Using GIS to Digitize Data Taken from the El Tatio Geyser Field, Chile and to Observe Chemical Concentration Changes from December 2006 to October 2009

Evan Pearson

5/5/10

Introduction

The goal of this project is to digitize new and existing data taken from the El Tatio Geyser field in northern Chile, then plot ion concentration changes from data taken in December 2006, June 2009, and October 2009. This project aims to combine old data from The Journal of The Geyser Observation and Study Association (taken in 2003) with new data taken from Megan Franks' doctoral research in 2007. Then with Megan's field data, changes in Iron, Arsenic, and Chlorine will be observed. By doing this, it will georeference Megan's data while putting into perspective where her data was taken with respect to an existing study. To plot these points I will use a map that is spatially referenced and overlay it with a terrain image and then by a scanned map from the Geyser Oberservation and Study Association (GOSA) Transactions book, then plot the locations where Megan took samples. After, concentration changes will be ranked with respect to an ion and its time period and plotted to observe changes.

<u>Data</u>

Imagery was obtained from NASA, Google Earth, and the GOSA Transactions Volume III book. The only image that was georeferenced was that obtained from NASA's GeoCover Landsat satellites. The image from GoogleEarth was not georeferenced because of saving the image without any attributes. The map taken from the GOSA book was scanned in and was not previously georeferenced. Megan's data was taken from a handheld Garmin GPSMAP60 receiver and concentrations were measured with an ICP-mass spectrometer (Arsenic and Iron) and a high-performance liquid chromatograph (Chlorine).

Procedure

To begin, spatial reference from this data was taken from http://zulu.nasa.gov (Figure 1) and uploaded into ArcCatalog. Before it could be loaded into ArcMap, the false northing on the WGS_1984_UTM_Zone_19S had to be changed from 10,000,000 to 0 in order to be recognized by ArcMap (Figure 1).

ral	
Name:	WGS_1984_UTM_Zonw_19S
Projection	
Name:	Transverse Mercalor
	_
Parameter	Value A
False_Easting	500000.00000000000000000000000000000000
False_Northing	0.0000000000000000000000000000000000000
Central_Meridian	-69.000000000000000000000000000000000000
Scale_Factor	0.9996000000000040
Labbude_Of_Origin	0.0000000000000000000000000000000000000
Linear Unit	F
Linear Unit Name: Meters per unit:	Meter <u> </u>
Linear Unit Name: Meters per unit: Geographic Coordinate Angular Unit: Degree Phime Metidian: Giese Phime Metidian: Giese Sehenid: WGS_138 Sehenid: Auits 53	Piteter Image: Constraint of the constraint

Figure 1: Spatial Image taken from NASA (right) and adjusting the False Northing in ArcCatalog (left)

Then, in GoogleEarth, the Geyser field was located (Figure 2).

Figure 2: El Tatio Geyser Field on GoogleEarth with placemarks

Initially placemarks were placed in order to divide up screenshots for a picture mosaic in Photoshop, but because GoogleEarth is very sensitive to mouse control, it was very difficult to take screenshots from a consistent perspective. After trial and error (and frequent frustration) in Photoshop, I resorted to taking an image capture of the whole geyser field (Figure 3).

Figure 3: El Tatio Geyser Field

Then, I located the geyser field on the spatial image from NASA (Figure 4) and georeferenced the image from GoogleEarth (Figure 5).

Figure 4: El Tatio Geyser Field located on spatial imagery

Figure 5: Georeferencing GoogleEarth image to spatial imagery

Then, I scanned in the index map from the GOSA Transactions book (Figure 6) and uploaded it into ArcMap.

Next, I georeferenced the scanned image to the already georeferenced GoogleEarth image (Figure 7).

Figure 7: Scanned image being georeferenced to GoogleEarth image

Then I created a geodatabase to store the road, stream, and geyser data from the GOSA transactions and from each year measurements were taken. A feature dataset was created for each of these features called "Geysers" (Figure 8) and projected them on the WGS 1984 UTM Zone 19S coordinate system. Feature classes "Map_Area", "Roads", "Streams", and "Map_Points" were then created (Figure 9).

Figure 8: Creating "Geysers" feature dataset

Die Edit View Go Iools Window Help			
S (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		仲 坤 0 忠	
Location: H:\GIS Project\Tatio_Map mdb\Geysers	<u> </u>		
Sylesheet FEECESPE - 2 2 2 3 3 3 3	1		
	1	Contents Preview Metadata	
Convertes Convertes	Arciologia: Arcivelation Arcivest Teols Arcivest Teols Arcivest Teols Arcivest Teols Consequent Teols Consequent Teols Consequent Teols Consequent Teols Consequent Teols Consequent Teols Arcivest Teols Arcivest Teols Schemeters Sche	tere Gilter, Ares Gilter, Ares Gilter, Ares Gilter inne Gilterinne	byes Pressor Goodadeave Peet Pressor Goodadeave Peet Pressor Goodadeave Peet Pressor Goodadeave Peet
C 20	Favorites Index Search Results	C	

Figure 9: Creating feature classes

The only feature class that a domain was added to was the "Map_Points" dataset. Because all of these points will be for geyser data, the codes I created for the point data were: Perpetual Spouter, Nonerupting Spring, Dormant Vent, and MAF sample (representing samples taken by Megan A. Franks)

(Figure 10).

abase Properties		? 🔰			
eneral Domains					
Domain Name	Description	^			
Point_Type	Type of Point				
_		_			
-		_			
-		_			
		_			
Domain Properties:					
Field Type	Text				
Domain Type Split policy	Coded Values				
Merge policy	Default Value	_			
		_			
		~			
Coded Values:					
Code	Description	~			
Geyser	Geyser				
Perpetual Spouter	Perpetual Spouter				
Nonerupting Spring Nonerupting Spring					
Dormant Vent Dormant Vent					
MAF sample	MAr sample	~			
	OK Conset	Annh			
	UN Lancel	Abbih			

Figure 10: Creating codes within the domain for geyser description

Then I digitized the map using the features created in the geodata base and correlated them with data

on the GoogleEarth image and the GOSA map (Figure 11-13).

Figure 11: Digitizing features (Map Area)

Figure 12: Digitizing features (Roads & Streams)

Figure 13: Digitizing features (Geysers)

Then, I used the GPS measurements on the provided spreadsheets and plotted the 3 geysers Megan observed onto the digitized map (Figure 14-15).

0	0 0 -	(* · ·) =	ा	ATwq (version	1)[1] [Compa	tibility Mode]	 Microsoft 	Excel			
-	Home	Insert Page Layout	Formulas	Data Revi	ew View	Acrobat					@ - 1
Pat	Ana	и - 10 - А́			General	• • • • •	Conditional	Format Cell	Sta Ins	ete · .	ort & Find &
		- A Lu A	7			mhas 5	Formatting	as Table * Styles *	Elfor	mat - 2- F	iter * Select *
22	Soare Cold	Fort	- AU	ignilleni	2 MD	nuer	11	Sidica			calong
	010	* (*)*		D		F				1	16
	A	в	G	CENERAL IN	EOPMATION	F	G	н		- J	K
f	Completit	Cite:	Eastern	Lession	Diet	KM #	Ellis #	Data	CDE	Lat	Leve
ł	Sampleio	Sile Creat Causer Series	Feature Croat Course	Location	Dist	NT#	Ellis #	19 Dec 05	GPS	22120 641	059100 721
	TAT09-001	Great Geyser Spring	Great Geyse	middle basin	0m			7-lun.09		22 20.041	000 00.121
	TAT09-612	great gevser	gevser	middle basin	on			29-Oct-09			
			2-7								
1	TAT06-021	Spring A	Megan's stre	middle basin	Ő			19-Dec-06			
	TAT08-304	Spring A		· · · · · · · · · · · · · · · · · · ·	0			13-Mar-06			
ľ	TAT09-022	megans stream-near sprin	stream	middle basin	0			9-Jun-09			
	TAT09-601	Spring A (Near outlet)	Megans strea	middle basin	0			28-Oct-09			
1	TA106-022	Spring B	Megan's stre	middle basin	0			19-Dec-06		22*20.618	068*00.674
	TAT08-301	Spring B	all comments	middle her	0			13-Mar-08			
	TAT09-021	megans stream tar spring	stream	middle basin	0			9-Jun-09			
	M103-000	oping o (r al outlet)	megans strea	muule basin	U			20-001-09			
	P00-P0TAT	Steam nool/stream	stream	nrehistoric ba	esín			6.lun.09			
	TAT09-608	beginning of stream	boiling stream	prehistoric ba	asin			29-Oct-09			
3		a a a a a a a a a a a a a a a a a a a	and a second								
3											
0	CI	Great Geyser	Spring A	Spring B	PB						
1	Dec-06	4993.81	4120.7	2936.2							
2	Mar-08		4922.7	3463							
3	Jun-09	6057.9	4773	3622.2	114.3						
4	Oct-09	5736.7	4823.5	3237	195.1						
5	Dec-09										
7	Å.e	Great Causar	Sering A	Sering B	DR						
2	Dac-06	Steat Geyser	26.86	21 79	PD						
ŝ	Mar-08	34.00	27.35	20.1							
5	Jun-09	33.26	27.04	20.81	0.04						
1	Oct-09	31.75	25.02	19.7	0.2					As over ti	me
2	Dec-09										
3							35 1				
4	Sb	Great Geyser	Spring A	Spring B	PB			•		•	
5	Dec-06	2.34	1.706	1.156			20	•			•
6	Mar-08		1.729	1.053			30				
7	Jun-09	1.978	1.526	0.965	0.015					· •	
0	Dec 09	2.333	1.613	0.949	0.029		25				•
7	Dec-0a										
1							20	-		-	
2	Fe	Great Geyser	Spring A	Spring B	PB		20		-		•
3	Dec-06	101.756	863.806	216.779							
4	Mar-08		534.997	48.369			15				
5	Jun-09	96.608	528.23	59.232	515.98						
6	Oct-09	30.1	580.9	56.9	185.3		10				
7	Dec-09						10				
aïí											

Figure 14: GPS Data

Figure 15: Plotted Study sites (without imagery background)

Then I created feature classes based on the ions and year examined (Figure 17).

Home	Insert Page Layout	Formulas	Data Revi	ew View	Acrobat					10 -
× ×	nat • 10 • A* B Z II • E • 💁 • 🛆	. = .	- (* (* 5	General	• 74 -3	Conditional Formatting	Format Cell • as Table - Styles -	States	t · Σ · te · • • •	ort & Find & itter * Select *
oard 🕞	Font	G Ali	gnment	5 Nur	nber 💿		Styles	Cell	P 1	Editing
016	+ (* <i>f</i> e									
A	В	C	D	E	F	G	н	1	J	K
			GENERAL IN	FORMATION					-	
Samplell	Site	Feature	Location	Dist	KY #	Ellis #	Date	GPS	Lat	Long
AT06-001	Great Geyser Spring	Great Geyse	middle basi	0			18-Dec-06		22*20.641	068*00.721
AT09-001	Great Geyser	Great Geyser	middle basin	um			29-Oct-09			
0100-012	giear geysei	Aalaa	THINGIE DAOIT				20-001-00			
AT06-021	Spring A	Megan's stres	middle basin	0 [°]	u		19-Dec-06			
AT08-304	Spring A			0			13-Mar-06			
AT09-022	megans stream-near sprin	stream	middle basin	0			9-Jun-09			
AT09-601	Spring A (Near outlet)	Megans strea	middle basin	0			28-Oct-09		00100 040	000100 074
AT06-022	Spring B	megan's strea	middle basin	0			13-Mar-08		22-20.618	066-00.674
AT09-021	megans stream far spring	stream	middle basin	0			9-Jun-09			
AT09-600	Spring B (Far outlet)	Megans strea	middle basin	0			28-Oct-09			
AT09-009	Steam pool/stream	stream	prehistoric ba	isin			6-Jun-09			
AT09-608	beginning of stream	boiling stream	prehistoric ba	isin			29-Oct-09			
2I	Great Geyser	Spring A	Spring B	PB						
Dec-0	6 4993.81	4120.7	2936.2							
Mar-0	8	4922.7	3463							
Jun-0	9 6057.9	4773	3622.2	114.3						
Dec-0	9 5/36./	4823.5	3231	195.1						
0004	10									
As .	Great Geyser	Spring A	Spring B	PB						
Dec-0	6 32.69	26.86	21.79							
Mar-0	8	27.35	20.1		r					
Jun-0	9 33.26	27.04	20.81	0.04					As over t	ime
Dec-0	31.75	25.02	19.7	0.2						
0.001						35				
Sb	Great Geyser	Spring A	Spring B	PB					•	
Dec-0	6 2.34	1.706	1.156			20	•			•
Mar-0	8	1.729	1.053			30				
Jun-0	9 1.978	1.526	0.965	0.015						
Dec-f	2.333	1.613	0.949	0.025		25				•
DBCH										
						20	-		4	
ie -	Great Geyser	Spring A	Spring B	PB				-		-
Dec-0	6 101.756	863.806	216.779							
Mar-0	8	534.997	48.369	141.00		15				
Jun-0	96.608	528.23	59.232	515.98						
Dec-0	30.1	560.9	56.9	105.3		10				
Decru	*									

Feature Class Properties	? 🛛
General XY Coordinate System Tolerance Fields Indexes Subtypes Rela	e Resolution Domain tionships Representations
Field Name OBJECTID SHAPE CI As	Data Type Object ID Object ID Cogenetry Long Integer Long Integer Long Integer
Click any field to see its properties. Field Properties Alias OBJECTID To add a new field, type the name into an empty row in i the Data Type column to choose the data type, then edi	Import the Field Name column, click in t the Field Properties.
OK	Cancel Apply

Figure 16: Chemical data sorted by year and geyser (top) and making feature classes based on them (bottom)

Then, I plotted the points based on the year they were taken and entered their chemical data based on the site they were taken at. Values are in ppm or mg/L. The Great Geyser is located the farthest west, Spring A in the middle, and Spring B is the farthest East. (Figure 17)

Figure 17: Entering Chemical data for Dec2006 at the Great Geyser site

After all of the data was entered for each respective year and site, I chose to spline the data for each ion because of its apparent smoothness (Figure 19).

Spline	? 🛛
Input points:	ChemDec06 💽 Ĕ
Z value field:	ci 🔹
Spline type:	Regularized 💌
Weight:	0.1
Number of points:	12
Output cell size:	5
Output raster:	<temporary></temporary>
	OK Cancel

Figure 18: Splining Chlorine data from Dec2006

Figure 19: Spline of Chemical data

Then, what turned out to be a crucial part, I classified each ion so that it had about 10 distinctive ranges of ion concentration (Figure 20). After, in raster calculator, I subtracted December 2006 ion

concentrations from June 2009 ion concentrations, and later subtracted June 2009 ion concentrations from October 2009 ion concentrations in order to have long and short term concentration changes (Figure 21).

Layer Properties			? 🛛
General Source Extent	Display Symbology Fields Joins & F	Relates	
Show: Unique Values	Draw raster grouping values into cl	lasses	Import
Stretched	Fields Value:	Classification Defined Interval	
	Normalization: <pre> </pre> <pre> </pre> <pre> </pre>		assif <u>y</u>
	Color Ramp:		•
	Symbol Range	Label	~
	102 - 200	102 - 200 200 0000001 - 300	=
	300 - 400	300.0000001 - 400	
	400 - 500	400.0000001 - 500	
	500 - 600	500.0000001 - 600	
1 T A 1	600 - 700	600.0000001 - 700	~
	Show class breaks using cell values	Display <u>N</u> oData as	+
	Use hillshade effect Z: 1		
		OK Can	cel <u>A</u> pply

Figure 20: Classifying Ion Concentration levels to have about 10 distinct ranges

🇰 Raster Calculato	r					[? 🗙
Layers:							
Jun09Cl Jun09Dec06_As	×	7	8	9	=	\diamond	And
Jun09Dec06_Cl Jun09Dec06_Fe Jun09Dec06_Sb		4	5	6	>	>=	Or
jun09fe jun09sb	•	1	2	3	<	<=	Xor
	+	0		•	()	Not
[oct09fe] - [jun09fe]							~
							~
About Building Expressions							>>

Figure 21: Subtracting June 2009's Iron concentration from October 2009's Iron concentration

Then based on the range of the change in concentration and the classified intervals, a rank was given (large increases in concentration=higher rank, large decreases in concentration=lower rank) (Figure 22). Also, I kept the ranges and ranks consistent between ions.

Reclassify			? 🛛
Input raster: Reclass field:	Oct09Jun09_Fe		• 🗳
Set values to reclas	sify		
Old values	New values	~	Classify
3085.47998 - 3250) 1		
3250 - 3500	2		Unique
3500 - 3750	3		
3750 - 4000	4		Add Entry
4000 - 4250	5	~	
<			Delete Entries
Load	Save		Precision
🔲 Change missing va	alues to NoData		
Output raster:	<temporary></temporary>		
		ОК	Cancel

Figure 22: Ranking concentration changes

Then I added all of the newly reclassified concentration changes for each ion from December 2006-June 2009 to June2009-October 2009 in the raster calculator and observed the changes (Figure 23-24).

Figure 23: Adding ranked ion concentration changes from 2 time periods

Figure 24: Ranked changes in Arsenic

After I calculated the changes for the 3 ions, I placed them on a map together with the digitized map and an overall map of South America (Figure 25).

Figure 25: Final Map

<u>Error</u>

To improve this project I would like to have more data points and dates where samples were taken. This would allow ArcMap to make more accurate predictions and lead to a more comprehensive study of the hydrogeochemistry of the region.