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1 Introduction and Background

The understanding of Earth’s climate over time is essential to society. The Gravity Recovery and
Climate Experiment (GRACE) satellites aim to contribute to the study of Earth’s climate by mod-
eling Earthy’s gravity fields, which give us information about global land water storage over time.
Scientists use data from GRACE in conjunction with other data sets to understand the water cy-
cle. This particular study aims to see how GRACE data and Evapotranspiration data from the U.S.
Geological Survey correlate with one another from January 2005 through December 2009.

1.1 Gravity Recovery and Climate Experiment (GRACE)

The GRACE mission was launched in 2002 by NASA and the German Aerospace Center (DLR). It
consists of two identical spacecraft co-orbiting in a polar orbit about 500 km above the surface of
Earth [1]. As the satellites pass over areas of large mass concentrations, the lead satellite accelerates
more quickly than the trailing satellite, and vice versa as they move away from these mass concen-
trations. GPS and microwave ranging are used to make measurements of the distance between the
two satellites, enabling highly accurate global models of Earth’s gravitational field.

2 Data Collection

2.1 GRACE Data

GRACE data is published monthly as spherical harmonic coefficients to degree/order 60 and require
significant pre-processing before it is usable in ArcGIS. At the University of Texas’ Center for Space
Research (CSR), spherical harmonic coefficients are used to calculate the geoid height and then, the
time variable water storage. This can be done using the procedure outlined in Wahr [2].

Monthly global total water storage data (in centimeters) from mid-2003 through September 2015
is available from CSR in the form of a netCDF file (multi-dimensional gridded data). Due to a
combination of GRACE data outages and the availability of Evapotranspiration data, the chosen
timespan is January 2005 through December 2009.

2.2 Evapotranspiration Data

Evapotranspiration data was obtained from the U.S. Geological Survey (USGS) [3]. Evapotranspi-
ration is the sum of evaporation and transpiration. More specifically, evapotranspiration is defined
as the water lost to the atmosphere from the ground surface, evaporation from the capillary fringe of
the groundwater table, and the transpiration of groundwater by plants whose roots tab the capillary
fringe of the groundwater table [4]. Data obtained from the USGS provided monthly evapotranspi-
ration data for the high plains aquifer region in millimeters for the chosen timespan. I will use the
abbreviation HPA (High Plains Aquifer) to refer to this dataset.
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3 ArcGIS Processing

In order to see how the two data sets relate, the Pearson correlation coefficient was computed at
every cell between the two data sets. The Pearson correlation coefficient, r, is given by equation 1.
N represents the total number of months (60 for this experiment), X and Y each correspond to the
GRACE and the HPA datasets respectively with the index i representing an individual month, and
the mean values of the time series given by X̄ and Ȳ . The closer r is to 1, the more correlated the
two datasets are. The procedure for making a raster of correlation coefficients given the two datasets
is outlined below:

r =

PN
i=1(Xi � X̄)(Yi � Ȳ )qPN

i=1(Xi � X̄)2
qPN

i=1(Yi � Ȳ )2
(1)

1. First, I created monthly individual GRACE raster layers from the gridded netCDF file using
a model built in ArcGIS in batch that made use of the Make Raster Layer tool (Fig. 1).

Figure 1: This image shows a sample global raster layer of a single month (December 2009) created
from the GRACE data gridded netCDF file. The explanation of the colors is shown to the left of
the image. The units are in centimeters. For reference, the United States is on the right side of the
image.

2. Then, I made sure both datasets had the same spatial reference. I changed that of the HPA
data set to match that of the GRACE data using the Project tool in batch.

3. Next, I created a model to more efficiently convert the HPA dataset to centimeters using
the raster calculator and running the model in batch (Fig. 2 and 3).

4. Now that both datasets shared the same spatial reference and units, I had to make sure
they had the same resolution and covered the same land area for quicker processing and to
calculate X̄ and Ȳ .

(a) First, I created a multi-band raster out of the 60 monthly HPA rasters using the Com-

posite Bands tool. Then, I resampled the HPA data using the Resample tool to change
the resolution to 0.5� x 0.5� to match that of the GRACE data (Fig. 4).

(b) Next, I created a multi-band raster out of the 60 monthly GRACE rasters also using
the Composite Bands tool (Fig. 5). I then clipped the global GRACE data to the
resampled HPA data using the Clip tool.
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Figure 2: This shows the model built to more efficiently convert the HPA dataset to centimeters. The
oval on the left represents the input raster which is then fed to the raster calculator. The rightmost
oval represents the output raster. Note, the % signs that surround “Name” in the oval representing
the output allow the user to use the input raster name as part of the output raster name, allowing for
quicker file naming.

Figure 3: This shows the mm2cm model used to convert the HPA dataset to centimeters being run
in batch.
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Figure 4: This shows the resampling of the multi-band HPA raster to the the resolution to 0.5� x
0.5�.

Figure 5: This shows the creation of a multi-band raster out of the 60 monthly GRACE rasters.
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(c) Lastly, I used the Cell Statistics tool on the resulting GRACE and HPA rasters that
now shared the same resolution and land area to calculate the mean values at each grid
point of each dataset, resulting in X̄ and Ȳ .

5. Now that I had calculated X̄ and Ȳ , I needed access to the monthly rasters for each of
the two datasets after they were resampled and clipped. I did this by creating a model to
extract the bands from the multi-band rasters that were created in steps 4.a and 4.b. This
model made use of the Make Raster Layer tool in batch. Once complete, there were 120
total rasters - 60 rasters from the monthly GRACE data representing the Xi’s and 60 rasters
from the monthly HPA data representing the Yi’s.

6. Then, the numerator was calculated:

(a) Next, the Raster Calculator was used in batch to create the time series values minus
the mean (Xi � X̄) and (Yi � Ȳ ). This created 120 new rasters.

(b) After each (Xi � X̄) and (Yi � Ȳ ) were created, the Raster Calculator was again
used within a model and in batch to multiply each (Xi � X̄) with its corresponding
(Yi � Ȳ ), creating 60 new rasters (Fig. 6 and Fig. 7).

Figure 6: This shows the model built to more efficiently multiply each (Xi � X̄) with its corre-
sponding (Yi � Ȳ ). Note that the X and Y ovals on the left are modeled parameters, meaning that
the user selects them. They are then fed to the raster calculator to be multiplied together. The output
layer name is also modeled as ”XY ” allowing the user to input a number after the underscore.

(c) Then, Cell Statistics tool was used to compute the sum of the rasters created in the
previous step, resulting in the numerator of Eq. 1.

7. After the numerator was calculated, the denominator was calculated.

(a) Again, the Raster Calculator was used in a model in batch mode to square each (Xi�
X̄) and (Yi � Ȳ ), creating 120 new rasters from each (Xi � X̄)2 and (Yi � Ȳ )2.

(b) Then, the Cell Statistics tool was used twice to compute sums of these rasters. i.e. The
two rasters,

PN
i=1(Xi � X̄)2 and

PN
i=1(Yi � Ȳ )2, were calculated.

(c) The square root of each of the two rasters created in the previous step were then
calculated using the Raster Calculator resulting in another two rasters.

(d) Lastly, the two rasters created in the previous step were multiplied together using the
Raster Calculator resulting in the denominator of Eq. 1.

8. Finally, the numerator was divided by the denominator resulting in a single raster repre-
senting the correlation coefficient, r, of the two data sets over time (Eq. 1). This final map
can be seen on the last page of this document.
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Figure 7: This shows the model built to more efficiently multiply each (Xi � X̄) with its corre-
sponding (Yi � Ȳ ) being run in batch. Note how each column corresponds to each of the modeled
parameters in Fig. 6

4 Conclusions

From the final map shown on the last page of this document, one can see that the two data sets are
most correlated in the northwest region of the High Plains Aquifer. However, the maximum value
for the correlation coefficient raster is only 0.53, indicating weak correlation between the two data
sets. To further understand the meaning behind this result, future work would include analyzing a
larger time span of data, as well as including precipitation data in the analysis. For future time series
analysis similar to that completed here, I would also recommend using a combination of Python (or
other programming languages) and ArcGIS. ArcGIS is not optimized for large time series analysis
at its current version and basic raster calculations take significant time when run in batch. However,
once all data is processed, ArcGIS is a wonderful tool to visualize resulting data.
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