
 - Arithmetic
 - 🗆 Relational
 - Logical
 - 🗆 etc.

Focal Functions

- Neighborhood functions: uses values in adjacent cells to return values for new raster.
- Used for:
 - Aggregation
 - Filtering
 - Computing slope and aspect

Focal Functions

Aggregation

"Down-sampling" – combining cells (average, central cell, median) to produce raster with fewer cells.

Focal Functions: Computing Slope

Use 8 neighboring cells to compute slope of cell #5. Rise/run = tan (slope)

Find slope in x direction

b = tan (slope_x) = (z₃ + z₆ + z₉ - z₁ - z₄ - z₇)/8D

Find slope in y direction

c = tan (slope_y) = (z₁ + z₂ + z₃ - z₇ - z₈ - z₉)/8D

Find slope in steepest direction

tan (slope) = (b² + c²)^{1/2}

z = elev.

Focal Functions: Filtering

Filtering – assign new value to cell on basis of neighboring cells. Save as new raster.

- Define filter window as a group of cells ("kernal") around a target cell; size and shape can be specified.
- Step window across entire raster, calculating new value for center of filter on basis of neighboring values within the filter and filter rule.

Neighborhood Functions: Filtering

Rule – replace target cell (in center) with mean value encountered in filter

Define square filter of 3x3 cells

3	3	2	1	2	2	2	2
3	3	3	3	2	1	1	2
3	2	1	3	1	3	1	1
2	1	0	2	0	0	1	1
4	3	2	0	0	0	1	1
0	2	3	0	2	2	2	1
2	0	2	3	4	1	2	0
0	2	1	1	1	2	2	3

Target 1: mean = 18/9 = 2

- replace target with 2

Target 2: mean = 15/9 = ~1.7- replace target with 2

□ Filtering effective for:

- removing noise
- revealing linear trends

Neighborhood (Proximity) Functions

Buffering – calculate buffer zone based on proximity. Save as new raster.

Cell value of new raster is a measure of distance via proximity.

