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1. Soil Moisture 

 

1.2 Introduction 

 

The description of this section and the related code (WATER) are modified from LSM code of G. 

Bonan version 1 in CCM3 (Bonan, 1996). Robert Dickinson wrote the first version of the code in July 

1996.The primary differences from LSM are (1) vapor pressure boundary condition, (2) clean-up of no 

longer needed cures of previous instabilities, (3) extension of layer structure to 10 layers, with the layer 

structure defined as in CCM by definition of layer levels and interfaces taken as half way between levels 

which give second order accuracy for the flux calculations with uneven layers versus first for more standard 

differencing,(4) exponential decrease of sk (saturation hydraulic conductivity) added, (5) a water table level 

determination level added including highland and lowland levels and fractional area of wetland (water table 

above the surface). Runoff is parameterized from the lowlands in terms of precipitation incident on wet areas 

and a base flow, where these are estimated using ideas from TOPMODEL (Beven and Kirkby, 1979; 

Famiglietti and Wood, 1994; Stieglitz et al., 1997). 

 

Z.-L. Yang checked code and interfaced to frozen soil and snow in October 96 which are currently the 

same as in Dickinson et al. (1993). The performance of the snow module in the early BATS version has been 

documented in Yang et al. (1997). 

 

Additional improvements would be using DEMS to better estimate distribution of water tables (project 

being done by Famiglietti and student) and by improving the ET calculations by use of separate soil water 

distributions for the highlands and lowlands (simply by prescribing them relative to mean profile, or perhaps 

better by doing separate soil water calculations for each separate water table region, with some TOPMODEL 

related expressions for fluxes between regions - perhaps best to express in terms of transfers between the 

lowest model layers, using vertical diffusion and the 1s adjustment algorithm to redistribute between 

other layers.  



 

1.2 Layer Structure 

 

Length units in WATER are all mm; TEMPERATURE subroutine uses the same soil layer structure 

but lengths are in m. 

 

The depth of soil layer i at the full level (Fig. 1), or node depth, iz , in mm, is  

)1))5.0(5.0(exp(25  izi                                                                                           (1.1) 

and the thickness of each layer is  
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The depth at the half level or interface, 
ihz ,
, in mm, is given as 
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Note that 00,0  hzz . The layer thickness defined above is the thickness between two interfaces except 

.Ni   1,1 hzz  . The exponential form of (1.1) is to obtain more soil layers near the soil surfacewhere the 

soil water gradient is generally strong (Deardorff, 1978; Dickinson, 1984). 

 

One of the assumptions in the TOPMODEL is the exponential decay of saturated hydraulic conductivity 

with the depth. This can be written as 

)/exp( ,, kihsis hzkk                                                                                                      (1.4) 

where sk  is the saturated hydraulic conductivity at the soil surface, isk ,  is the saturated hydraulic 

conductivity at the interface depth ihz , , and kh  is a length scale which can be determined by soil type and 

topography (Famiglietti and Wood, 1994). 

 

The fraction of roots ( irootf , ) located between pairs of interfaces is specified as 
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                                                                (1.5) 

where 
rooth  is the root distribution scale. If we take 

rooth =500mm, 
kh =500mm, and 

3103.6 sk  

1mms , we obtain the values for iz , 
isihi kzz ,, ,,  and irootf ,  for the 10 soil layers as given in Table 1. 

 

Table 1. The Model Layer Structure and Parameters 

 

Index ( i ) iz  (mm) iz (mm) 
ihz ,
(mm) isk , (

1mms ) irootf ,  

1 7.1 17.5 17.5 6.08
310  0.0344 

2 27.9 27.6 45.1 5.76
310  0.0518 

3 62.3 45.5 90.6 5.26
310  0.0794 

4 119.0 75.0 166.0 4.52
310  0.1160 

5 212.0 124.0 289.0 3.53
310  0.1570 

6 366.0 204.0 493.0 2.35
310  0.1880 

7 620.0 336.0 829.0 1.20
310  0.1830 

8 1040.0 554.0 1380.0 3.96
410  0.1280 

9 1730.0 913.0 2300.0 6.38
510  0.0528 

10 2860.0 1140.0 3430.0 6.57
610  0.0091 

 

1.3 Soil Moisture Computations 

 

Soil water conservation in the vertical dimension requires  
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where   is the volumetric soil water content (
33 mmmm ), t  is time (s), z  is height ( mm ) above soil 

surface, positive upward. q is the soil water flux (
1mms ), positive upward, and can be described by 

Darcy's law 
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where k  is the hydraulic conductivity (
1mms ), and   is the soil matric potential (taking negative values, 

opposite to soil suction) ( mm ). Note that there are many choices of signs used to denote directions of z  and 

q in the soil science. The rule is that when z  and q  are defined in the same direction, the first sign on the 

right hand side (RHS) of both (1.6) and (1.7) takes -; when z  and q  are defined in the opposite direction, 

the first sign in the RHS of both (1.6) and (1.7) takes +. (The same rule also applies when q  is replaced by 

soil heat flux). If z  is defined positive upward above the soil surface, the total potential head zhT  ; 

if z  is defined positive downward below the soil surface, the total potential head zhT  . 

 

Substituting (1.7) into (1.6) results in the Richard equation 
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Equation (1.6) can be solved numerically by dividing the soil domain into m  parallel layers in the vertical 

[see (1.1)-(1.3)] and then integrating downward over each of the model layers (Mahrt and Pan, 1984; Boone 

and Wetzel, 1996): 
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where Ni ,...,2,1 , increasing downward (Fig. 1), and s  is a soil moisture sink term. The average 

volumetric water content is defined as 
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where 1,,  ihihi zzz ,  which is identical to (1.2), i  is the average volumetric water content  within a 

layer i . The layer-averaged quantity is defined as being at the center of the layer.  

Equation (1.8b) can be written as 
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is  is the layer-averaged moisture sink term (e.g., evapotranspiration loss) (
1mms ) from layer i , defined in 

the same manner as (1.8b). Let 
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Inserting the above two equations into (1.8c) and taking finite difference with time, we have 
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i  is change of i  at soil layer i  in one time step t , The superscript on the RHS of (1.8) means 

thn )1(   time step, which ensures an implicit integration. iq  is the soil water flux across an  interface i , and 

1iq  is the soil water flux across an interface 1i . Hence, the index i  refers to the center of the layer (i.e., 

the full level or node point) for the layer-averaged variables, and to the lower boundary of a layer for the 

flux terms. Following (1.7), iq  is  
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where k  and  , according to Clapp and Hornberger (1978), are,  
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where sk  is the saturation hydraulic conductivity, s  is the saturation soil matric potential, and B  is a 

constant depending on soil texture. ik , the hydraulic conductivity across the interface i ,   

takes the form of 
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Equations (1.10a) and (1.10b) are widely used in the land-surface models. However, there are other types of 

formulations which appear in literature and which are widely used in the soil science  community (e.g., van 

Genuchten, 1980). Equations (1.11a) and (1.11b) may have other forms too. Because the flux terms apply at 

the interface level, their computations require the ``inter-facial'' volumetric water content (IFVWC). Boone 

and Wetzel (1996) have reviewed four commonly used methods to compute the IFVWC. These methods are 

listed as follows. 

(i)    IFVWC is computed using the maximum volumetric water content of two neighboring layers (Mahrt 

and Pan, 1984). 

(ii)  IFVWC is calculated using the thickness weighted value of the hydraulic conductivities of the 

surrounding layers (Sellers et al., 1986; Abramopoulos et al., 1988). Abramopoulos et al. have tested 

linear and logarithmic interpolation of conductivity. 

(iii)  IFVWC is determined using the arithmetic mean of the volumetric water content of the  surrounding 

model layers (Verseghy, 1991). 

(iv)  IFVWC is computed using the linear interpolation of the logarithm of the matric potential from the two 

surrounding layers (Boone and Wetzel, 1996).  

 

Boone and Wetzel (1996) pointed out that Method (i) and Method (ii) could give the nearly identical 

IFVWC values. They have tested methods (i), (iii) and (iv) in their PLACE land-surface model  using both 

high-resolution (50) and low-resolution (5) vertical grids. They concluded that the  simulated soil water 

contents in the high-resolution grids are insensitive to the three methods tested, but the low-resolution results 

are very sensitive to the interpolation scheme. In their low-resolution model, Method (iv) provided the 

results in best agreement with the high-resolution results, while Method (i) gave worst results that the initial 

wet soil dried out too fast. 

 

However, use of a different method will require a different derivation as seen below. Because   and k  are 

non-linear functions of  , iq is a function of i  and 1i  following (1.11a) and (1.11b). 
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Hence q  is linearized about  . Substituting (1.12a) and (1.12b) into (1.8) results in a tridiagonal system of 

equations for  , which is, 
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Let  

)()( 111   iiii zzn                                                                                       (1.16a) 

)()( 112 iiii zzn                                                                                       (1.16b) 

111 /)(  iii kzzd                                                                                                       (1.16c) 

iii kzzd /)( 12                                                                                                           (1.16d) 

then, (1.15a)-(1.15f) can be expressed as 
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If 1i , (1.8) can be written as, 
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with 
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where wP  is rainfall after interception by canopy, wE  is soil surface evaporation, mS  is snowmelt, rD  is 

drip of rain water from canopy, and t  is time step. 

If 0wG ,  
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The surface infiltration, ilqinf  at time step 1n  may be given as 
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Substituting (1.12a) and (1.23) into (1.18) results in a tridiagonal system, with its coefficients equal to  
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If Ni  , the bottom boundary condition is 

Ni kq                                                                                                                            (1.26) 

Equation (1.8) can be written as, 
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Substituting above equation and (1.12b) into (1.27), the coefficients for the tridiagonal system are 
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2. Soil Temperature 

 

2.1 Introduction 

 

The description of this section and the related code (TGROUND) are modified from LSM code of G. Bonan 

version 1 in CCM3 (Bonan, 1996). Robert Dickinson wrote the original warm soil code in August 1996. The 

primary differences from LSM are as follows: (1) use of CCM-like vertical differencing (mesh points 

specified and interfaces located half way between), and BATS for thermal properties tested against analytic 

solution, (2) provided heating in phase with latest gT  used and 0.5 hr time steps, reproduced exact solution 

for diurnal heating to within 2% of peak values and peak values within 1%. Similar errors found for 



response to semidiurnal forcing; for 4 hr periods errors of 10% of peak noted; to resolve any shorter time 

scales, both the time step and the 0.025 scaling factor for vertical grid should be reduced. In principle, the 

top soil layer at best represents the temperature at the first node within the soil which will have a somewhat 

reduced diurnal amplitude. An accurate surface skin temperature is provided that compensates for this effect 

and numerical error by tuning the heat capacity of the top layer to give an exact match to analytic solution 

for diurnal heating.  

 

Cold soil (snow and freezing effects) was added by Z.-L. Yang in October 1996. These include soil freezing 

blended across 5.0 C degrees as in LSM, and inclusion of in surface thermal properties and temperature 

calculation. Diurnal variation of surface temperature is an important design criteria that can only be met with 

several (perhaps 5 or more) layers or use of force restore; for now we have used the latter (cf. Dickinson et 

al., 1993 for more details). For thin enough snow, we revert to the LSM strategy of simply adding the snow 

to the top soil layer. This approach kills the diurnal surface temperature variation when the snow depth 

becomes a significant fraction of the diurnal penetration depth. The force restore treatment introduces an 

additional prognostic variable Tg for snow/soil surface temperature which reverts to the temperature 

provided by the first soil layer for thin enough snow. Snow melting is done in either case using the BATS 

force restore formalism; this allows determination of conductive heat exchange with the underlying surface 

without many layers-by assuming diurnal oscillation of temperature. Unless otherwise stated, thermal 

properties use BATS constants and parameterization (Dickinson et al., 1993). 

 

2.2 Soil Temperature Computations 

 

The classical one-dimensional heat diffusion equation is as follows 
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where T  is the soil temperature (K), c  is the volumetric soil heat capacity ( )13  KJm , F  is the heat flux, 

and both z  and F  are defined positive upward (Fig. 1). F  takes the form  
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where   is the thermal conductivity ( )11  KWm .  The energy balance for the 
thi  layer is  
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where 
iT  is the layer-averaged temperature in layer i , 

iz is the same as in (1.2) except that its unit is now 

in m.   is a weight coefficient in the time domain, and its value is between 0 and 1. If 0 , the time 

differencing is implicit, and if 1 , the time differencing is explicit. If 5.0 , the method is the so-

called ``Crank-Nicolson'' algorithm. As in the soil water section, the index i  refers to the center of the layer 

(i.e., the full level or node point) for the layer-averaged variables, and to the lower boundary of a layer for 

the flux terms. Hence, iF  (
2Wm ) is the heat flux across an interface i , and 1iF  (

2Wm ) is the heat flux 

across an interface 1i . Both are computed as follows. 
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i  is the interface thermal conductivity and is computed using 
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where the functional form f follows that in BATS (Dickinson et al., 1993) as 
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where texr  is the ratio of soil thermal conductivity to that of loam (cf. Dickinson et al., 1993), and )(xfc  is 

given as 

610186.4)23.0()(  xxfc                                                                                        (2.4e) 

In (2.3), ic  is the volumetric soil heat capacity for layer i , and is defined as  

)( ici fc                                                                                                                         (2.4f) 

Substituting (2.4a) and (2.4b) into (2.3) results in a tridiagonal system of equations for T , which is,  
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where if ,1,...,3,2  Ni  
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where iF  is defined as in (2.4a), and h  is the heat flux into the surface soil layer from the overlying 

atmosphere, which takes the form  

agaggn LEHRh ,,,                                                                                                     (2.8) 

where gnR ,  is the net radiation at the soil surface (positive downward), and agH ,  and agLE ,  are, 

respectively, sensible and latent heat flux from the surface (g) to the overlying atmosphere (a). Because 

agLE , , agH , and gnR ,  are a function of soil surface temperature, h may be represented as follows 
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Substituting (2.4a) and (2.9) into (2.7) gives a tridiagonal system of equations with coefficients equal to 

0ia                                                                                                                             (2.10a) 
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Note that 1T  obtained from above equations is the layer-averaged temperature for )(5.0 211 zzz   

which has a somewhat reduced diurnal amplitude. In order to obtain temperature at the soil surface (skin 



temperature), the layer heat capacity can be adjusted by adjusting the layer thickness. Hence, 1z  in (2.10b), 

(2.10c) and (2.10d) can be represented as 

)(5.0 211 zczz a                                                                                                     (2.10e) 

where  ac  is a tuned parameter, varying from 0 and 1. Using the algorithm as described in this section, 

34.0ac  is found to give best match between 1T  and analytical solution of surface temperature for diurnal 

heating (see Appendix A and Fig. 2). It should be pointed out that the optimum value of ac  depends on the 

structure of the soil layers, and value of  . A software is made available to the user who likes to obtain a 

value of ac  for a different model layer structure or a different value of  . Furthermore, note that the 

optimum surface temperature is obtained at the expense of the second and third layer temperatures which are 

slightly deteriorated (Fig. 2). 

 

If Ni  , the heat conduction between layer N  and layer 1N  is assumed to be zero, i.e., 

01 NF                                                                                                                         (2.11a) 

or  

1 NN TT                                                                                                                        (2.11b) 

Hence, the coefficients for the tridiagonal system of equations are given as follows 

1ia                                                                                                                           (2.12a) 

1ib                                                                                                                              (2.12b) 

0ic                                                                                                                             (2.12c) 

0ir                                                                                                                              (2.12d) 

 

3. Cold Season/Region Processes  

 

Snow and frozen soil are common land features in the cold seasons or regions. The previous force-restore 

framework in modeling the snowpack (Dickinson, 1988) is probably adequate to simulate the surface snow 

processes such as surface temperature and surface fluxes as used in the climate modeling studies (Yang et 

al., 1997). However, accurately simulating the timing of snowmelt and the profiles of soil temperatures may 

require an improved treatment of snowpack processes such as radiation attenuation and meltwater 

percolation within the snow layer, which may need multiple layers (Jin et al., 1999).  

 

4. Future Development 



 

The current treatment of soil moisture and temperature is probably one of the most comprehensive among 

the land-surface models for use in climate and weather studies. The current scheme needs extensive 

calibration and testing using the data from field sites and large river basin. Further development is still 

possible in model refinement, addition of extra processes, and improvement of numerical efficiency. 

Whether or not to include these refinements is largely dependent upon 

the data availability and their impacts to climate/weather and biogeochemical processes to be modeled. 

Some possible areas of refinement are listed as follows. 

(i)     Water table and topography effects on soil moisture and runoff (Beven and Kirkby, 1979). 

(ii)     Soil water vapor transport and soil evaporation (Philip and de Vries, 1957). 

(iii)   Soil moisture movement in response to temperature gradients (Philip and de Vries, 1957; Milly and 

Eagleson, 1982; Bach, 1992). 

(iv)    Vertical soil heterogeneity (e.g., O, A, B, C horizons). 

(v)     Horizontal soil heterogeneity (e.g., different soil types in a grid box; Wetzel and Boone, 1995). 

(vi)    Soil water hysteresis (Lenhard et al., 1991). 

(vii)   Preferential flow (Germann, 1990). 

(viii)  Salute transport in the soil medium. 

(ix)    Efficiency, accuracy, and portability of the numerical schemes. 

 

There is a rich literature in the soil science community which has developed methods and codes for the soil 

water transport (e.g., Simunek et al., 1994). Their work may serve as a basis for developing a soil model for 

the climate and weather related studies. 

 

 

List of Figures 

 

Fig. 1. Structure of the N-layer soil model (N=10). z is height above soil surface (treated as an interface), 

positive upward, whereas the layer index increases downward. All the moisture and heat fluxes are defined 

across the interfaces or boundaries, positive upward. The soil moisture, matric potential, temperature and 

heat capacity are the layer-averaged variables, defined at the center of the layer. 

 

Fig. 2. Root-mean-square-error (RMSE) of temperatures between numerical (Section 2.2) and analytical 

(Appendix A) solutions for a 10-layer model, periodic forcing and 30-minutes time step. The results are 

from last day of a 20-day integration.  



 

Appendix A: Analytical solutions for soil temperatures 

 

For a homogeneous soil column, the heat diffusion equation is given by 
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For a periodic forcing (e.g., diurnal forcing) at the surface,  
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one has the solution as follows, 
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where T  is the deep soil temperature when z . 
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