Jackie Rambo

December 5, 2017

**GIS Final Project** 

Relationship between Delta Geometry and Associated Water Discharge

## Purpose

A delta's geometry can be based on a variety of factors such as topographic relief or drainage basin climate. The purpose of this analysis is to determine a relationship between a delta's average discharge of sediment and water and the resulting geometry.

## **Data Sources**

Google Earth Pro

# **Defining a Delta**

In order to keep my measurements consistent, I defined the start of my delta outlines to be where the first main node occurs. Additionally, the general slope of the delta has to be relatively lower compared to the surrounding topography. I used transect lines in google earth pro to gather surface elevations on and around the delta. This was to make sure I didn't outline any area that had a significantly high elevation. In the Lena River Delta shown below, the green, yellow, blue and red transect lines are shown below with their corresponding elevation profiles to show a similarity in slope across the delta.



### Red Transect:



### Blue Transect:



### Green transect:



Yellow transect:



For the Lena River Delta, I also referenced figure 8 from Bolshiyanov et al. to generally gauge where I should be delineating the "rocks" from the delta.



Fig. 8 from Bolshiyanov et al. (2014)

# **GIS Application**

After outlining the deltas in Google Earth Pro, I saved the five outlines as KML files and then converted them to layer files in GIS. The files in both Google Earth Pro and GIS used WGS 84 as the datum. I then took length, width, area, and perimeter measurements of each delta using the line, polygon, and ruler tool. For the length and width, I measured each along the longest axis in both directions, ensuring that they crossed at a 90 degree angle. Below are screenshots of the deltas in GIS and where I took the length and width measurements.



Mackenzie Delta, Northwest Territories, Canada, entering the Beaufort Sea

Lena Delta, Lena Delta Wildlife Reserve, Russia



## Dvina Delta, Russia



Mississippi Delta, Louisiana



## Yukon Delta, Alaska



# **Discharge Rates**

| River     | Water      | Sediment  | Source                                                         |
|-----------|------------|-----------|----------------------------------------------------------------|
|           | discharge  | discharge |                                                                |
| Yukon     | 227,000    | 60,000,00 | https://ak.water.usgs.gov/Publications/pdf.reps/wrir99.4204.pd |
| River     | ft3/s,     | 0 tons of | f                                                              |
|           | based on   | sediment  |                                                                |
|           | the period | per year  |                                                                |
|           | of record, | at pilot  |                                                                |
|           | 1976-96.   | station   |                                                                |
|           | U          |           |                                                                |
| Dvina     | 3332.892   |           | https://en.wikipedia.org/wiki/Northern_Dvina_River             |
| River     | 84 m^3/s   |           |                                                                |
| Mississip | 16,792     |           | https://www.nps.gov/miss/riverfacts.htm                        |
| pi River  | cubic      |           |                                                                |
|           | meters     |           |                                                                |
| Lena      | 16,400     |           |                                                                |
| River     | cubic      |           | https://www.britannica.com/place/Lena-River                    |
|           | metres/s   |           |                                                                |
| Mackenzi  | 9701.351   |           | https://www.sciencedirect.com/science/article/pii/S104061821   |
| е         | 64 m/s     |           | 4006715                                                        |

In determining the water discharged by the Yukon River, Burrows et al. (1981) measured the volume of water discharged in cubic feet per second from various locations. I used the data taken at the Pilot Station since it was the closest location to the mouth of the Yukon River Delta. The plot below shows the water discharges at varying locations on the Yukon River.



Figure 21. Average discharge of the Yukon River at eight locations (see figure 18 for locations).

Pilot Station is shown as location #68 below:



Figure 18. Location of streamflow-gaging stations with 10 or more years of record in the Yukon River Basin. (See table 6 for station names.)

After converting the water discharge rates to m^3/s, I plotted them with each delta's corresponding length to width ratio, area, length, width, and perimeter.







This following table shows the length, width, area, and perimeter values for each delta, as well as its water discharge.

| Delta       | length (m) | width (m) | area (m^2)  | perimeter (m) | water discharge | I/w      | l*w         | area/(l*w)  |
|-------------|------------|-----------|-------------|---------------|-----------------|----------|-------------|-------------|
| Yukon       | 175404     | 225900    | 17489479948 | 682009.8      | 6427.92418      | 0.776467 | 39623763600 | 0.441388661 |
| Dvina       | 83762.8    | 92251.99  | 5662204537  | 288974.55     | 3332.89284      | 0.907978 | 7727284988  | 0.732754719 |
| Mississippi | 43107.9    | 62262     | 1823317110  | 244397.9      | 16792           | 0.692363 | 2683984070  | 0.679332314 |
| Lena        | 470430     | 759272.55 | 3.12114E+11 | 2888898       | 16400           | 0.61958  | 3.57185E+11 | 0.873817502 |
| Mackenzie   | 530272     | 390763.3  | 1984564.9   | 122702923     | 9701.35164      | 1.357016 | 2.07211E+11 | 9.57752E-06 |

I suspected that the GIS measurement for the Mackenzie River Delta's area seemed extreme, so I multiplied each delta's length and width and divided the measured area by that value to estimate an error (length \* width would give an area estimate for a square over the delta region, so presumably, a measured value for the area should be a reasonable fraction of this calculated value). The Mackenzie River Delta's area measurement did not seem to be accurate, however, I wasn't able to open up GIS to re-measure the area.

### Results

The length and width of a delta's topset seems to scale with its water discharge. Rivers with high water discharge may create deltas with relatively longer or wider delta geometries. There also seems to be a negative relationship between length/width ratio and water discharge. If a delta has a high length to width ratio, it is less circular and more oval in shape. I hypothesized that deltas with high water discharge would result in higher length to width ratios due to a delta tendency to prograde faster with higher water discharge. However, the results show that less elongation resulted from deltas with higher rates of water discharge.

### Reference

Bolshiyanov, D., Makarov, A., Savelieva, L. Lena River delta formation during the Holocene, 2014, Biogeosciences, 12, 579 - 593