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[1] This study evaluates regional-scale hydrological simulations of the newly developed
community Noah land surface model (LSM) with multiparameterization options (Noah-MP).
The model is configured for the Mississippi River Basin and driven by the North American
Land Data Assimilation System Phase 2 atmospheric forcing at 1/8° resolution. The
simulations are compared with various observational data sets, including the U.S. Geological
Survey streamflow and groundwater data, the AmeriFlux tower micrometeorological
evapotranspiration (ET) measurements, the Soil Climate Analysis Network (SCAN)-observed
soil moisture data, and the Gravity Recovery and Climate Experiment satellite-derived
terrestrial water storage (TWS) anomaly data. Compared with these observations and to the
baseline Noah LSM simulations, Noah-MP shows significant improvement in hydrological
modeling for major hydrological variables (runoff, groundwater, ET, soil moisture, and TWS),
which is very likely due to the incorporation of some major improvements into Noah-MP,
particularly an unconfined aquifer storage layer for groundwater dynamics and an interactive
vegetation canopy for dynamic leaf phenology. Noah-MP produces soil moisture values
consistent with the SCAN observations for the top two soil layers (0–10 cm and 10–40 cm),
indicating its great potential to be used in studying land-atmosphere coupling. In addition, the
simulated groundwater spatial patterns are comparable to observations; however, the inclusion
of groundwater in Noah-MP requires a longer spin-up time (34 years for the entire study
domain). Runoff simulation is highly sensitive to three parameters: the surface dryness factor
(α), the saturated hydraulic conductivity (k), and the saturated soil moisture (θmax).
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1. Introduction

[2] Land surface models (LSMs) have evolved rapidly
in recent decades due to the advances in high-performance
computing, ground-based measurements (e.g., FLUXNET
[Baldocchi et al., 2001]), remote sensing [Murray et al., 2013],
and emerging concepts such as hyperresolution [Wood et al.,
2011] and multiparameterization (or multiple hypotheses)
[Clark et al., 2011]. One such LSM is the community Noah
LSM with multiparameterization options (hereafter Noah-MP)
[Niu et al., 2011; Yang et al., 2011]. Based on the Noah

LSM [Ek et al., 2003], Noah-MP has added biophysical pro-
cesses such as an unconfined aquifer for groundwater storage
and a dynamic water table [Niu et al., 2007], an interactive
vegetation canopy [Dickinson et al., 1998], a multilayer snow-
pack [Yang and Niu, 2003], and a simple TOPMODEL
(TOPography based hydrological MODEL)-based runoff pro-
duction [Niu et al., 2005].
[3] Model evaluation plays a very important role in LSM

development, as LSM benchmarking or better model evalua-
tion is one of the three core activities in the current Global
Energy and Water Cycle Exchanges Project (GEWEX)
Global Land/Atmosphere System Study (GLASS) [van
den Hurk et al., 2011]. Noah-MP has been tested at local
scales [Niu et al., 2011] and in global river basins [Yang
et al., 2011]. Its runoff simulation was evaluated using the
University of New Hampshire-Global Runoff Data Center
(UNH-GRDC) gridded runoff data set [Fekete et al., 2002],
but it has not yet been evaluated with the U.S. Geological
Survey (USGS) streamflow data. The groundwater module
was evaluated against the Gravity Recovery and Climate
Experiment (GRACE) terrestrial water storage (TWS) data
when it was coupled with the Community Land Model [Niu
et al., 2007], but it has not been evaluated since its coupling
with Noah-MP. In addition, the evapotranspiration (ET)
simulation has not yet been evaluated using observational
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data. Soil moisture is another important variable for land-at-
mosphere coupling and drought monitoring and thus needs
to be evaluated using observational data. Lastly, since the
launch of GRACE in 2002, modeled TWS can now be evalu-
ated at a regional scale with the GRACE-derived TWS.
[4] Therefore, this study comprehensively evaluates the

performance of Noah-MP in hydrological simulations of
major hydrological variables (runoff, groundwater, ET, soil
moisture, and TWS). It features a detailed multivariable eval-
uation using the best available ground-based and satellite
measurements. This type of evaluation is consistent with
the current call for benchmarking of LSMs by GEWEX
GLASS [Abramowitz, 2012; Kumar et al., 2012; van den
Hurk et al., 2011]. Specifically, the following measurements
are used: USGS streamflow and groundwater data, AmeriFlux
tower micrometeorological ET data, Soil Climate Analysis
Network (SCAN) soil moisture data, and GRACE satellite-
derived TWS anomaly data.
[5] Before a clean version of the model is obtained for

evaluation, hydrological modeling generally requires spin-
up, parameter sensitivity tests, and model calibration for
specific study areas. Without groundwater dynamics, hy-
drological models typically only require several years of
model spin-up time [Cosgrove et al., 2003]; with ground-
water dynamics, however, they require much longer time
for water table depth (WTD) to reach an equilibrium state,
particularly in arid regions [Niu et al., 2007]. This study
will first investigate how the integration of groundwater
dynamics into Noah-MP affects model spin-up. Unlike
some parameters (e.g., slope and leaf area index) that
can be derived from representative field site measurements
or remote-sensing data, many parameters, such as the
hydraulic conductivity and the Clapp-Hornberger “b”
parameter, cannot be directly derived from measurements
and must be estimated by calibration for the specific
study areas [Hogue et al., 2006]. This study will identify
the most sensitive parameters through sensitivity tests and
then obtain the optimal combination of these parameters
through calibration.
[6] The evaluation of the study is conducted for the pe-

riod of 2000–2009 for the Mississippi River Basin (MRB)
at the North American Land Data Assimilation System
Phase 2 (NLDAS-2)’s 1/8° resolution [Ek et al., 2011].
Section 2 describes the Noah-MP model, study area, and
data sets used in this study. Section 3 introduces model
spin-up, parameter sensitivity tests, and model calibration.
Section 4 shows the specific evaluations of runoff, ground-
water, ET, soil moisture, and TWS. Section 5 summarizes
the study.

2. Methodology

2.1. The Noah-MP Model

[7] Noah-MP was enhanced from the original Noah LSM
through the addition of improved physics and multipara-
meterization options [Niu et al., 2011; Yang et al., 2011].
The improved physics includes a dynamic groundwater com-
ponent, an interactive vegetation canopy, and a multilayer
snowpack. The multiparameterization options provide users
with multiple choices of parameterizations in leaf dynamics,
canopy stomatal resistance, soil moisture factor for stomatal
resistance, and runoff and groundwater. For example, there

are four options for runoff and groundwater: (1) TOPMODEL
with simple groundwater model (SIMGM) [Niu et al., 2007],
(2) TOPMODEL with an equilibrium water table [Niu et al.,
2005], (3) original surface and subsurface runoff (free drain-
age) [Schaake et al., 1996], and (4) Biosphere-Atmosphere
Transfer Scheme surface and subsurface runoff (free drainage)
[Yang and Dickinson, 1996]. The parameterizations used in
this study are the default options recommended by Yang
et al. [2011]: TOPMODEL runoff with SIMGM groundwater,
leaf dynamics, Ball-Berry canopy stomatal resistance, a Noah-
type (using soil moisture) soil moisture factor controlling
stomatal resistance, and theMonin-Obukhov surface exchange
coefficient for heat.
[8] Both surface and subsurface runoff are computed by a

simple TOPMODEL-based runoff model [Niu et al., 2005].
Surface runoff (Rsf) is parameterized as

Rsf ¼ Fsat pþ 1� Fsatð Þmax 0; p� Ið Þð Þ (1)

where p, the effective precipitation intensity (kgm�2 s�1), is
the rainfall and dewfall reaching the ground plus snowmelt,
I is maximum soil infiltration capacity (kgm�2 s�1), which
is dependent on soil properties and moisture, and Fsat is the
fraction of saturated area and is parameterized as

Fsat ¼ 1� F frzð ÞFmax e
�0:5f z∇�z′botð Þ þ F frz (2)

where Ffrz is a fractional impermeable area as a function of
the soil ice content of the surface soil layer, z∇ is the WTD
(m), z’bot is the depth of the model bottom, which is 2m,
and Fmax is the potential or maximum saturated fraction
for a grid cell, which can be derived from high-resolution
subgrid topography (e.g., 30m) of a model grid cell (e.g.,
1° resolution) using the TOPMODEL concepts (see Niu
et al. [2005] or Niu et al. [2011] for details). In this study, a
global mean Fmax = 0.38 is used, which is derived from the
HYDRO1K 1 km topographic index (or wetness index, WI)
data [Verdin and Jenson, 1996].
[9] Subsurface runoff (Rsb) is parameterized as

Rsb ¼ Rsb;max e
�Λ�f z∇�z′botð Þ (3)

where Rsb,max is the maximum subsurface runoff when the grid
cellmeanWTD is zero—here globallyRsb,max=5.0×10

�4ms�1,
derived from calibration against global runoff data through
sensitivity tests [Niu et al., 2007]—andΛ is the grid cell mean
WI—here Λ=10.46, which is its global mean value derived
from HYDRO1K 1km WI data.
[10] With an unconfined aquifer added to account for the

exchange of water between the soil and the aquifer, the
temporal variation of the water stored in the unconfined aquifer,
Wa (mm), is parameterized as

dWa

dt
¼ Q� Rsb (4)

where Q is the recharge rate (mm s�1), which is positive
when water enters the aquifer. It is parameterized as

Q ¼ �Kbot
�z∇ � f micψbot � zbotð Þ

z∇ � zbot
(5)

where Kbot is hydraulic conductivity of the bottom soil layer
(mm s�1). The fmic is the fraction of micropore content in the
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bottom layer soil, which is introduced to limit the upward
flow (depending on the level of structural soil) and ranges
from 0.0 to 1.0 (see Niu et al. [2011] for details), and ψbot

is the matric potential (mm).
[11] Latent heat flux (λE, or potential evapotranspiration E)

is calculated using the Penman-Monteith equation following
Bonan [2008]:

λE ¼ s Rn � Gð Þ þ ρCp e� Ta½ � � eað Þ=rH
sþ γ rW=rHð Þ (6)

where λ is the latent heat of vaporization (J kg�1), e*[Ta] is
the saturation vapor pressure evaluated at the air temperature
(Ta), s = de*[Ta]/dT is the saturation vapor pressure versus
temperature evaluated at Ta, Rn is net radiation (Wm�2), G
is soil heat flux (Wm�2), (Rn � G) is net available radiation
(Wm�2), ρ is dry air density (kgm�3), Cp is specific heat
capacity of air (J kg�1K�1), ea is the vapor pressure of air
(Pa), and rH and rW are resistance to sensible heat and water
vapor, respectively (sm�1). The surface exchange coefficient
for heat,CH, which is used to calculate aerodynamic resistances,
can be estimated using either the Monin-Obukhov similarity
theory (this study) or the method of Chen et al. [1997].
[12] In addition to hydraulic conductivity, runoff is also found

to be very sensitive to the surface dryness factor (α). It deter-
mines the soil surface resistance to ground evapotranspiration
[Sellers et al., 1992], as shown in the following equation:

rsurf ¼ f snow � 1:0þ 1� f snowð Þe 8:206�αS1ð Þ (7)

where rsurf is the soil surface resistance (sm�1), fsnow is the
snow fraction covering a ground surface, and S1 is the soil
wetness in the top soil layer, varying from 0.0 to 1.0. Thus,
α controls the effect of soil moisture on rsurf.
[13] In the current Noah-MP, vegetation plays a significant

role in the model: the stomatal conductance determines the
photosynthesis and the carbon cycle, the dynamic leaf model
predicts the leaf area index (LAI) and the green vegetation
fraction (GVF), the “semitile” subgrid scheme calculates the
surface energy balance for vegetated and bare ground sepa-
rately, and the canopy water scheme simulates the canopy
water interception and evaporation.

2.2. Study Area

[14] TheMississippi River Basin (MRB) is the largest river
basin in North America, covering many distinct climate
zones. It is also a well-studied river basin, and thus, a variety
of meteorological, hydrological, and ecological data are
available. For example, it is the study area of the first
Continental-Scale Experiment of the World Climate Research
Program GEWEX Continental-Scale International Project
[Kumar and Merwade, 2011; Roads et al., 2003]. The MRB
area is 3.28 million km2, which is approximately 41% of the
conterminous U.S. (Figure 1a). It covers six of the 21 major
geographic regions defined by the USGS two-digit hydrologic
unit code (HUC2, http://water.usgs.gov/GIS/huc.html). Calculated
from the NLDAS-2 meteorological forcing data (1998–2009),
the basin average annual temperature and precipitation are
11.9°C and 821.0mm, respectively. Across the various cli-
mate zones, there is a large temperature gradient between the
south and north, with a minimum of �3°C in the Rocky
Mountains and a maximum of 22.9°C in the southern most
area of the basin (Figure 1b), and a large precipitation gradient

between the southeast and northwest, with a minimum of
126.3mm in Wyoming and a maximum of 1973.6 mm in
the Gulf of Mexico region (Figure 1c). In this study, the
Ohio-Tennessee Region is considered a typical wet region
and Missouri Region a typical dry region, with the Upper
Mississippi Region considered the transitional zone between
the two.

2.3. Model Input Data

[15] The NLDAS-2 [Mitchell et al., 2004] meteorological
forcings at 0.125° spatial resolution and hourly temporal
resolution are used to drive the Noah-MP model. The seven
nonprecipitation meteorological forcing fields are derived
from the NCEP (National Centers for Environmental
Prediction) North American Regional Reanalysis, including
air temperature, the U and V components of wind speed, spe-
cific humidity, surface pressure, surface downward short-
wave radiation, and surface downward longwave radiation.
Precipitation field data are derived from the temporal disag-
gregation of the gaged daily precipitation data from NCEP/
Climate Prediction Center with an orographic adjustment
based on the monthly climatological precipitation of the
Parameter-elevation Regressions on Independent Slopes Model
[Daly et al., 1994]. The Noah LSM outputs forced by the same
NLDAS-2 meteorological forcings are also downloaded from
the NLDAS website, which serves as the baseline model for
comparison with Noah-MP. More details regarding the setup
and performance of the Noah LSM model can be found in
Xia et al. [2012a, 2012b].
[16] The static input data for Noah-MP are from various

sources. The land-water mask that masks out the water
component from simulation (land = 1 and water = 0) and the
latitude and longitude coordinate information, which are
primarily used for computing the solar zenith angle, are the
same as those of NLDAS-2, which uses the latitude and lon-
gitude in the center of each 0.125° grid box. The vegetation
type and soil texture types (top 30 cm and 30–100 cm depth)
are aggregated from the 30 arc-second data of the USGS 24-
category vegetation (land use) and the hybrid State Soil
Geographic Database (STATSGO) Food and Agriculture
Organization soil texture data sets, respectively, both of
which are maintained by the NCAR/RAL (Research
Application Laboratory, National Center for Atmospheric
Research) (http://www.ral.ucar.edu/research/land/technol-
ogy/lsm.php). Soil color data are used to determine ground
surface albedo over visible and infrared bands and include
eight categories, with one as the lightest and eight as the
darkest. The annual mean 2 m air temperature data (from
NCAR/RAL) are also used as the lower boundary layer condi-
tion for soil temperature. The monthly climatological GVF
data are converted from the 0.144° five year (1985–1990)
GVF data derived from National Oceanic and Atmospheric
Administration (NOAA)/advanced very high resolution
diameter (AVHRR) by Gutman and Ignatov [1998].

2.4. Observational Data

[17] USGS streamflow data are used for runoff calibration
and validation. As shown in Figure 1a, four USGS gaging
stations are selected: the Ohio River at Metropolis, IL
collecting runoff from region 5 and region 6; the Mississippi
River at Keokuk, IA collecting runoff from region 7; the
Missouri River at Hermann, MO collecting runoff from region
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10; and the Mississippi River at Vicksburg, MS collecting
runoff from the entire MRB. To compare the spatial distribu-
tion of runoff between the model and the observations, we
use two types of data sets: the USGS hydrologic unit runoff
(http://waterwatch.usgs.gov/) [Brakebill et al., 2011] and the
monthly gridded climatological runoff composite fields at
30 min spatial resolution provided by the University of New
Hampshire-Global Runoff Data Center (UNH-GRDC). The
USGS hydrologic unit runoff data set was developed in
2008 and has been updated annually (D. Wolock, personal
communication, 2012). It was calculated from all the available
records for 1901–2009 at the eight-digit hydrologic unit code
(HUC8) level, which consists of 2110 hydrologic cataloging
units for the continental U.S. and 1128 units for the MRB.
The UNH-GRDC runoff preserves the accuracy of the
observed discharge data and obtains consistent spatial and
temporal resolutions from a water balance model [Fekete
et al., 2002]; hence, it is considered the best available gridded
data set for LSM evaluation, although the values are occasion-
ally lower than the gaged discharge data [Leung et al., 2011].
[18] A climatological WTD map for the U.S. created by

Fan and Miguez-Macho [2011], which contains 567,946
USGS groundwater observational sites (254,464 sites for
the MRB) and is dense enough to show the groundwater

spatial pattern for most of the U.S., is used for spatial com-
parison with the Noah-MP simulated WTD. Daily ground-
water storage anomalies for the MRB and its major
subbasins were derived from 58 sites with good represen-
tation of the subbasin averages by Rodell et al. [2007] and
are used in this study for temporal comparison with the
model results.
[19] Over recent decades, the global network of microme-

teorological tower sites with coordinating eddy covariance
measurements of CO2, water vapor, and energy, the FLUXNET
(http://fluxnet.ornl.gov/) [Baldocchi et al., 2001; Running
et al., 1999], has provided the most reliable ET measurements
and has been considered a valuable data source for LSM
development [Stöckli et al., 2008] and evaluation [Blyth
et al., 2010; Kumar and Merwade, 2011; Li et al., 2011]. As
part of the FLUXNET, AmeriFlux features much denser
flux tower sites in the U.S. than other regional networks.
Although there are 21AmeriFlux tower sites in theMRB, only
15 of them have overlapping observation times with the Noah-
MP simulation period (2000–2009), and those sites are used to
evaluate the model-simulated latent heat flux (ET). A list of
Ameriflux tower sites and their locations, land cover, and
available measurement periods are shown in Table 1. The data
included in this study are the monthly Level 4 latent heat flux

Figure 1. Map of the Mississippi River Basin showing (a) USGS gaging stations and hydrologic regions
(Numbers in the shaded area are the two-digit hydrologic unit code (HUC): 5 –Ohio; 6 – Tennessee; 7 –Upper
Mississippi; 8 –LowerMississippi; 10U –UpperMissouri; 10L –LowerMissouri; 11 –Arkansas–White–Red.),
(b) average annual temperature and (c) average annual precipitation.
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data, which are gap filled using Artificial Neural Network and
Marginal Distribution Sampling techniques (http://public.ornl.
gov/ameriflux).
[20] The SCAN [Schaefer et al., 2007] is a nationwide soil

moisture and climate information system led by the Natural
Resources Conservation Service (NRCS), USDA (http://
www.wcc.nrcs.usda.gov/scan/). SCAN soil moisture data
are collected by dielectric constant measuring devices at
5 cm, 10 cm, 20 cm, 50 cm, and 100 cm, where possible.
The data used in this study have been processed by extensive
quality control steps [Liu et al., 2011], through which any
unrealistic data values (e.g., data outside a reasonable range
and inconsistent data affected by sensor calibration or instal-
lation) and data measured under frozen conditions were
excluded. Figure 2 shows the 60 available SCAN stations
in the MRB and their data availability. Due to the low data
availability at most stations, the data are aggregated into
monthly basin average.
[21] GRACE-derived TWS anomaly data [Wahr et al.,

2004] can now validate the performance of LSMs in TWS
simulation, which is an overall indicator of the model profi-
ciency in simulating the water budget. Recently, Swenson
and Milly [2006] have used GRACE data for climate model
evaluation, Niu et al. [2007] and Lo et al. [2010] have suc-
cessfully used GRACE data for the development of ground-
water dynamics in LSMs, and van Dijk et al. [2011] have
used GRACE data to evaluate the Australian Water Resources
Assessment system and recommended necessary improve-
ments to the system, such as better precipitation forcing and
the addition of groundwater dynamics. More applications of
GRACE data in model development and evaluation can be
found in a review paper by Güntner [2008]. This study uses
the monthly GRACE TWS anomaly data, which have been
processed into a 1°× 1° resolution gridded format [Landerer
and Swenson, 2012; Swenson and Wahr, 2006] for easy com-
parison with LSM outputs and which can be publicly accessed
on the Jet Propulsion Laboratory TELLUS website (http://
grace.jpl.nasa.gov). The data are based on the CSR RL4.0
release by the Center for Space Research at the University of
Texas at Austin. First, a destriping filter was applied to the
data to minimize the systematic errors, which manifest as

north-south oriented “stripes” in the GRACE TWSmaps; then
a 300 km wide Gaussian filter was applied to reduce random
errors in higher-degree spherical harmonic coefficients not
removed by the previous filter; and lastly, a spherical harmonic
filter cutoff at 60° was applied. During the filtering process,
because GRACE TWS was spatially averaged, signals were
attenuated by showing smaller root-mean-square variability.
To restore the signal attenuation, a gain factor, which was
derived by using a simple least square regression to minimize
the mismatch between the unfiltered, true, and filtered storage
time series, was applied to each of the 1° × 1° grids. More in-
formation about the data processing can be found in Landerer
and Swenson [2012], Chen et al. [2006], and Swenson and
Wahr [2006].

2.5. Evaluation Statistics

[22] The agreement between the values predicted by a
model and the values actually observed is measured using
the following statistics: mean, root-mean-square error (RMSE),
square of the correlation coefficient (R2), and Nash-Sutcliffe

Table 1. Basic Information Regarding the AmeriFlux Sites

Site No. Site Name State Latitude (°N) Longitude (°E) Land Covera Available Period

1 ARM Southern Great Plains burn site - Lamont OK 35.55 �98.04 GRA 2005–2006
2 ARM Southern Great Plains control site - Lamont OK 35.54 �98.04 GRA 2005–2006
3 ARM Southern Great Plains site - Lamont OK 36.61 �97.49 CRO (DCP) 2003–2006
4 Brookings SD 44.35 �96.84 GRA 2004–2006
5 Bondville IL 40.01 �88.29 CRO (DCP) 1996–2007
6 Fort Peck MT 48.31 �105.10 GRA 2000–2006
7 Goodwin Creek MS 34.25 �89.97 GRA 2002–2006
8 Lost Creek WI 46.08 �89.98 CSH (SHR) 2001–2005
9 Morgan Monroe State Forest IN 39.32 �86.41 DBF 1999–2006
10 Missouri Ozark Site MO 38.74 �92.20 DBF 2004–2007
11 Mead – irrigated continuous maize site NE 41.17 �96.48 CRO (DCP) 2001–2006
12 Mead – irrigated maize-soybean rotation site NE 41.16 �96.47 CRO (DCP) 2001–2006
13 Mead – rain-fed maize-soybean rotation site NE 41.18 �96.44 CRO (DCP) 2001–2006
14 Niwot Ridge Forest (LTER NWT1) CO 40.03 �105.55 ENF 1998–2007
15 Willow Creek WI 45.81 �90.08 DBF 1999–2006

aAmeriFlux uses IGBP land cover classification, while Noah-MP uses USGS global 24-category classification. GRA stands for Grassland; CRO: Cropland,
DCP: Mixed Dryland/Irrigated Cropland and Pasture; CSH: Closed Shrublands; SHR: Shrubland; DBF: Deciduous Broadleaf Forest; ENF: Evergreen
Needleleaf Forest. Unless otherwise indicated by parentheses, Noah-MP uses the same land cover type as AmeriFlux for the corresponding
0.125° × 0.125° model grid. There are six sites where Noah-MP and AmeriFlux use slightly different names. At site 3, for example, AmeriFlux uses CRO,
while Noah-MP uses DCP.

Figure 2. Map of the 60 SCAN stations and their data
availability (percentage of the total number of months from
2002 to 2007 with observational data) in the Mississippi
River Basin.
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efficiency (NSE) coefficient [Nash and Sutcliffe, 1970]. The
NSE is calculated as

NSE ¼ 1�
∑
N

i¼1
Mi � Oið Þ2

∑
N

i¼1
Oi � O
� �2 (8)

where Mi and Oi are the predicted and measured values of
the same variable, respectively, and O is the mean of the
measured values. NSE ranges from minus infinity (poor fit)
to 1 (perfect fit). In general, model prediction is considered
to be satisfactory if NSE> 0.50 [Moriasi et al., 2007].

3. Model Spin-Up, Sensitivity Tests,
and Calibration

3.1. Model Spin-Up

[23] To allow some of the model variables with longer
memories reach equilibrium, a numerical model must be

properly initialized. When SIMGM, the groundwater com-
ponent of Noah-MP, was introduced [Niu et al., 2007], it
was noted that it might take at least 250 years to spin-up
the WTD in arid regions. Therefore, we are interested in
examining the time span required to spin-up the model for
this river basin. In this study, the spin-up is completed by
running the model repeatedly through 1997 until each of
the variables reaches equilibrium and the spin-up time is
defined as year n, if

Var nþ1 � Var n
�� �� < 0:001� Var nj j (9)

where Var stands for each of the variables for the spin-up.
This definition is as strict as the constraint by Yang et al.
[1995]. The Var for the calculation in Figure 3a is spatially
averaged, and for the calculation in Figure 3b, it is averaged
per grid cell.
[24] The WTD requires the longest spin-up time, 34 years

(Figure 3a), followed by runoff with 11 years and soil mois-
ture (total soil column) with 8 years. This is consistent with
previous studies of WTD [Niu et al., 2007] and soil moisture
[Cosgrove et al., 2003; Yang et al., 1995]. However, it is sur-
prising to note that the spin-up time needed for runoff is lon-
ger than for soil moisture, which is not as commonly reported
in literature. This may be due to the long spin-up time for
WTD, which influences the runoff generation. The sensible
heat fluxes and latent heat fluxes need shorter times to spin-
up, approximately 4 years, because they are more influenced
by surface soil and vegetation states and by the atmospheric
forcing data, as indicated in equation (6).
[25] Regarding the spatial distribution of the time (in years)

required for WTD to reach equilibrium (Figure 3b), for the
wet region (east), less than 10 years is required to spin-up,
whereas for the dry region (west), more than 72 years or even
hundreds of years may be required for some small but extremely
dry areas.

3.2. Parameter Sensitivity Tests

[26] Hydrological modeling involves significant efforts in
parameter sensitivity testing and calibration, which were usu-
ally overlooked in the past. However, it is becoming a must
when LSMs are more and more used in hydrological studies.
Here we briefly describe how the model parameters are final-
ized before the model is ready for evaluation. Based on our
modeling experience and previous studies [Rosero et al.,
2010], several sensitive parameters are selected for further
analysis. However, only three parameters are identified as
sensitive parameters for runoff simulation: surface dryness
factor (α), saturated hydraulic conductivity (k), and saturated
soil moisture (θmax). Table 2 provides the definitions, units,
and value ranges of the three parameters. Figure 4 shows
how annual runoff varies with different values of the indivi-
dual parameters. Spatially averaged annual mean runoff (1)
decreases as the surface dryness factor increases, in a nearly
linear relationship, (2) decreases dramatically as hydraulic

(a)

(b)

Figure 3. (a) Spin-up time (in years) for the individual vari-
ables based on averaged values for the entire Mississippi
River Basin and (b) spatial distribution of the spin-up time
(in years) for the water table depth.

Table 2. Experimental Design for Parameter Calibration

Parameters Controlling Process Units Min Max Default Values #

Surface dryness factor Partitions of the surface hydrology ― 0 10 6.0 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 8
Saturated hydraulic conductivity Base flow in runoff simulation m s�1 2E-9 7E-2 Vary Multiply by 0.01, 0.05, 0.1, 0.5, 1, 5, 10 7
Saturation soil moisture content Water flow between aquifer and soil ― 0.10 0.71 Vary Multiply by 0.8, 0.85, 0.9, 0.95, 1, 1.05, and 1.1 7
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conductivity increases when saturated hydraulic conductivity
is less than 10% of its original values, and (3) also decreases
dramatically as saturated soil moisture increases when the
multiplier (a factor multiplied by the original values) is less
than 0.9.
[27] Although the sensitivity tests are based on the changes

in total runoff with different parameter values, they influence
other hydrological variables more directly. For example, as
indicated in equation (7), the surface dryness factor is a
parameter that determines the soil surface resistance and
hence controls soil evaporation; when the surface dryness
factor increases, the soil evaporation increases correspon-
dingly. Therefore, to maintain water balance, either or both
transpiration and runoff have to decrease. In this case, annual
runoff decreases as the surface dryness factor increases
(Figure 4a). Total runoff is affected by the saturated hydrau-
lic conductivity via its capability to control the subsurface
runoff (base flow). Similarly, saturated soil moisture controls
the storage capacity of the soil and hence affects evaporation
and infiltration.

3.3. Model Calibration

[28] Based on the parameter sensitivity tests above, model
calibration is conducted manually by obtaining the optimal

combination of the three most sensitive parameters (α, k,
and θmax) for the entire MRB (i.e., called lumped calibra-
tion). As shown in Table 2, 392 experiments are designed
and run. The three parameter values that produce the highest
NSE for the entireMRBare selected. The calibrated hydrographs
are shown in Figure 5 and the corresponding statistics are
included in Table 3. In the hydrograph, the USGS-observed
streamflow is from the station near the basin outlet and the
Noah-MP runoff is aggregated from all the grids in each basin
or subbasins. For the entire MRB, we can observe that the
hydrograph is greatly improved from the default simulation
to the calibrated simulation. Although the increase in R2 is
small (from 0.76 to 0.81), the decrease in RMSE is large
(37%), which results in a large increase in NSE from 0.42 (less
than the satisfactory threshold of 0.50) to 0.77. For the Ohio-
Tennessee River Basin, all three statistics improve. For the
Upper MRB and the Missouri River Basin, however, the
NSE decreases (from 0.56 and 0.01 to 0.29 and�0.16, respec-
tively) due to the increase in RMSE, although the R2 increases.
[29] To improve the simulation for the subbasins, calibra-

tion is conducted by using different sets of the three para-
meters (α, k, and θmax) for each subbasin (i.e., subbasin
calibration). However, the improvement to the runoff simula-
tion for the Upper MRB and the Missouri River Basin is very
trivial (not shown here). The possible reasons are (1) the
selected sensitive parameters are not applicable for these
two subbasins, and/or (2) hydrological modeling for arid
and semiarid areas (such as these two subbasins) is more dif-
ficult than that for humid areas—a well-recognized problem.
Figure 5d shows that subbasin calibration does significantly
improve the simulation for the Ohio-Tennessee River Basin.
From the lumped calibration to the subbasin calibration, the
NSE (R2) increases from 0.36 (0.67) to 0.68 (0.81). In sum-
mary, it is worthwhile to calibrate models at the subbasin level
for humid regions, whereas for arid and semiarid regions, the
model structure and the selection of the sensitive parameters
need further investigation.

4. Evaluation and Discussion

4.1. Runoff

[30] Figure 6 compares the spatial distributions of the
UNH-GRDC composite runoff, the USGS hydrologic unit
runoff, and the Noah-MP simulated runoff. Noah-MP is
capable of capturing the observed general spatial pattern of
the runoff, which is similar to the precipitation pattern shown
in Figure 1c. For UNH-GRDC, the runoff in the red box is
much lower than its surrounding area, which is not found in
the Noah-MP simulation or the USGS observations. On
the contrary, the Noah-MP-simulated runoff in that box is
slightly higher than its surrounding area, whereas the USGS
runoff follows the general transition pattern. The USGS
stream gages in this region are very sparse compared with
other regions (not shown here), which might explain the
difference in the UNH-GRDC runoff data because the UNH-
GRDC runoff requires runoff input from the USGS. The high
Noah-MP runoff in that box corresponds to the high precipi-
tation in Figure 1c. It is also notable that the UNH-GRDC
runoff is less than 1mm for most of the western portion of
the basin (red shaded area in Figure 6b), whereas it is 5mm
to 25mm in the Noah-MP runoff and 6mm to 50mm in the
USGS runoff.

0

100

200

300

400

500

2.5 3 3.5 4 4.5 5 5.5 6

A
n

n
u

al
 r

u
n

o
ff

 (
m

m
)

A
n

n
u

al
 r

u
n

o
ff

 (
m

m
)

A
n

n
u

al
 r

u
n

o
ff

 (
m

m
)

(a) Surface dryness factor

Region 5&6 Region 7 Region 10 MRB
USGS 5&6 USGS 7 USGS 10 USGS MRB

0

80

160

240

320

400

0.002 0.02 0.2 2 20 200

Multiplier (log10 scale)

(b) Saturated hydraulic conductivity

Region 5&6 Region 7 Region 10 MRB

0

100

200

300

400

500

0.5 0.7 0.9 1.1 1.3 1.5

Multiplier 

(c) Saturated Soil Moisture 

Region 5&6 Region 7 Region 10 MRB
USGS 5&6 USGS 7 USGS 10 USGS MRB

Figure 4. Sensitivity tests of (a) the surface dryness factor,
(b) the saturated hydraulic conductivity, and (c) the maxi-
mum soil moisture (porosity).
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[31] To examine howNoah-MP is improved from the base-
line Noah LSM in terms of runoff simulation, we also present
the comparison in Figure 6e, which indicates a substantial
improvement from the Noah LSM to Noah-MP. The results
from the default Noah-MP setting slightly underestimate
the USGS observations; however, they are already much bet-
ter than the baseline Noah LSM results. The results from the
calibrated Noah-MP are further improved, as both the mag-
nitudes and the temporal variations correspond closely with
the USGS observations. For easy comparison with similar
studies, monthly climatological runoff is also shown in
Figure 6d. Compared with previous studies by Falloon et al.
[2011], Li et al. [2011], and Xia et al. [2012a], Noah-MP
performs as well as or better than other mainstream LSMs
in runoff modeling.
[32] One must bear in mind that these improvements may

be undermined by possible uncertainties in our comparison
process and the models used. First of all, it is unfair to com-
pare the model-simulated runoff directly (without river
routing) with the USGS-gaged streamflow. However, the
influence of the runoff routing on the comparison is relatively
minor if we compare them at the monthly scale. Second,

the USGS-gaged runoff is a direct measurement of the
streamflow through a specific location without tracking its
exact movement and distribution; therefore, great uncer-
tainties evolve from human activities such as irrigation, tile
drainage [Li et al., 2010], water supply, and reservoir regula-
tion, as the MRB is one of the river basins that involve inten-
sive water consumption [Murray et al., 2011]. The traditional
method is to use gaged streamflow to retrieve natural runoff
without human interference. However, streamflow naturali-
zation requires significant data on water use and water resource

Figure 5. Comparisons of the USGS-observed and the Noah-MP- simulated (default, lumped calibrated,
and subbasin calibrated) hydrographs for (a) the Mississippi River Basin, (b) the Upper Mississippi River
Basin, (c) the Missouri River Basin, and (d) the Ohio-Tennessee River Basin.

Table 3. Statistical Summary of Model Calibration for the
Mississippi River Basin and Some of Its Subbasins

Mississippi Upper Mississippi Missouri Ohio-Tennessee

CTLa LPCb CTL LPC CTL LPC CTL LPC SBCc

RMSE 6128 3875 904 1147 1192 1290 5054 3919 2773
R2 0.76 0.81 0.60 0.68 0.48 0.57 0.60 0.67 0.81
NSE 0.42 0.77 0.56 0.29 0.01 �0.16 �0.07 0.36 0.68

aCRT: default (control) model run.
bLPC: lumped calibration.
cSBC: calibration for specific subbasin.
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management, which are difficult to collect. Third, Noah-MP
does not include a process to represent the artificial tile drain-
age in the model, which is a very important mechanism in
some of Midwest areas, not only in runoff generation but also
in groundwater and soil moisture modeling [Algoazany et al.,
2007; Gentry et al., 2009; Goswami, 2006; Li et al., 2010].
One possible solution is to improve the ability of Noah-MP
to represent human activities (e.g., irrigation and tile drainage)
in future model development.

4.2. Groundwater

[33] Groundwater dynamics have attracted increasing
attention within the climate community [Fan et al., 2007;
Leung et al., 2011; Lo et al., 2010; Miguez-Macho et al.,
2007; Niu et al., 2007] for three reasons. First, groundwater
directly influences soil moisture, which is an important

variable in LSMs and climate models, an important indicator
for drought detection, and a major controlling factor for the
interaction between the land and the atmosphere [Niu et al.,
2007]. Second, groundwater, which provides most of the
water needed for ET during the dry season [Gutowski et al.,
2002], also influences ET. Because ET is both a water flux
and a heat flux term, the influence of groundwater is passed
on throughout the surface energy and water balances.
Third, the inclusion of groundwater dynamics in climate
models provides a direct tool to evaluate the impact of
climate change on groundwater systems, which is vital for
research into climate change adaptation.
[34] Groundwater dynamics is one of the major improve-

ments in Noah-MP; however, the employed SIMGM ground-
water model was evaluated against the GRACE TWS
anomaly data at the global scale [Niu et al., 2007] without

Figure 6. Climatological mean annual runoff from (a) Noah-MP (2000–2009), (b) UNH-GRDC (all
available observational time periods [Fekete et al., 2002]), and (c) USGS hydrologic unit runoff (1901–2009).
(d) Monthly climatological runoff (2000–2009) from USGS observation and Noah-MP simulation. (e)
USGS-gaged and Noah-MP (default and calibrated) and Noah LSM simulated runoff (2000–2008) for the
Mississippi River Basin. The region enclosed in the red box is discussed in the text.
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comparison with actual ground measurements. Therefore,
this study compares the simulated WTD against the USGS-
observed WTD, both spatially and temporally. Figure 7
shows that Noah-MP can simulate the climatological spatial
pattern, in which the water table is shallower in the southeast
and deeper in the northwest. Some small areas in the wet
region with deep water tables are not well simulated by
Noah-MP, which may be due to the coarse spatial resolution
or the model structure. Temporal variation is also compared
with the observed groundwater storage data (Figure 8). The
simulated groundwater variations agree very well with the
observations for the entire MRB, the Ohio-Tennessee River
Basin, and the Upper MRB, with R2 values of 0.75, 0.67,
and 0.57, respectively. For the Ohio-Tennessee River Basin,
the simulated anomalies are very similar to the observations.
Because precipitation occurs frequently in this wet region, a
small but very frequent fluctuation occurs in the observations,
which Noah-MP fails to replicate. For the entire MRB and for
the Upper MRB, the simulated anomalies are less than in the
observations. For the Missouri River Basin, however, the
simulated anomalies are much less than in the observations.

The observed strong seasonal cycle is likely caused by the
very shallow water table in this region (see Figure 7), which
is because the aquifers are thin valley alluvium perched on
top of the bedrock cores of the Rocky Mountains. These thin
alluvial aquifers have very little storage, and thus, they are
very responsive to seasonal snowmelt recharge (rises quickly)
followed by efficient drainage into the deeply incised streams
(i.e., the water level falls quickly). Models have difficulties
representing these perched thin aquifers (Y. Fan, personal
communication, 2011). For future model development, it
would be helpful to collect the bedrock distribution data
and include this process in LSMs.
[35] The modeled WTD is normalized here so that its

spatial pattern is comparable to the observations. Indeed,
Noah-MP-simulated WTD only ranges from 2m to less than
14m, whereas the observed WTD ranges from above the
ground to greater than 80m. The reason that WTD is limited
to greater than 2m in the model is to avoid a numerical
computation problem. The simulated WTD cannot go deeper
than 14m, most likely due to the coarse spatial resolution.
The range of WTD is very sensitive to the grid resolution:

Figure 7. Climatological water table depth from (a) USGS measurements (all available observational
time periods [Fan and Miguez-Macho, 2011]) and (b) Normalized Noah-MP simulations (2000–2009).
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The finer the grid, the larger the range of WTD because when
the grids are finer, the steeper land slope can be represented in
the model, which accelerates the drainage speed. The most
prominent scale for groundwater divergence-convergence is
from hilltops to valleys. When averaging over the valleys
and hills, and thus only having regional gradients, we get
regional WTD and groundwater flow, which have much
smaller gradients and ranges (Y. Fan, personal communica-
tion, 2011). Therefore, improving the spatial resolution is
another direction for groundwater model development in
LSMs, but there is always a tradeoff between model resolu-
tion and computational affordability.

4.3. Evapotranspiration

[36] For the entire MRB, the simulated canopy evaporation,
transpiration, and soil evaporation are 35.6mm, 278.6mm,
and 323.5mm, respectively, which account for 5.6%, 43.7%,
and 50.7% of the total ET, respectively. To distinguish the
effect of different vegetation types on ET, the 15 AmeriFlux
tower sites are divided into four groups by their land cover
types, with five grassland sites, five cropland sites, four

forestland sites, and one shrubland site. Their climatological
latent heat fluxes (the energy form of ET) from observations
and from model simulations are presented in Figure 9.
Among the four land cover types, forestlands and shrublands
show significant improvements from Noah LSM to Noah-
MP, in terms of better timing and more similar mean values,
and grasslands also have improved timing. However, we find
that the Noah-MP-simulated latent heat fluxes are slightly
higher than the observations from AmeriFlux for all four
land cover types, which is similar to the evaluation by Blyth
et al. [2010], whereas Noah LSM underestimates latent
heat fluxes for forestlands and shrublands, overestimates for
croplands, and well estimates the mean value for grasslands.
Interestingly, the three land cover types for which Noah-MP
performs well are grassland, forestland, and shrubland, which
are considered more naturally occurring, whereas the land
cover type for which Noah-MP does not perform well is crop-
land, which involves more human activities. This is most
likely due to the use of leaf dynamics in Noah-MP, which
can capture the processes of natural growth but cannot capture
anthropogenic crop growth; thus, its ET increases too quickly

Figure 8. Comparison of the groundwater storage anomaly from observations [Rodell et al., 2007] and
model simulations for (a) the entire Mississippi River Basin, (b) the Upper Mississippi River Basin,
(c) the Missouri River Basin, and (d) the Ohio-Tennessee River Basin.
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during spring. In contrast, Noah LSM uses prescribedmonthly
LAI for various vegetation types and monthly GVF climato-
logical values derived from NOAA/AVHRR, which better
match anthropogenic crop growth. In addition to maintaining
the strength in modeling natural vegetation dynamics, im-
provement in the simulation of the dynamic leaf model for
cropland is highly recommended (this land type is expected
to expand with the increasing population). One of the limita-
tions of this study is that only runoff is calibrated; however,
it is recommended that both runoff and ET be calibrated at
the same time.

4.4. Soil Moisture

[37] Studies [e.g., Entin et al., 2000] have shown that soil
moisture measured at one location can represent the temporal
variation for the surrounding area, up to 500 km in radius.
Therefore, it is reasonable to use station-measured soil moisture
to evaluate model-simulated soil moisture. Figure 10 com-
pares the Noah-MP-simulated and SCAN-observed soil
moistures for individual soil layers (the top 10 cm, 10–40 cm,
40–100 cm, and 100–200 cm). For the top layer (the top
10 cm), the Noah-MP-simulated soil moisture values are
nearly identical to the SCAN observations, with an R2 of
0.923 and an RMSE of 0.016. Because the top layer plays
an important role in the water and energy exchanges between
the land surface and the atmosphere, Noah-MP shows its high
potential ability to study land-atmosphere coupling. For the
second layer (10–40 cm), although the discrepancy is slightly
greater than the top layer (RMSE is 0.025), the comparison
has an even higher R2 value (0.933). A larger discrepancy is
found in the deep layers, with R2 of 0.624 and RMSE of
0.077 for the third layer (40–100 cm) and R2 of 0.574 and
RMSE of 0.035 for the bottom layer (100–200 cm). In terms
of R2, the results for the two deep layers are still acceptable;

however, the Noah-MP-simulated soil moisture values largely
underestimate the SCAN observations for the third layer,
particularly in the summer and fall.
[38] Why does Noah-MP underestimate the SCAN soil

moisture for the third soil layer? This question can be
answered by the connection with the ET comparison in the
previous section, where it was demonstrated that Noah-MP-
simulated ET values increased more quickly than did the
AmeriFlux observations in the spring (Figure 9). Due to the
high values of the simulated ET, more water is extracted
from soil, which very likely leads to the low values of the
simulated soil moisture. Furthermore, the variation in ET is
dominated by transpiration (approximately twice that of soil
evaporation). The transpiration rate from each soil layer is
determined by the soil moisture factor controlling stomatal
resistance, βi (the higher value, the larger fraction of water
for transpiration from the layer), which is parameterized as

βi ¼
Δzi
zroot

min 1:0;
θliq;i � θwilt
θref � θwilt

� �
= ∑

N root

i¼1

Δzi
zroot

min 1:0;
θliq;i � θwilt
θref � θwilt

� �� �

(10)

where Δzi is the thickness of the ith soil layer (m), zroot is the
total depth of root zone (m), θliq,i is the liquid soil moisture in
the ith soil layer (m3m�3), θwilt is the soil moisture at wilting
point (m3m�3), and θref is the reference soil moisture (close
to field capacity) (m3m�3). In our comparison, most of the
model grids with good availability of SCAN data (Figure 2)
are croplands, grasslands, and shrublands, which have shal-
low roots, so that root depth may only reach the third soil
layer; only a few model grids with poor availability of
SCAN data are forestlands, which have deep root depths that
reach the bottom layer. Because of the great thickness of the
third soil layer (0.6m), the water supply for transpiration is

Figure 9. Comparison of the latent heat flux for the AmeriFlux observations and the model simulations
for different land cover types. (a) Grassland (five sites), (b) cropland (five sites), (c) forestland (four sites),
and (d) shrubland (one site).
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Figure 10. SCAN-observed and Noah-MP-simulated monthly soil moisture (SMC) for the
Mississippi River Basin at a depth of (a) top 10 cm, (b) 10–40 cm, (c) 40–100 cm, and (d) 100–200
cm. Figure 10c also shows the Noah-MP simulated transpiration (ET). For the Noah-MP simulation,
only those grids with a SCAN site are included, and for each grid, only those months with observed
values are used.

Figure 11. TWS anomalies for the Mississippi River Basin calculated from (a) the water storage terms
and their contributing components and (b) the water flux terms and their contributing components. TWS
anomalies are the cumulative anomalies of (Precipitation – ET – Runoff), which are compared concurrently
with the anomalies of the individual terms �ET and �Runoff. Note that the ET and runoff anomalies are
shown as the negative of the original anomalies.
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heavily from the third layer. However, this may not be true in
reality for croplands and grasslands, where roots may only
reach the upper portion of the third layer not the entire third
layer. Therefore, the water extraction for transpiration from
the third layer is overestimated.
[39] Figure 10c shows the strong annual cycle of transpira-

tion, where high transpiration rates correspond to low soil
moisture and low transpiration rates correspond to high soil
moisture in the third soil layer. There are approximately
2months of phasing difference between the transpiration
and soil moisture, which is because after its peak, transpira-
tion remains high and continues to dry the soil. To improve
the soil moisture estimation for the third layer, adjustments
(parameters or parameterization) to the dynamic leaf model
in Noah-MP are needed to limit the increase in the ET rate
in the spring.

4.5. Terrestrial Water Storage

[40] The Noah-MP-simulated TWS anomaly is compared
with the GRACE-based TWS anomaly for the entire MRB
in Figure 11, in which the contributing components of the
simulated TWS anomaly are also presented. There are several
notable points from this comparison.
[41] 1. Noah-MP agrees well with GRACE in terms of the

TWS anomaly, indicating that Noah-MP can capture the
overall water cycle, including both the timing and the magni-
tude of water fluctuation. Although it may still involve great
uncertainties from each of these components, Noah-MP cap-
tures the most important components such as soil moisture,
groundwater, and snow.
[42] 2. Because Noah-MP does not simulate the water stor-

age of ice, lakes, rivers, and biomass, from the water balance
point of view, TWS has to be balanced by soil moisture,
groundwater, and snow, which are the water storage terms
that are simulated in the model. In this particular region, soil
moisture contributes the most to the TWS anomaly, followed
by groundwater, and then snow. Although Noah-MP has diffi-
culty in capturing the absolute values ofWTD (see section 4.2),
it is quite capable of capturing the annual groundwater

fluctuation. Compared with the original Noah LSM, in which
TWS is only balanced by soil moisture and snow, Noah-MP
obtains a great improvement by including the second largest
component of the TWS anomaly—groundwater.
[43] 3. Noah-MP still simulates only the natural part of the

TWS anomaly, without considering human activities; there-
fore, Noah-MP has difficulty reflecting human interference.
We can clearly observe that in the GRACE-based TWS
anomaly curve, where there are two peaks in approximately
half of the years, which cannot be observed in the Noah-
MP curve. This is very likely due to human activities, for
example, high irrigation rates in the spring. Some researchers
have attempted to include irrigation in LSMs [Ozdogan et al.,
2010; Pokhrel et al., 2012; Sorooshian et al., 2012].
[44] 4. In Figure 11b, the variation amplitude of the cumu-

lative anomaly of ET is much higher than in the other fluxes
(precipitation and runoff); hence, ET is the dominant water
flux driving the TWS anomaly.
[45] As shown in Figure 12, we also compare the Noah-

MP-simulated TWS anomaly with the GRACE-based TWS
anomaly at the subbasin level. In all four regions, soil mois-
ture is always the largest contributor to the TWS anomaly;
groundwater is the second largest contributor in the Ohio-
Tennessee, UpperMississippi, and LowerMississippi regions,
but in the cold Missouri region, snow contributes as much as
groundwater to the TWS anomaly. In the smaller subbasins,
such as the Upper and Lower Mississippi, the agreement
between the model and the GRACE TWS anomalies is not
as good as the agreement at the level of the entire MRB.

5. Conclusions

[46] In line with the GEWEX GLASS for LSM bench-
marking or better model evaluation, we evaluated the model
at the continental basin scale, specifically for the MRB. We
began our evaluation with model spin-up, parameter sensiti-
vity tests, and model calibration, and then the calibrated results
were compared with a number of traditional and recently
available observational data sets. From this study, we have

Figure 12. Comparison of the TWS anomalies from the GRACE-based measurements and the Noah-MP
simulations from the water storage terms and their contributing components for the four subbasins.
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reached several conclusions that may be of interest to LSM
developers and users.
[47] With groundwater dynamics included in Noah-MP, it

takes longer for WTD to reach equilibrium than without
groundwater dynamics. This long WTD spin-up time would
influence the spin-up times of other variables because when
the water table is far from an equilibrium state, other variables
such as runoff, ET, and soil moisture need to be adjusted to
help WTD reach equilibrium. For the entire MRB, at least
34 years is required for the model to spin-up. For some moun-
tain regions with very deep water tables, hundreds of years
may be required for the model to spin-up.
[48] Runoff is found to be sensitive to three parameters: the

surface dryness factor (α), the saturated hydraulic conduc-
tivity (k), and the saturated soil moisture (θmax); these three
factors are selected for model calibration to improve runoff
simulation. Although lumped calibration can improve model
performance, distributed calibration is needed to obtain the
best parameter values for some wet regions. If time and
resources are limited for conducting automatic calibration
(e.g., in this study), a better understanding of model physics
and more analyses of the observational data would shorten
the calibration time and benefit the model performance.
[49] Noah-MP has shown significant improvements in

hydrological modeling.
[50] 1. The Noah-MP-simulated runoff is significantly im-

proved compared with the baseline Noah LSM output in the
NLDAS-2 framework. The spatial pattern of the Noah-MP sim-
ulated runoff matches fairly well with both the UNH-GRDC
runoff and the USGS hydrologic unit runoff. We believe that
this is the first time the USGS hydrologic unit runoff has been
used in LSM evaluation and found to be very reasonable.
[51] 2. Groundwater evaluation indicated that Noah-MP

captures the general spatial pattern of the climate conditions
and captures the temporal patterns for the wet regions.
However, it fails in simulating the absolute values and the
temporal variation in the water table for the dry regions.
[52] 3. The addition of leaf dynamics to Noah-MP has

improved its performance in ET simulation for natural land
cover types.
[53] 4. One of the highlights of the study is that Noah-MP

produces soil moisture values consistent with the SCAN obser-
vations for the top two soil layers (0–10 cm and 10–40 cm),
which indicates its great potential for use in studying land-
atmosphere coupling.
[54] 5. The Noah-MP-simulated TWS anomaly agrees

very well with the GRACE observations, which may partly
benefit from the inclusion in the model of groundwater
dynamics, considered the second largest component of the
TWS anomaly for most of the MRB.
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