GEO 327G

GIS & GPS Applications in Earth Science

Assessing Water Table Change of Select Texas Counties in the Ogallala Aquifer from 1998-2018

Mark Lawrence

December 9th, 2019

Background and Introduction:

The Ogallala Aquifer has been a source of freshwater for many people along the Great Plains of the United States. It underlies 8 states reaching as far north as South Dakota and as far south as the Texas panhandle. This underground sea of water varies in depth depending on the geology of the landscape. The Texas panhandle is one of the areas where the depth of the aquifer is shallowest as well as most prone to drought, receiving an average of 22.2 inches of precipitation per year, so keeping water data on the area is important. Growing up near the panhandle, and working as a ranch hand, it was always interesting to see the heavily irrigated lands which depend on the center-pivot system to keep crops irrigated. The aquifer is a vital source of water that surrounding communities heavily depend on and without it, wouldn't exist. The six-county area of interest is located in a dense agriculture area in the Texas panhandle. The counties of study include: Bailey, Cochran, Hale, Hockley, Lamb, and Lubbock.

Problem:

I am interested in understanding the water table change over the last 20 years. To do this, I would need to find Ogallala aquifer water elevation data ranging over the specified time of interest. I would then have to compare the two separate years (1998 & 2018) by using a spatial analysis tool like the spline tool and a raster calculator like map algebra to determine areas of depletion over twenty years.

Being able to quantify the aquifer depletion would be essential in determining future predictions of water availability and for the area of study. Other studies based off water loss could include effect on agricultural, and urban land-use practices as well as ground water quality, and recharge.

Data Collection:

Texas Political Boundaries were downloaded from the Texas Department of Transportation system (TxDoT), <u>http://gis-txdot.opendata.arcgis.com/</u>

Water table measurements by county were downloaded from the Texas Water Development Board in the groundwater Database (GWDB), <u>https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp</u>

Ogallala Aquifer shapefile was downloaded from the Texas aquifers in the Texas Water Development Board in the GIS Data section <u>https://www.twdb.texas.gov/mapping/gisdata.asp</u>

General information about the Ogallala Aquifer was attained from the websites listed below to gain a better understanding of the area.

https://www.scientificamerican.com/article/the-ogallala-aquifer/

https://pubs.usgs.gov/fs/2000/0091/report.pdf

Data Pre-Processing:

The Texas shapefile (figure 1) was loaded into ArcMap from the TXDoT website with the North American Datum 1983 coordinate system which is what I'll be working in for the project. From here I selected the counties that are either fully or partially inside the Ogallala Aquifer. I then used the Extract by Mask tool to define a concentrated working area. I then loaded the Texas aquifer shapefile from TWDB and used the attribute table to select the polygons within the Ogallala as seen in Figure 2.

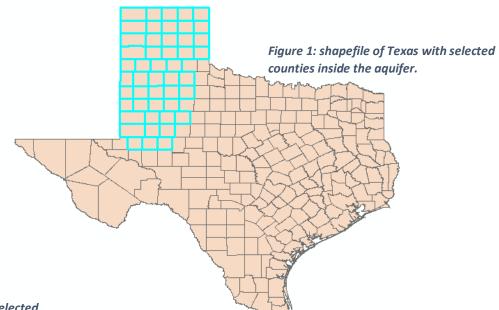
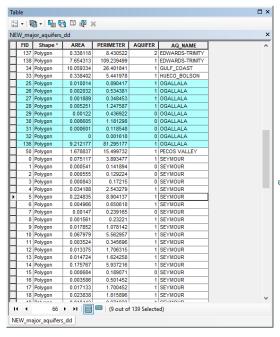
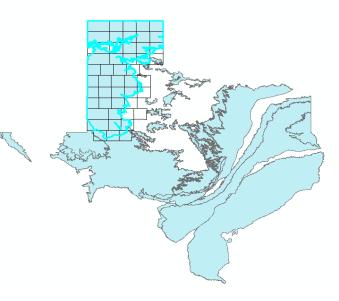




Figure 2: Ogallala boundary selected from Texas aquifer shapefile.

For Aquifer specific data I used the Texas Water Development Boards groundwater database to get well water data specific to the counties of interest. After Selecting "Water Levels by County", Figure 3 shows the data that is found with the specific selections from the drop-down menus. The data shows the things like the state well number, date of measurement, and water elevation. To extract the data, I clicked on the "Export Drop Down Menu" and then clicked "CSV (comma Delimited)" to export into Excel for manipulation. I did this for each of the counties of interest.

	-										Ter)								
County	Bail		•		_	Aquifer		Ogallala			*								
Observ	ation Type GCD) Current Ob	servation W	/ell	~	Coordina	ite Format	Decima	l Degrees	•									
14 4	1 of 124	+ ▶ ▶∥			Find N	ext	L . (D 🖪											
				Теха	s Water				VDB) Grou	undwater	Database	e (GW	DB)		around	water			
Devel	Texas Water (Well	Water I	_evels Rep			(,		ground	vision			
									y:Bailey :Ogallala										
						Observ			Current C	bservation	n Well								
\$		\$	\$	\$	\$														
State Well Number	Coordinates	Aquifer	Aquifer Code	Obs Code	Well Depth (ft. below land surface)	Status Code	Date	Time	Water Level (rt. below land surface)	Change value in () Indicates rise in level	Water Elevatio n (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments			
0948902	34° 17' 15" N 103° 02' 01" W	Ogallala	1210GLL	D	272	P	1/10/1964		117.15		3940.85	1	Texas Water Development Board	Steel Tape					
						P	1/5/1965		121.9	4.75	3936.1	1	Texas Water Development Board	Steel Tape					
						P	1/8/1966		124.31	2.41	3933.69	1	Texas Water Development Board	Steel Tape					
						P	1/7/1967		127.14	2.83	3930.86	1	Texas Water Development Board	Steel Tape					
						P	1/9/1968		130.28	3.14	3927.72	1	Texas Water Development Board	Steel Tape					
						х	1/9/1969					1	Texas Water Development Board		20				
						Ρ	1/14/1970		133.67		3924.33	1	Groundwater Conservation District	Steel Tape					
						Ρ	1/9/1971		133.84	0.17	3924.16	1	Groundwater Conservation District	Steel Tape					
						P	1/2/1972		138.14	4.30	3919.86	1	Groundwater Conservation District	Steel Tape					
						P	1/19/1973		147.2	9.06	3910.8	1	Groundwater Conservation	Steel Tape					
						P	1/8/1974		140.22	(6.98)	3917.78	1	District Groundwater	Steel Tape					
													Conservation District						
										P	1/10/1975		147.57	7.35			Groundwater Conservation District	Steel Tape	
										P	1/12/1976		146.59	(0.98)	3911.41	1	Groundwater Conservation District	Steel Tape	
												P	1/11/1977		151.51	4.92	3906.49	1	Groundwater Conservation
							P	1/10/1978		153.32	1.81	3904.68	1	District Groundwater	Steel Tape				
																	Conservation District		
						P	1/9/1979		155.04	1.72	3902.96	1	Groundwater Conservation District	Steel Tape					
							P	12/17/1979		156.53	1.49	3901.47	1	Groundwater Conservation District	Steel Tape				

Figure 3: Ogallala well water data of Bailey county

I then browsed over to the Excel file to manipulate the data because I'm only interested in two years (1998 & 2018). Data from the counties of interest were cut and pasted into two different spreadsheets with one being the 2018 wells and the other being 1998 wells. I then saved these as Comma Separated Values (CSV) files and loaded them into ArcMap. Figure 4 Below shows what the spreadsheets from the groundwater database looked like prior to manipulation.

ik	e Home In	sert Pag	e Layout	Formulas	Data F	Review V	iew ⊦	lelp ACROBA	тQ	Tell me what y	ou want to	do				
•	🔏 Cut	Calibri	* 1	11 × A .	≡ ≡	= %	ab W	rap Text	General		- 8		Nor	mal	Bad	
	Copy -	BI	u - PP -	1				erge & Center 👻	e (% • • • •		itional Form	at as Cho	ck Cell	Explanat	ton
	💉 Format Painter	DI	<u>U</u> - <u>-</u> -	▲ • <u>▲</u>	• = =	= = •		erge & Center 🔹	\$ - 9	%0 ⁹ .00 →		tting ∗ Tabl		accen		,
	Clipboard	Gi l	Font		Est.	Alig	nment	r.	i 1	lumber	ra l					
	6 - :	x v	fx 105	53101												
		~ ¥	Jx 10.													
	A B	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	
	2415108 Ogallala	1210GLL		200	33.87444	-102.209		1/11/2019		126.4	0.92	3333.6			Electric Line	
	2405306 Ogallala	1210GLL		150	33.96083	-102.404		1/10/2019		96.1	0.28	3543.9			Electric Line	
	2405502 Ogallala	1210GLL		132	33.93056	-102.419		1/10/2019		63.88	-0.42	3538.12			Electric Line	
	2405801 Ogallala	1210GLL			33.90639	-102.419		1/10/2019		39.26	0.26	3519.74			Electric Line	
	2406402 Ogallala	1210GLL		176	33.94667	-102.361		1/10/2019		86.5	0.25	3508.5	-		Electric Line	-
	2413202 Ogallala	1210GLL			33.86222	-102.418		1/10/2019		25.38	0.74	3450.62	-		Electric Line	-
	2414401 Ogallala	1210GLL			33.83306	-102.364		1/10/2019		53.68	-0.27	3466.32			Electric Line	
	1053101 Ogallala	1210GLL		184	34.21806	-102.461		3/16/2018		115.42	5.96	3579.58			Transducer	
	1045702 Ogallala	1210GLL		278		-102.498		3/1/2018		170.49	1.16	3568.51			Electric Line	
	1054601 Ogallala	1210GLL		200				2/28/2018		256.6	4.2	3409.4			Electric Line	
	1052406 Ogallala	1210GLL		237		-102.597		2/27/2018		126.81	4.16	3651.19	-		Electric Line	-
	1052508 Ogallala	1210GLL		168		-102.557		2/27/2018		98.7	4.9	3651.3			Electric Line	
	1052715 Ogallala	1210GLL				-102.594		2/27/2018		151.36	1.02	3667.64	-		Electric Line	
	1052813 Ogallala	1210GLL		140		-102.56		2/27/2018		96.13	-0.19	3683.87			Electric Line	
	1052904 Ogallala	1210GLL			34.13583	-102.52		2/27/2018		146.2	0.12	3559.8			Electric Line	
	1054301 Ogallala	1210GLL		330		-102.263		2/23/2018		296.48	1.73	3387.52			Electric Line	e
	1054404 Ogallala	1210GLL		267	34.20083	-102.36		2/23/2018		210.54	1.59	3461.46			Steel Tape	
	1045402 Ogallala	1210GLL			34.29861	-102.495		2/22/2018		317.58	2.91	3474.42			Electric Line	
	1053608 Ogallala	1210GLL			34.19111	-102.411		2/22/2018		166.02	1.03	3509.98	-		Electric Line	-
	1061105 Ogallala	1210GLL		193	34.12	-102.46		2/22/2018		159.65	2.97	3502.35	-		Electric Line	-
	2405102 Ogallala	1210GLL		110	33.96583	-102.482		2/22/2018		56.87	0.91	3577.13	-		Electric Line	
	1054801 Ogallala	1210GLL		318		-102.309		2/21/2018		224.3	-0.88	3421.7			Electric Line	
	1055206 Ogallala			369	34.20945	-102.181		2/21/2018		304.45	2.12	3334.55			Electric Line	
	1044908 Ogallala	1210GLL		334	34.26222	-102.537		2/14/2018		255.47	-5.7	3493.53			Transducer	
	2407402 Ogallala	1210GLL			33.95556			2/7/2018		156.71	-0.75	3391.29	-		Electric Line	
	1052308 Ogallala	1210GLL	D	164		-102.507		1/26/2018		126.72	-0.43	3596.28			Electric Line	
	1052601 Ogallala	1210GLL		170		-102.517		1/26/2018		86.65	0.81	3612.35			Electric Line	
	1061107 Ogallala	1210GLL		206	34.10028	-102.48	þ	1/26/2018		181.47	-1.09	3499.53			Electric Line	
	1061404 Ogallala	1210GLL	D	236		-102.462		1/26/2018		196.2	-0.09	3481.8	1		Electric Line	e
		rLevelsByC	- (P)	(+)	24.20522	400 505 /	•	* los looso		0.44 OF	4.00	0400.05		~ ·	et 1 - 1 - 1 -	

Figure 4: Ogallala well water data exported into a Excel file.

Data Processing:

To display the well data, I loaded in the 1998 and 2018 wells tables I right clicked on "2018_wells.csv" in the table of contents and selected "Display XY Data" from the window and clicked through the warning messages (Figure 5). Figure 6 shows all the points plotted in the counties for 2018 (606 points). 1998 had 473 data points for the same county, this difference is due to more wells being measured today than in the past.

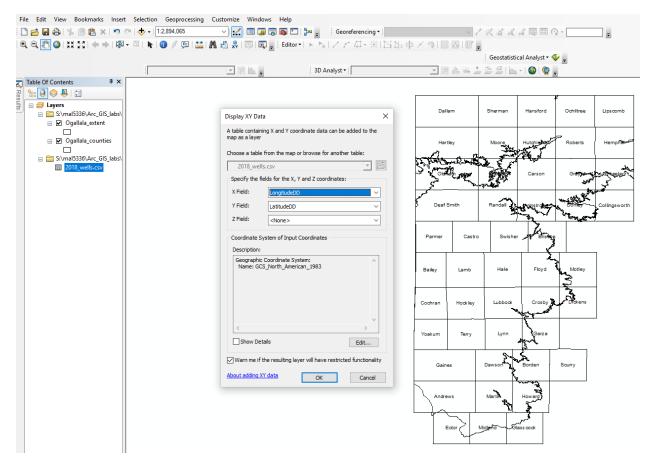


Figure 5: converting 2018 data into XY points

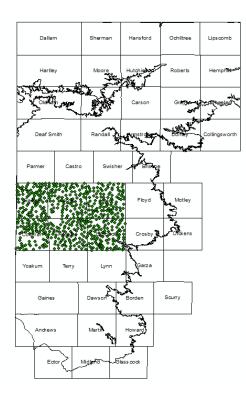
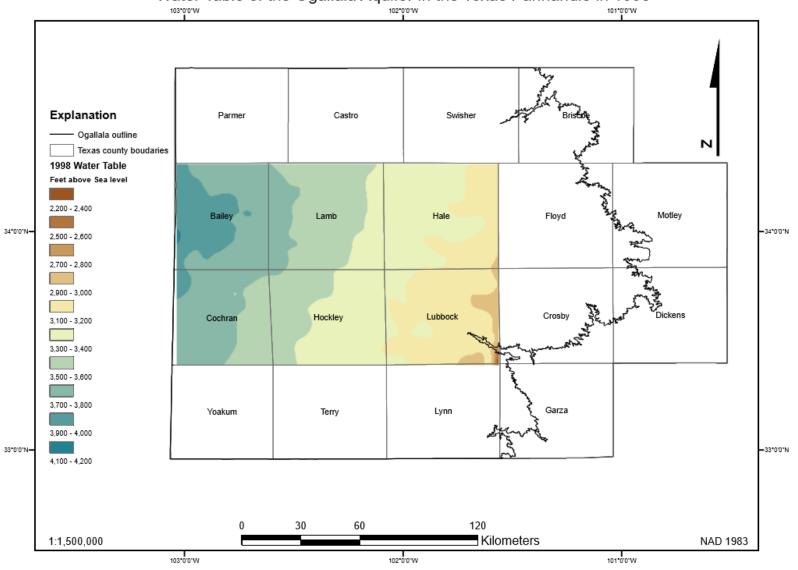



Figure 6: 2018 well water data converting into point data in ArcMap.

At this point I began the Splining process using the Spline (Spatial Analysis) tool to convert points to raster data. I based the Z value off of the water elevation which is the measurement of the water table in feet above sea level. Once the raster was created, I symbolized the data by breaking it up into 10 manual variables 200 feet apart. The values range from 2200 - 4200 ft. above sea level. I then created a splined raster of both the 2018 and 1998 wells. The Maps on Page 8 and 9 are the result of the spline calculator. Notice the decreased water table in 2018.

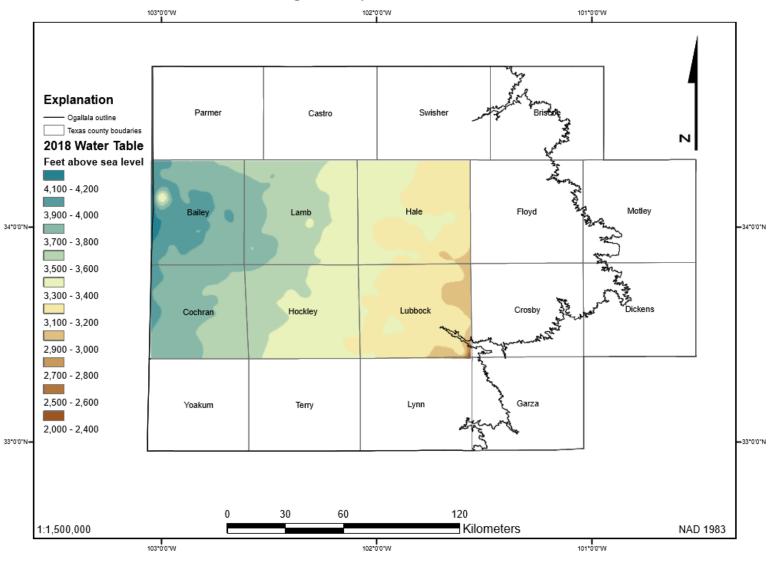
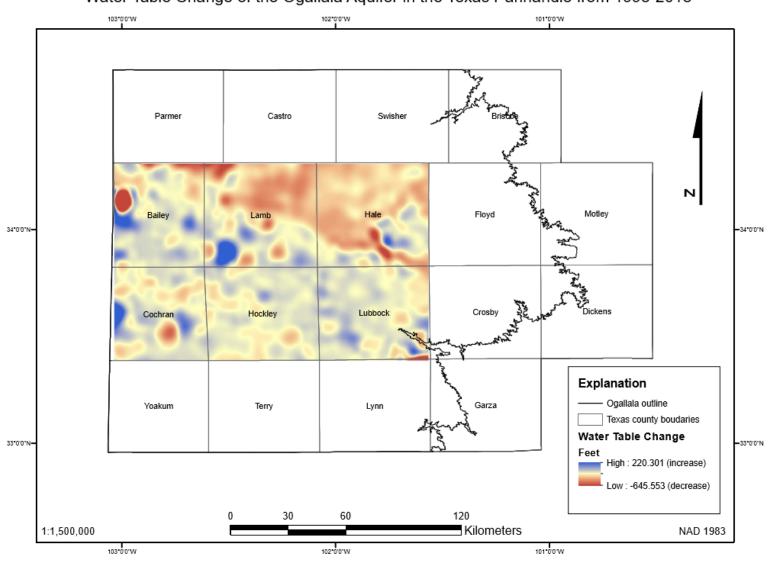

≺ Spline — □		×
Input point features		~
2018_wells.csv Events	6	
Z value field		
WaterElevation	\sim	
Output raster		
$\label{eq:lastic} with the two states and the two states are the two states are the two states are the two states are two s$	6	
Output cell size (optional)		
3.66666799999999E-03	2	
Spline type (optional)		
REGULARIZED	~	
Weight (optional)		
	0.1	
Number of points (optional)		
	12	
		\sim
OK Cancel Environments Show H	ielp >:	>

Figure 7: Spline dialogue box that converts my points to a raster

Water Table of the Ogallala Aquifer in the Texas Panhandle in 1998

Map 1: Water Table calculation in 1998


Water Table of the Ogallala Aquifer in the Texas Panhandle in 2018

Map 2: Water Table calculation in 2018

Now that I have calculated the water tables from 1998 and 2018 we can use the raster calculator tool (spatial analysis) to visualize the difference. The calculation I used is seen in Figure 8. After formatting the symbology, I created Map 3 which shows where water has increased (blue) and where it has decreased (red). Just from the eye test it appears to have dropped some degree.

🔨 Raster Calculator		- 0	×									
Map Algebra expression Layers and variables 2018_algebra 2018_spline 1998_spline	7 8 9 / == != & 4 5 6 * > >= 1 2 3 - <	Conditional — Con Pick SetNull Math — Abs Exp	*									
"2018_spline" - "1998_spline" Output raster \\austin.utexas.edu\disk\geoprofiles\default\mal5336\my documents\arcgis\default.gdb\c2018_splin1 OK Cancel Environments Show Help >>												

Figure 8: Raster Calculator dialogue box with equation

Water Table Change of the Ogallala Aquifer in the Texas Panhandle from 1998-2018

Map 3: Water Table Difference from 1998-2018

Results:

By looking at the statistics of the Map algebra raster, the average water table loss across the 6-county area is 18.85 feet. This is roughly 0.94 feet of water table drop per year. Much of this can be attributed to agriculture, human consumption, and lack of rainfall to recharge the aquifer loss. According to the Texas Water Development Board the aquifer has a maximum thickness 800 feet in Texas but the average for the entire panhandle is 95 feet. This would mean that in 101 years, with the current rate of depletion per year, the aquifer would run dry for a majority of the area.