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The LNU Lightning Complex fires started on August 17, 2020 and burned until October 
2, 2020. These fires—sparked by a series of lightning strikes— burned 363,220 acres, 
destroyed over 1,000 structures, and caused 6 deaths (Cal Fire, 2020). The fires 
occurred within a context of increasing regional and global fire activity that has been 
linked to climate change and land use (e.g. Bowman et al., 2009). Fires events like the 
LNU Lightning Complex fires are predicted to become a new normal, so it is imperative 
to identify factors that influence fire intensity to inform future fire management. The 
identification of contributing factors is inherently spatial because fire burns in 
heterogenous patterns across landscapes that is affected by fuel, topography, and 
human infrastructure (Krasnow et al.,2017). Here I measured fire intensity across Napa 
County (one of the counties affected by the LNU fires), quantified the relationship 
between fire intensity and land cover, and measured the influence of topographical and 
fuel variables across space.  
 
Research questions:  

1) How did fire severity vary over space across Napa County? 
Hypothesis: Fire severity was likely highest in areas with continuous fuel 
loads and a low amount of human infrastructure. This is likely to occur in 
the mountainous zones of the county. 

2) What factors contributed to high fire severity? 
Hypothesis: High fuel loads and steep terrain are likely to contribute 
significantly to fire severity. These factors likely change over space 
depending on context (e.g. different vegetation communities)  

 
 
Methods: 
Part 1—Data Acquisition  
Part 2—Vegetation type and fire intensity using zonal statistics  
Part 3—OLS Regression and Geographically Weighted Regression to identify important 
factors affecting fire intensity  
 
 
 
 
 
 
 
 
 
 



 
 
Part 1—Data acquisition 

Step 1. NBR: Normalized Burn Ratio: 𝑁𝐵𝑅 =  𝑁 −
𝑁

 

The Normalized Burn Ratio (NBR) provides a numerical measurement of estimated fire 
severity. The formula utilizes near-infrared (NIR) and shortwave-infrared (SWIR) 
wavelengths. It is designed to be used with Landsat imagery (Cocke et al., 2005).  

Unburned vegetation has very high NIR reflectance and low SWIR reflectance whereas 
burned vegetation has low NIR reflectance and high SWIR reflectance. A high NBR 
denotes healthy unburned vegetation while a low value indicates a lack of vegetation. 
dNBR (𝑝𝑟𝑒𝑓𝑖𝑟𝑒𝑁𝐵𝑅 − 𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒𝑁𝐵𝑅) tracks change from pre fire to post fire conditions 
so a pixel with a high dNBR value indicates a change from healthy vegetation to burnt 
vegetation.  
 
Most of the data were processed and acquired using Google Earth Engine (GEE)— a 
geospatial processing service equipped with Google’s cloud computation (Gorelick et 
al., 2017). GEE runs on JavaScript, here is the annotated code:  
 
 

 

Figure 1—GEE NBR code 

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0%23qt-science_support_page_related_con


 

 
 
 
 

 
 
 

 
 
The resulting data were derived from Landsat 8 and was exported at a resolution of 
30m as a GeoTiff (Figure 7).  
 
 

Figure 2—GEE NBR code continued 

Figure 3—dNBR code 



Part 1 Step 2: Terrain data Acquisition  
 
This step was also performed using GEE, but is relatively simple.  
 

 

 
 
Elevation data (DEM) were acquired from the NASA shuttle radar topography mission 
(SRTM). This dataset was selected because it is 30m resolution which matches the 
resolution of Landsat 8. The GEE functions ee.Terrain.slope() and ee.Terrain.aspect() 
were used to produce slope and aspect datasets from the DEM. For more information 
on these functions see: https://developers.google.com/earth-engine/apidocs. Each 
dataset—DEM, Aspect, and Slope—were exported to cloud storage for use with 
ArcMap.  
 
 
 
 
Part 1 Step 3: Fuels data acquisition  
 
Here data were collected that reflect fuel conditions. 
 
First, tree cover percentage was acquired from the 2016 USGS National Land Cover 
Database (resolution 30m). 

Figure 5—GEE code for Acquisition of terrain data 

https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html
https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html
https://developers.google.com/earth-engine/apidocs/ee-terrain-slope
https://developers.google.com/earth-engine/datasets/catalog/USGS_NLCD%23description
https://developers.google.com/earth-engine/datasets/catalog/USGS_NLCD%23description


 
Second, NDVI (a measure of vegetation productivity) was acquired from Landsat 8 
Collection 1 Tier 1 32-Day NDVI Composite (30m) for the month prior to when the fires 
started (July, 2020). 
 
 
 
Part 1 Step 4: Vegetation for Zonal Statistics 
 
For zonal statistics, detailed vegetation data in a vector format was acquired from a map 
produced by a University of California, Davis (UCD) group (Thorne et al., 2020). The 
shapefile contains a scheme with 71 different vegetation types and a simplified scheme 
with 11 different types (Figure 8).   
 
 
 
 
Part 2: Zonal Statistics 
 
  
All of the acquired data were added to ArcMap and projected in NAD83/ UTM Zone 10.  
 
The tool “Zonal Statistics as Table (Spatial Analysis)” was used to produce statistics 
from the dNBR raster for each vegetation type from the Napa County vegetation 
shapefile. These statistics show Min/Max/Mean of dNBR values for each vegetation 
type.  
 

 

 
 
 

Figure 6— ArcGIS Zonal Statistics GUI  

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_32DAY_NDVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_32DAY_NDVI
https://hub.arcgis.com/datasets/61de6c3fbde74c2897f5ba0060d0faf8_0


Part 3 Step 1: Prepare data for regression and Geographically Weighted 
Regression 
 
 
Ordinary least squares regression is a method of estimating the relationship between a 
dependent variable and independent variable(s). In this case focus is on the relationship 
between fire severity (dependent variable) and topographical/vegetation characteristics 
(independent variables). To prepare raster data for OLS regression I produced XYZ 
tables where each pixel is represented by an X and Y value with a series of Z values—
NBR, NDVI, Percent Tree Cover, Slope, Aspect, and Elevation. To produce each table it 
was necessary to stack each raster image as separate bands within an image file so 
that all of the pixels were exactly aligned. The ArcMap tool “Composite Bands” was 
used to stack bands. Each raster layer was exported from GEE at the same resolution 
(30m) and clipped to the same extent (Napa County) so no further processing was 
necessary prior to producing the composite band image.  
 
After the composite bands image was produced, the tool “Raster to ASCII” was used to 
produce a table with X, Y values and corresponding Z values. The ASCII was exported 
to a CSV using Excel. The software STATA was used to run the Ordinary Least 
Squares Regression.  
 
 
The limitation of OLS regression is that there is a loss of spatial information. Spatial 
patterns are exchanged for single values. Geographically Weighted Regression allows 
for a combination of regression and spatial patterns by calculating local effects for each 
geographical unit in a dataset (Fotheringham et al., 2003). These local coefficients are 
calculated by comparing the dependent and explanatory variables of features with their 
neighbors. More can be read here. This analysis requires building a computationally 
taxing neighborhood matrix which limits the number of features that can be included. 
Because the data used is 30 meter resolution raster data, there are way too many 
datapoints to use the full Napa County study area in the GWR analysis. One option to 
deal with this would be to aggregate the cells to a coarser resolution. This option would 
allow for an analysis to take place over a larger area, but spatial nuance pertaining to 
the variables in question would be lost. For this analysis, I decided that it was more 
interesting to gain a fine resolution perspective of the variables over a small space 
rather than a coarse perspective over a larger space. To retain a high resolution, a 
subset was taken of the study area in an area with variation in dNBR, topography, and 
vegetation(see figure 9).The clip function was used to clip the multiband image to the 
smaller area. The ArcMap GWR function does not support raster data so the the tool 
“Raster to ASCII” was used again to create an ASCII file which was reformatted as a 
CSV using Excel. The application GWR 4.0 which is run by the Spatial Analysis 
Research Center at Arizona State University was used to perform the GWR analysis 
because it supports raster data.  
 
 

https://desktop.arcgis.com/en/arcmap/10.3/tools/data-management-toolbox/composite-bands.htm
https://pro.arcgis.com/en/pro-app/tool-reference/conversion/raster-to-ascii.htm
https://www.stata.com/
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/how-geographicallyweightedregression-works.htm
https://pro.arcgis.com/en/pro-app/tool-reference/conversion/raster-to-ascii.htm
https://sgsup.asu.edu/sparc/gwr4


 
 
 Results 

 
 
 
Figure 7—Classified dNBR image for August-October 2020. dNBR values under 0.10 are transparent leaving only pixels classified 
as burnt shown in graduated red where the darker the red the higher the fire severity.  
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Figure 8—SImiplified vegetation scheme from (Thorne et al., 2020).Basemap from Carto.com 

https://hub.arcgis.com/datasets/61de6c3fbde74c2897f5ba0060d0faf8_0


 
 
Table 1—Zonal result for the simplified vegetation scheme—ordered descending based on the mean NBR value   
 
 
 
 
 
 
 
 
 
 
 
Table 2—Zonal result for the full vegetation scheme—the top 10 vegetation types based on mean dNBR value are included  
 
 

 
 
 Table 3— OLS Regression output from STATA. Aspect was taken out of the analysis because it was insignificant. 

 



 
 
Figure 9—GWR subset is shown as red box. A detailed close up shows aspect overlayed with partially transparent classified dNBR. 
Basemap from Carto.com. 



 
Figure 10—Local Coefficients for each variable are plotted across the GWR subset area. Positive local coefficients are represented 
by red pixels while negative local coefficients are represented by blue pixels  
 
 
 



Discussion/Conclusion  
 
The analyses here provide some important takeaways regarding the LNU Lightning 
Complex Fire and methodological insights regarding NBR and regression analyses.  
First, it is clear that the most severe fire occurred in the eastern portion of the study 
area as evident in Figure 7. Zonal statistics showed that among the simplified 
vegetation scheme, Shrublands had the highest mean dNBR while Oak Woodlands had 
the highest single dNBR value (0.789). It is important to note that while streams and 
reservoirs had the highest maximum value at 3.79, this value is almost certainly a result 
of water features and not fire given the outlier nature of the figure and the fact that it is a 
water feature. What is questionable is the wetlands class which has the third highest 
mean and second highest maximum value (discounting the water features). Wetlands 
can and do burn, particularly during droughts, but they are also prone to the same fire 
detection complications caused by water. Further ground and remote truthing is 
necessary to explore this dynamic in this instance. The detailed vegetation classification 
with 71 classes identified several vegetation types with high mean dNBR values (e.g. 
California Buckeye & Interior Live Oak). These vegetation types are likely limited 
enough in area that would facilitate intensive management regarding post fire erosion, 
ecological management, and future vegetation specific fire management strategies.  
 
The OLS regression analysis showed that both topographic and vegetation 
characteristics have relationships with fire severity. However, the topographic variables 
alone (elevation, slope, and aspect) only had a small r2 value of .09. While this is a low 
explanatory value, elevation and slope were highly significant. It is understandable with 
all of the complexity and stochasticity of where fire occurs that there is a low r2 value. 
The addition of vegetation variables (percent tree cover and NDVI in July 2020) to the 
two significant topographical variables improved the r2 value to 0.35 (Table 3). NDVI 
proved to be especially influential, although this relationship is somewhat problematic 
because NDVI is spectrally related to dNBR measurements. A spectrally independent 
variable that accounts for fine fuel characteristics would be ideal for further analyses.  
 
The GWR analysis showed that beside NDVI, the other variables varied greatly over 
space. Percent tree cover and slope have especially interesting relationships where 
percent tree cover is mainly positively related fire severity on the eastern side of the 
mountain (Figures 9 & 10) and negatively related on the western side. Slope has an 
opposite pattern where it has a negative association on the eastern side and positive on 
the western side. This pattern is likely caused by the relationship between trees and 
slope where at high slopes vegetation growth is limited and therefore fire severity is also 
limited. Slopes that are steep and can still support vegetation tend to encourage burning 
compared to flat vegetated slopes. Furthermore, the GWR analysis seems to show that 
aspect is an important factor regarding these dynamics. Aspect was insignificant in the 
OLS regression because the 360 measurement system doesn’t work well in a 
regression analysis. Alternatively a better option may be to classify aspect (N, S, E, W) 
and treat them as dummy variables. These complexities that are illustrated by GWR 
show the importance of spatial analysis and why local spatial statistics are important for 
diagnosing issues within non-spatial statistics like OLS regression.  



 
Data sources and references. 
 
Bowman, David MJS, Jennifer K. Balch, Paulo Artaxo, William J. Bond, Jean M. 
Carlson, Mark A. Cochrane, Carla M. D’Antonio et al. "Fire in the Earth system." science 
324, no. 5926 (2009): 481-484. 
 
Cal Fire, 2020:https://www.fire.ca.gov/incidents/2020/8/17/lnu-lightning-complex-
includes-hennessey-gamble-15-10-spanish-markley-13-4-11-16-walbridge/ 
 
Cocke, Allison E., Peter Z. Fulé, and Joseph E. Crouse. "Comparison of burn severity 
assessments using Differenced Normalized Burn Ratio and ground data." International 
Journal of Wildland Fire 14, no. 2 (2005): 189-198. 
 
Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. Geographically 
weighted regression: the analysis of spatially varying relationships. John Wiley & Sons, 
2003. 
 
Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and 
Rebecca Moore. "Google Earth Engine: Planetary-scale geospatial analysis for 
everyone." Remote sensing of Environment 202 (2017): 18-27. 
 
Krasnow, Kevin D., Danny L. Fry, and Scott L. Stephens. "Spatial, temporal and 
latitudinal components of historical fire regimes in mixed conifer forests, California." 
Journal of Biogeography 44, no. 6 (2017): 1239-1253. 
 
2016 USGS National Land Cover Database (resolution 30m). 
 
Thorne et al., 2020 Vegetation Map 
 
Landsat 8 Collection 1 Tier 1 32-Day NDVI Composite 
 
Landsat 8 Colllection 1 Tier 1 Top of Atmosphere Reflectance 
 
 NASA shuttle radar topography mission (SRTM) 
 
 
 

https://www.fire.ca.gov/incidents/2020/8/17/lnu-lightning-complex-includes-hennessey-gamble-15-10-spanish-markley-13-4-11-16-walbridge/
https://www.fire.ca.gov/incidents/2020/8/17/lnu-lightning-complex-includes-hennessey-gamble-15-10-spanish-markley-13-4-11-16-walbridge/
https://developers.google.com/earth-engine/datasets/catalog/USGS_NLCD%23description
https://hub.arcgis.com/datasets/61de6c3fbde74c2897f5ba0060d0faf8_0
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_32DAY_NDVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_TOA%23description
https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html

