Chapter 12:

Watershed Hydrology

Acknowledgement: Guo-Yue Niu

The Processes to Generate Surface Runoff

History of Formulating Runoff in Climate Models

Bucket or Leaky Bucket Models 1960s-1970s (Manabe 1969) / **150mm**

Soil Vegetation Atmosphere Transfer Schemes (SVATs) 1980s-1990s (BATS and SiB)

"Big Leaf"

Recent Developments in Modeling Runoff in GCMs – TOPMODEL concepts

1. Representing topographic effects on subgrid distribution of soil moisture and its impacts on runoff generation

(Famiglietti and Wood, 1994; Stieglitz et al. 1997; Koster et al. 2000; Chen and Kumar, 2002, Niu and Yang, 2003; Niu et al., 2005)

2. Representing groundwater and its impacts on runoff generation, soil moisture, and ET

(Liang et al., 2003; Maxwell and Miller, 2005; Yeh and Eltahir 2005; Niu et al., 2007; Fan et al., 2007) Saturation in zones of convergent topography

Relationship Between the Saturated Area and Water Table Depth

Contour interval 10 feet

The saturated area showing expansion during a single rainstorm. [Dunne and Leopold, 1978]

A - wetness index derived from DEM

DEM (1km) to Wetness Index (WI)

Surface Runoff Formulation

Surface Runoff Formulation

A 1 °x 1° grid-cell in the Amazon River basin

Both Gamma and exponential functions fit for the lowland part ($\Lambda_i > \Lambda_m$)

$$f_{sat} = F_{max}e^{-C(\lambda i - \lambda m)} \rightarrow f_{sat} = F_{max}e^{-Cfzwt}$$

$$F_{max} = 0.45; C = 0.6$$

$$\lambda_i - \lambda_m = f^*zwt \quad TOPMODEL$$

Surface Runoff Formulation

Gamma function fails, while exponential function works.

 $F_{max} = 0.30; C = 0.5$

$$f_{sat} = F_{max}e^{-Cfzwt}$$

Fmax derived from Hydro1k data

$$f_{sat} = F_{max}e^{-Cfzwt}$$
(Niu et al., 2005)

Runoff Scheme for Climate Models

 $Runoff = Q_s + Q_{sb}$

Surface Runoff : $R_s = P F_{max} e^{-C f zwt}$

p = precipitation

zwt = the depth to water table

f = the runoff decay parameter that determines recession curve

Subsurface Runoff : R_{sb} = R_{sb,max}e -f zwt

 $R_{sb,max}$ = the maximum subsurface runoff, which is related to lateral Ksat of an aquifer and local slopes ($e^{-\lambda}$).

Parameters:

Two calibration parameters $R_{sb,max}$ (~10mm/day) and f (1.0~2.0) Two topographic parameters F_{max} (~0.37) and C (~0.6)

Prognostic Water Table depth: A Simple Groundwater Model (Niu et al. 2007 JGR)

Buffer Zone

Water storage in an unconfined aquifer:

$$\frac{dW_a}{dt} = Q - R_{sb}$$

$$z_{\nabla} = W_a / S_y$$

Recharge Rate:

Basins for Model Validation Torne/Kalix

Rhone

- river basin

-small or middle watershed, research site

Torne/Kalix Rivers, Sweden and Finland (58,000 km²)

- 20-year (1979-1998) meteorological forcing data at hourly time step
- 218 grid-cells at 1/4 degree resolution

Modeled Runoff in Comparison with Observed Streamflow

Model intercomparison:

 20 models from 11 different countries (Australia, Canada, China, France, Germany, Japan, Netherlands, Russia, Sweden, U.K., U.S.A.)

VISA – Versatile Integrator of Surface and Atmospheric processes

Group	Model Name	Model Identifier
Group 1	SPONSOR	А
	RCA	в
	IHAS	С
Group 2	SEWAB	D
	ISBA	E
	NSIPP	F
	CLASS	G
	IBIS	н
	CHASM	Ι
	VIC	J
Group 3	MATSIRO	K
	HY-SSiB	L
	VISA	М
	SAST	N
	MECMWF	0
	NOAH	Р
	SWAP	Q
Group 4	SSiB	R
	ECMWF	S
	MOSES	Т
	MOSES-CEH	U

Table 1

Fig. 16. Total basin mean annual surface and subsurface runoff. The dashed horizontal line represents mean annual runoff at the mouths of the Torne and Kalix Rivers combined.

From Bowling et al. (2003)

Model Intercomparison: Nijssen et al. (2003)

Outline

- > Global water storages and fluxes
- > Tools for prediction
- Precipitation
- Evapotranspiration (ET)
- Surface water, groundwater, and runoff
- Land surface modeling
- International water programs

Inputs & outputs

Outputs

Water storage (soil moisture, snow mass, GW, etc.)

ET (evaporation & transpiration)

Runoff (surface & groundwater discharge)

Energy fluxes (heat & radiation)

Temperature

Carbon fluxes (CO2 & BVOC, GPP, NPP etc)

Carbon storage (veg. & soil)

Spatial-Scales : Point, Catchment, Regional, or Global Time step: 30 mins to 3 hours Online: coupled with atmospheric models Offline: decoupled; forcing data; testing model

Global Off-Line Application (Decoupled from the Atmospheric Model)

-30

.60

-120

120

<u>Ø</u>Ø

08

30

Longitude

Global distribution of annual mean temperature, °C

Vegetation parameters

VegClass Vegetation type LAI Leaf area index VegHeight Vegetation height vegFrac Vegetation cover fraction classFrac Fraction of each VegClass Albedo Snow-free albedo **RootDepth** Root depth **Rs_min** Minimum stomatal resistance

Global distribution of vegetation Height, m

0

Estimated by modelers

Global distribution of the many-year averaged leaf area index (LAI)

76

50

25

.25

-50

-180

-30 Longitude

.60

.90

-120

-150

180

150

120

90

60

30

Ò

Global distribution of the root depth, m

78

50

Altitude

25

0

.25

.50

-180

International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II data sets

00.

.90

-120

-30 Longitude

180

1.4

1.2

0.8

0.6

0.4

0.2

0

150

120

90

03

30

Soil parameter data:

Soil texture (IGBP: Global Soil Data Task, 2000) Clay / Sand / Silt / Organic Wilting point Porosity Saturated hydraulic conductivity Saturated matric potential

Soil color index (Zeng et al. 2002) satellite data Visible albedo of soil Near-infrared albedo

GRDC (Global Runoff Data Center) Estimated Runoff http://www.grdc.sr.unh.edu/html/station.html

Please select a continent

Global distribution annual runoff, mm/year

Our model produces 10% more than GRDC

1) GRDC did not include smaller basins; 2) vegetation parameters used in this study need to be refined; 3) The precipitation used in this study is larger.

Global River Discharge (kg/year)

Averaged Annual Global River Discharge (kg/yr)

Outline

- > Global water storages and fluxes
- > Tools for prediction
- Precipitation
- Evapotranspiration (ET)
- Surface water, groundwater, and runoff
- Land surface modeling
- International water programs

Agencies Involved in the Water Cycle Program

Water Research Plans

> What are the causes of water cycle variations?

- Are variations in the global and regional water cycle predictable?
- How are water and nutrient cycles linked?

Interdisciplinary Research

Interdisciplinary Linkages:

- Aerosols: link to precipitation development, interaction with energy/radiation cycles
 Carbon: link to transpiration and radiation absorption
- Weather and Climate: water and energy are at the heart of weather and climate physics
- Modeling, Assimilation, and Computing: essential tools for integration and prediction
- **Technology**: development of new observation technology
- Applications: consequences of change delivered through water & energy cycle

Water Cycle Missions

Water and Energy Cycle Missions

Energy Cycle Missions

Some Examples of Field Programs

BOREAS (NSA-OJP) •Type: Evergreen Needleleaf •Cover: 6.5% •Precip: 242 mm •Data : Jan 94 - Dec 96

Tucson •Type: Semi-Desert •Cover: 9.2% •Precip: 275 mm •Data : May 93 - Jun 94

ABRACOS (Reserva Jaru) •Type: Evergreen Broadleaf •Cover: 9.7% •Precip: 1600 mm •Data : May 92 - Dec 93

ARM-CART (E13) •Type: Mixed Crop / Farm Land •Cover: 8.1% •Precip: 600 mm •Data : Apr 95 - Aug 95

Cabauw •Type: Short Grass •Cover: 16.6% •Precip: 776 mm •Data : Jan 87 - Dec 87

Terrestrial Water Storage Change

Use GRACE (2002- now) to validate and calibrate model

TWS Change

Use model to retrieve historical changes

The Yellow River

The Mississippi

Regional Environmental Model System – An Integrated Framework for modeling and Assessment

