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Abstract. Different methods have been developed to estimate evapotranspiration from remote
sensing data, from empirical approaches such as the simplified relationship to complex methods
based on remote sensing data assimilation along with SVAT models. The simplified relationship
has been applied from small spatial scale using airborne TIR images to continental scale with
NOAA data. Assimilation procedures often require remote sensing data over different spectral
domains to retrieve input parameters which characterize surface properties such as albedo,
emissivity or Leaf Area Index. A brief review of these different approaches is presented, with
a discussion about the main physical bases and assumptions of various models. The paper
reports also some examples and results obtained over the experimental area of the Alpilles
Reseda project, where various types of models have been applied to estimate surface fluxes
from remote sensing data.
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Introduction

Detailed knowledge of land surface fluxes, especially latent and sensible com-
ponents, is important for monitoring the climate of land surface, for evalu-
ating parameterization schemes in weather and climate models used to pre-
dict fluxes exchanges between the surface and the lower atmosphere, and
for agricultural applications such as irrigation scheduling. The main meth-
ods classically used to measure evapotranspiration (ET) are available at the
field scale (Bowen ratio, eddy correlation system, soil water balance), but
do not allow estimating the fluxes when dealing with large spatial scales.
For operational applications, water managers and irrigation engineers need to
have accurate estimations of surface fluxes, and especially ET. Nowadays, the
recommended FAO 56 method is used in numerous countries. This method
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consists of estimating crop evapotranspiration (Etc) for a crop canopy using
a reference evapotranspiration (Etr) and a crop coefficient (Kc), where Etr is
retrieved using the Penman—Monteith method (PM). The latter provides Etr
over a grass under optimum soil moisture conditions with a constant value of
the surface canopy resistance considering then the grass as a single big leaf
(Allen et al., 1998, FAO 56 method). However, surface resistance can vary
according to the day, the weather conditions, especially available radiation
and vapor pressure deficit (Ortega et al., 2004). The determination of crop co-
efficients is also debatable because a lot of factors occur (Neale et al., 2005).
The ET crop surfaces under non-standard conditions is adjusted by either a
water stress coefficient or modifying the Kc coefficient. Actual evapotranspi-
ration (Etact) corresponds to the real water consumption according to weather
parameters, crops factors, management and environmental conditions. How-
ever, several other crop and surface characteristics have to be considered: crop
type/variety/development stage, ground cover and root system development.

Remote sensing data with the increasing imagery resolution is a useful tool
to provide such information over various temporal and spatial scales. Different
methods have been developed to use this information in surface flux estimation
schemes. Itis always difficult to classify these methods, since their complexity
depends on the balance between the empirical and physically based modules
used. Nevertheless, we propose in this paper four model categories which are
based on:

— Empirical direct methods where remote sensing data are introduced directly
in semi-empirical models to estimate ET (for example, the simplified rela-
tionship using Thermal Infra Red (TIR) remote sensing and meteorological
data). We will present the main assumptions of this approach in the first
section of the paper. It allows characterizing crop water status both at the
local scale using ground measurements and over large irrigated areas using
satellite data using the cumulative temperature difference (7's — Ta), also
known as a stress degree day (SDD).

— Residual methods of the energy budget combining some empirical rela-
tionships and physical modules. Most current operational models (such as
SEBAL, S-SEBI described further) use remote sensing directly to estimate
input parameters and ET.

— Deterministic methods generally are based on more complex models such as
Soil-Vegetation—Atmosphere Transfer models (SVAT), which compute the
different components of energy budget (ISBA, Meso-NH). Remote sensing
data are used at different modeling levels, either as the input parameters to
characterize the different surfaces, or in assimilation procedures which aim
at retrieving adequate parameters for the ET computation. Some examples
of this approach will be shown in the third section.
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— And lastly vegetation index methods, or inference methods based on the use
of remote sensing to compute a reduction factor (such as Kc or Priestley
Taylor-alpha parameters) for the estimation of the actual evapotranspira-
tion. These approaches consider a potential or reference ET obtained from
ground measurements. Differents papers deal with these approaches in this
special issue (Allen et al., 2005; Neale et al., 2005; Garatuza et Watt, 2005).

Before presenting these different approaches, a brief review about energy
budget is required for a better understanding of the relationships between
ET and the driving variables such as surface temperature (7's). Then we will
describe some models using remote sensing to estimate ET. We note that
this is not an exhaustive review since we have chosen to deal with widely
used models. For more details, one can refer either to overviews on the use
of remote sensing for evapotranspiration monitoring such as proposed by
Kustas & Norman (1996), or to web sites such as: http://www.cgiar.org/iwmi.
In conclusion, we will discuss about the application of these models for crop
monitoring and water management, present potentialities and limits, and on
future remote sensing tools.

Evapotranspiration and energy budget

Evapotranspiration estimation (corresponding to the latent heat flux LE) from
remote sensing is based on assessing the energy balance through several sur-
face properties such as albedo, leaf area index, vegetation cover, and surface
temperature (7). When considering instantaneous conditions, the energy bal-
ance equation is written as:

Rn=LE+H+G (1)

The available net radiant energy Rn is shared between the soil heat flux G
and the atmospheric convective fluxes (sensible heat flux H and latent energy
exchanges LE). Radiant and convective fluxes can be described either consid-
ering the observed surface as a single component (single layer approaches)
or discriminating soil and vegetation components with different degrees of
canopy description according to the number of vegetation layers (multilayer
approaches, with those based on two sources that are widely used).

Rn depends on incident solar radiation (Rg), incident atmospheric radi-
ation over the thermal spectral domain (Ra), surface albedo («y), surface
emissivity (&;) and surface temperature (7's):

Rn = (1 —a,)Rg +& Ra—¢e,0 T} )
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where Rn is related to the whole surface for single layer models and to both
soil and vegetation layers for multiple layer models.

For single approaches, sensible heat flux H is calculated using the aero-
dynamic resistance r, between the surface and the reference heigth z, in the
lower atmosphere (commonly 2 m) above the surface

H = pcp(Ts — Ta)/r, (3)

r, is a function of wind speed u,, atmospheric stability and roughness lengths
for momentum and heat (z¢, zo,, respectively, depending on vegetation height
and geometry). These last variables are then characterized using the kB~!
parameter given as kB! = log(zo/z0;), Which varies significantly according
to characteristics of the observed surfaces: thin or medium (grass, soybean,
wheat) or well developed crop with large values of vegetation height. Thus
the surface temperature corresponds to the “aerodynamic surface tempera-
ture” which is defined by extrapolating air temperature profile down to the
level z(,. This surface temperature is generally different from the radiometric
surface temperature measured with satellites (Norman & Becker 1995). Dif-
ferent models generally with 2 layers (described further) have integrated this
difference to estimate ET.

For multiple layer models, H is characterized considering both a soil and
canopy resistance, with the corresponding temperature.

Estimating LE can be performed using the residual method, which induces
that LE is linearly related to the surface air temperature difference at the time
of T's measurement, if the second order dependence of r, on this gradient is
ignored.

LE=R,— G — pcp(Ts —Ta)/r, 4)

This equation is widely used for the estimation of instantaneous LE. When
estimated at midday, it provides a good indicator of plant water status for
irrigation scheduling. When dealing with longer periods (seasonal, monthly,
daily estimations), the use of ground-based ET from weather data is necessary
to make temporal interpolation. Several papers have used the tendency for the
evaporative fraction (EF, e.g. the ratio of latent heat flux to available energy
for convectives fluxes) to be nearly constant during the daytime, which allows
estimating daytime evaporation from one or two estimates only of EF at
midday (e.g. at the satellite acquisition time) (Crago, 2000).

_LE
"~ (Rn—G) 5)
ET24 = EF % Rn24

EF
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Another way to estimate ET is to compute this term according to the following
equation from air vapor pressure e, and a water vapor exchange coefficient
(hy). This last method is commonly used along with estimates of soil mois-
ture in models simulating Soil-Vegetation—Atmosphere Transfers (SVAT) and
defined in this paper as deterministic approaches.

LE = pephy(el(Ty) — e,) (©)

e;(Ty) is the saturated vapor pressure at the surface temperature 7. h, is an
exchange coefficient, often represented in numerical model through a network
of resistances more and less complex according to the vegetation layers con-
sidered in the canopy description (Figure 1). It depends on the aerodynamic
exchange coefficient (1/r,), soil surface and stomatal resistances of the dif-
ferent leaves in the canopy. A global canopy resistance (r*) including both
soil and canopy resistances can be estimated from the formulation proposed
by Katerji & Perrier (1985):

1
* —
r=—- 7
Togtrg ro+rs

Tog 18 the resistance due to the vegetation structure, r, the resistance of the soil
layer depending on the soil water content, r the resistance due to the canopy
structure and r the stomatal resistance. The calculation of the latter requires
information on plant structure: leaf area index (LAI) and fraction of vegetation
cover (veg), the minimum stomatal resistance (7 syn). Several studies proposed
different parameterisations of the stomatal resistance according to climatic and
soil moisture (Jacquemin & Noilhan, 1990).

From these basic elements, it appears that the surface temperature (7's)
or more exactly (T's — Ta) is related to ET, and that T's can be estimated
using thermal infrared measurements (either at local scale using ground radio
thermometer, either at regional or global scale using satellite data).

In the next paragraph, we will present the main steps and assumptions of
these methods using remote sensing data to estimate LE.

Direct simplified methods

The simplified relationship, firstly derived at field scale by Jackson et al.
(1977) and later analyzed by Seguin & Itier (1983), has widely been used for
mapping daily evapotranspiration over large areas from surface temperature
measurements (Lagouarde & Brunet, 1991, Couraultetal., 1994). This method
assumes that it is possible to directly relate daily (ET,) to the instantaneous
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Figure 1. Schematic structure of single layer and multilayer models based on resistance net-
work to represent the exchanges between vegetation and atmosphere (in Olioso et al., 1999).
(H, LE: sensible and latent fluxes, T'a, ga: air temperature and humidity, r*: surface resistance,
ra: aerodynamic resistance).

difference (T's — T a); measured around midday as follows:
ET,=Rn+ A — B(Ts — Ta); (8)

A and B being constant depending on the local situation. Many papers have
dealt with the analysis of this relationship and their assumptions (Lagouarde,
1991; Seguin & Itier, 1983; Riou et al., 1988). The method relies on the as-
sumptions that the ratio H/ Rn is constant all along the day, and the daily value
of soil heat flux is negligible (G, = 0). T's can be extracted from measurements
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Figure 2. Simplified relationship obtained for different soil types between (T's — Ta) and H.
(from Chanzy, 1991).

acquired in the thermal infrared range (TIR) with airborne or satellite sensors,
after atmospheric corrections. Seguin et al. (1982) and Steinmetz et al. (1989)
have shown that the accuracy could reach 10-15% at a local scale, but also
that A and B coefficients varied according to the experiment (Figure 2). Other
studies have introduced different parameterizations for these coefficients as
function of wind speed, roughness and criterions of atmospheric stability
(Vidal & Perrier, 1989; Lagouarde & McAneney, 1992).

The cumulative value of (s — T a) named stress degree day (SDD) appears
as a significant tool for assessing the global water use of a given crop.

The application of this relationship requires two variables: the maximum
air temperature and the daily net radiation. If the last one (R,,) can be obtained
by remote sensing (for example incident solar and atmospheric radiations
can be computed from the visible and thermal channels of Meteosat, see
EARS' and EUMETSAT?), the problem of the spatial representativity of
the air temperature (7,) is more arguable and particularly acute for regional
studies. Geostatistical models can be used to interpolate local measurements
(Courault et al., 1994). Accuracy is then around 20 to 30%.

Carlson & Buffum (1989) have proposed to take air temperature at 50
m above the surface making the assumption that at this level, atmospheric
conditions are more homogeneous. They considered the difference: (T's —
Ta)" and expressed n and B coefficients as function of NDVI.3
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Figure 3. Trapezoidal scheme (from Moran et al., 1994) allowing one to compute a crop water
stress index like CWI = AC/AB.

Other authors have used the relationship between T's and a temperature of
a well irrigated area (Nieuwenhuis et al., 1985; Thunissen & Nieuwenhuis,
1990).

Carlson et al. (1995), Moran et al. (1994) have explored the relationship
between T's and NDVI, because the amount of vegetative cover affects tran-
spiration. Vegetation indices (like NDVI or SAVI) are also related to surface
temperature, i.e. more evapotranspiration tends to be associated with lower
temperatures. A trapezoid scheme appears in which the different soil moisture
conditions can be classified (Figure 3). Carlson et al. (1990) have proposed
a method of estimating root-zone moisture availability, soil surface moisture
and vegetation fraction using NDVI and directional 7's combined with a trans-
fer model. Water stress indices have been computed from this scheme and
applied at large spatial scale for crop monitoring and water management.

Other residual methods of the energy budget
SEBAL

SEBAL is an intermediate approach using both empirical relationships and
physical parameterizations (Bastiaanssen et al., 1998a, 1998b; Jacob et al.,
2002b). This model has been designed to calculate the energy partitioning
at the regional scale with minimum ground data. Atmospheric variables (air
temperature and wind speed) are estimated from remote sensing data by con-
sidering the spatial variability induced by hydrological and energetic contrasts
(Figures 4a—4b). The determination of wet and dry surfaces on the studied
area is necessary to extract threshold values. The model requires incoming
radiation, T's, NDVI and albedo maps. Semi-empirical relationships are used
to estimate emissivity, roughness length from NDVI. The sensible heat flux
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Figure 4. (a) Relation used in SEBAL between Albedo and brightness temperature obtained
from POLDER (POLarization and Directionality of the Earth’s Reflectances) and TIR mea-
surements over the ALPILLES site in 1997, which allows one to derive windspeed (from Jacob,
1999). (b) Spatial relation used in SEBAL between 7's and 7a to estimate air temperature (when
(Ts — Ta) ~ 0, H~ 0, Ta can be estimated from 7T's values from TIR images).

is computed inverting sensible heat flux expression over both dry (LE = 0)
and wet (H = 0) land. Latent heat flux is computed as the residual of energy
balance.

The model was validated on both intermediary variables and surface energy
fluxes by Jacob et al. (2002b). It was also used for different applications to
estimate monthly and seasonal ET. For several applications studies, ET for
specific days has been extrapolated for the ET of the season by holding the
ratio Etact/Etref constant between consecutive overpasses, where ETref was
reference ET computed in different ways. In Bastiaanssen et al. (2002), ETref
has been approximated by net radiation. In other applications, ET has been
interpolated by using the Penman-Monteith equation with rs interpolated
between images as determined by SEBAL (Bastiaanssen, 2000; Droogers &
Bastiaanssen, 2002).

SEBI, S-SEBI, SEBS

Also based on the contrast between wet and dry areas, Menenti & Choudhury
(1993) proposed a method to derive the evapotranspiration from the evapo-
rative fraction. The concept was included by Su (2002a) in a more complex
framework called SEBS which allows determination of the evaporative frac-
tion by computing the energy balance in limiting cases. A simplified method
derived from SEBI (S-SEBI) was further developed to estimate of surface flux
from remote sensing data (Roerink et al., 2000). It consists of determining
a reflectance dependant maximum (respectively minimum) temperature for
dry (respectively wet) conditions, the major advantages being that no addi-
tional meteorological data are needed if the surface extremes are present on
the images studied (Figure 5).
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Figure 5. Schematic presentation of the S-SEBI model based on a graphic method, where
no additional meteorological data are needed. The determination of wet (77 g) and dry pixels
(T ) are necessary to compute L E, NDVI, albedo, emissivity (¢) and brightness temperature
(Tb) are derived from remote sensing data (empirical relationships (F) are used to estimate
emissivity, soil heat flux) (from Roenink et al., 2000).

Other models

Other approaches were proposed in the literature, such based on either surface
single layer modeling as the excess resistance (or kB~') (Su, 2002b), the
surface dual layer modeling (Norman et al., 1995; Chebhouni et al., 2001b)
and the B approaches (Chebhouni et al., 1997). Some of them gave satisfactory
results even on sparse vegetation (Zhan et al., 1996; Chehbouni et al., 1997;
French et al., 2000). All these models presented in Table 1 can be operationally
used for water management. The main problems for routine monitoring of
surface energy fluxes is to get satellite observations with high spatial and
temporal resolutions.

Problems linked to the surface temperature obtained
from remote sensing

Most methods of the aforementioned types are based on the use of land sur-
face temperature derived from TIR data. Atmospheric corrections and sur-
face emissivity effect have to be removed for better temperature retrieval.
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Table 1. Some semi-empirical models for LE and H fluxes.

Simplified relationship

(Seguin & Itier, 1983) LE; = Rng — Ay — B1(Ts1ap — Tamax)
Methods based on excess resistance

(Kustas, 1990) H; = pcp(Ts — Ta)/(ra + rex)

(Lhomme et al., 1992) LE;, =(1 —A))Rn; — H;

(Moran et al., 1994)

Approaches based on a relation between
radiometric and a so-called
aerodynamic temperature

(Troufleau et al., 1997) H; = pcp(Taer — Ta)/ra
(Chehbouni et al., 1997) (Taer — Ta) = (1 — A3)(Ts — Ta)
Two source approach
(Norman et al., 1993) H=pcp(Tv—Ta)/ra+(Tg—Ta)/(ra+rc))

Symbols: Ay, Az, Az, B: empirical coefficients, cp: specific heat of air, i: instantaneous,
d: daily, ra: aerodynamic resistance (above canopy), rc: aerodynamic resistance at the soil
surface, rex: excess resistance, 7a: air temperature at some height above canopy (generally
2 m), Taer: aerodynamic temperature (mean temperature at some height in the canopy),
Tv: vegetation surface temperature, 7'g: soil surface temperature, 7's: radiometric surface
temperature (from Olioso et al., 1999).

Therefore, the estimate accuracies depend on the performances of retrieval
algorithms. The latter can be split in two categories: direct methods using
atmospheric sounding combined with a radiative transfer model and indirect
methods using only satellite observation (Tovs or split window method). The
resulting uncertainties commonly range between 1 and 3 K. Dual angle obser-
vation (ATSR) improves the estimation. The effect of emissivity is important
and can lead to significant error. The most promising method for obtaining
both surface directional infrared temperature and surface directional emissiv-
ity is based on high spectral resolution (Norman et al. 1995a). The Table 2
shows the importance of error of (T's — T'a) on the sensible heat flux H.
Note that these difficulties on temperature estimation were taken into ac-
count by a few models which proposed using differential approaches. These
can be spatial differential methods, such as SEBAL or the trapezoid — SVAT

Table 2. Error in sensible heat flux arising from a 1 °C error in
(Ts — Ta) for several conditions (in Norman et al., 1995b).

Canopy height (m)  Wind speed (m/s)  Error H (Wm~2c-h

1 1 8
1 5 40
10 1 17
10 5 87
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procedure proposed by Carlson et al. (1995) and Capehart (1996), or tem-
poral differential methods such as the PBL integrating model proposed by
Mecikalski et al. (1999) and Jacob et al. (2002b). These methods aimed at us-
ing an automatic internal calibration of a difference between Ts and o (where
« is a given parameter) such as « determined from 7's given that the accuracy
on Ts — « is good. This is a positive point for operational applications because
it decreases the processing time.

Spatial and temporal resolution of TIR data

Frequent data acquisitions are needed for proper crop monitoring during the
growing season, but only meteorological satellites offer the necessary fre-
quency of measurements, and the spatial resolution remains still too coarse
to define each type of crop. On the other hand, data in the visible and near-
infrared wavelengths, used for computing vegetation indices, are available
at resolutions an order of magnitude smaller than TIR, and hence provide
higher resolution information on vegetation cover (Table 3). Recently Kustas
et al. (2003) have explored the relationship between these two spatial and
spectral resolution (NDVI and T's) and proposed a disaggregating procedure
for estimating the subpixel variation in 7s. They used then a remote sensing
based energy balance model (DisALEXI) for estimating the surface fluxes.
This disaggregation technique appears to be a promising way for evaluating
T's at the field scale.

Meteorological variables — models integrating the atmospheric
boundary layer

In order to avoid the difficulties of obtaining meteorological variables on large
areas, some models integrate the planetary boundary layer (PBL) to simu-
late the evolution of variables like air temperature, and wind speed. Radio
soundings or outputs from GCM?* are then required to initialize atmospheric

Table 3. Main characteristics for the satellites most used (repetivity and pixel resolutions) for
normalized difference vegetation index (NDVI) and surface temperature (7s) (from Kustas
et al., 2003).

Satellite Repeat Cycle (day) NDVI pixel resolution (m) T pixel resolution (m)
ASTER 16 15 90
AVHRR 2 im/day 1100 1100
GOES 1/4 h 4000 4000
LANDSAT 5 16 30 120
LANDSAT7 16 30 60

MODIS 2 im/d 250 1000
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parameters. 1D (Lagouarde & Brunet, 1991), 2D (Hasager et al., 2002) or 3D
(Courault et al., 2003) approaches for estimating surface fluxes have used re-
mote sensing data at different levels. The inclusion of energy balance in a PBL
model has also been used for deriving the fluxes on the basis of the rate of
change of surface temperature during the morning hours (Meciakalski et al.,
1999).

The microscale aggregation model (2D) described by Hasager & Jensen
(1999) uses surface temperature images. A roughness map is obtained from
land use maps. A set of equations per land cover type defines the relation
between thermal roughness and LAI (Hasager et al., 2002). The model solves
the linearized atmospheric flow equations by Fast Fourier Transforms (FFT).
The maps of friction velocity, u*, and temperature scalar 7%, are calculated
through iteration including the Monin—Obukhov stability functions. From the
u* and T* maps, the effective values of zg,, and z(, are calculated, and then
the surface fluxes.

Although these methods have operational applications like drought detec-
tion at continental scale, or soil water reserve estimation for irrigation, the
accuracy is always difficult to estimate. In order to get more realistic simula-
tions, remote sensing data have been introduced at different levels. This is a
reason why these last years, other numerical methods based on assimilation
procedures have been developed, because they allow, among other things, to
get intermediate variables linked to the crop development (like LAI) or to the
soil water status.

“Deterministic”’ approaches

We find different model types in this category: remote sensing forced models,
assimilation of numerical models. Generally these models (SVAT models)
describe the exchanges between soil plant and atmosphere according to the
physical processes occurring in each compartment with generally a fine time
step (second, hour). Different complexity levels appear according to the pro-
cess description: for example, if the vegetation and soil behavior are separated,
then evaporation and transpiration are computed with a surface temperature
for each part (it is more realistic for comparison with TIR data acquired at
different hours and angles). Different schemes were developed to represent
the vegetation layers (Figure 1): from simple descriptions such as the big
leaf approach with one surface resistance, to multi-layer models, where ra-
diative and energy budgets are computed for each layer (see Olioso et al.,
2002a and Olioso et al., 1999 for more details). The finer the surface and the
process description, the more parameters are needed. Some of them can be
estimated by remote sensing data. There are three ways to use this spectral
and spatial-temporal information.
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Figure 6. (a) Schematic representation of the assimilation method (in Olioso et al., 1999). In
this example, comparisons are made between surface temperature estimated by the model with
Ts measured. (b) Example of assimilation of remote sensing data in a SVAT model (ISBA)
(different simulations have been done (green lines) adjusting the initial soil moisture after
comparing Ts estimated and measured (in Olioso et al., 2002a).

— forcing the model input directly with the remote sensing measurements

— correcting the course of state variables in the model at each time remote
sensing data are available (sequential assimilation)

— re-initializing or changing unknown parameters using data sets acquired
over temporal windows of several days/weeks (variational assimilation)
(Figure 6a).

Many works have been conducted on these assimilation procedures and
have shown that the most adequate variables to be estimated from remote sens-
ing, are surface/stomatal resistances, and soil moisture (Olioso et al., 1999,
Figure 6b). Other works were focussed on using radiative surface temperature
(Soer, 1980; Ottlé & Vidal Madjar, 1994), or microwave derived parameters
such as vegetation water content (Wigneron et al., 2002). For example, T's
derived from NOAA data were used along with the SVAT called MAGRET to
find parameters linked to the irrigation over the agricultural region “la Crau” in
South-Eastern France (Courault et al., 1998). The predicted parameters were
the beginning and the end of irrigation, frequency and water quantity diverted.
The global method consisted of calibrating parameters by minimizing over a
10 day period within crop cycle the difference between MAGRET simulated
and NOAA measured surface temperatures.

One of the main problems arising when using SVAT model is the re-
mote sensing data spatial resolution. Indeed, the detailed process descrip-
tions provided by these models are based on local parameters which are not
systematically adequate with the information collected with several meter
size pixels. These difficulties yield the development of several approaches
which consisted in defining “effective” parameters corresponding to these
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Table 4. Main biophysical variables derived from remote sensing data classified ac-
cording to wavelength ranges and models, Fonct: crop model simulating the vegeta-
tion development (from Baret, INRA Avignon, personal communication). SVAT: Soil-
vegetation-Atmosphere transfer model

Biophysical Active Passive  Process
variables Solar IRT pu waves p waves models
Albedo ++ SVAT
Vegetation cover ++ + SVAT
FAPAR ++ Fonct

LAI ++ + + + SVAT &Fonct
Water content in vegetation ++ ++ Fonct
Temperature ++ + SVAT &Fonct
Chlorophyl ++ Fonct

Leaf water content ++ Fonct

Soil water content ++ ++ ++ SVAT &Fonct
Soil roughness ++ ++ SVAT
Vegetation height (roughness)  ++ + + SVAT &Fonct

composite surfaces (Noilhan & Lacarrere, 1995). Other approaches aimed at
disaggregating the pixel content into elementary responses for each landuse
class (Courault et al., 1998). Some parameters like LAI° can be easily aver-
aged using arithmetic laws. For surface temperature, however, aggregation
schemes are more complex.

The main parameters extracted from remote sensing measurements are veg-
etation fraction (veg), LAI, albedo, emissivity, (most of them are estimated
using information in the solar domain, Table 4). Roughness and parameters
linked to the stomatal resistance are still difficult to access. They are often
estimated from both knowledge of the type of canopy and the phenological
stage. Some progresses were made in mapping roughness using either laser
altimeter (LIDAR) data (Menenti et al., 1994), or relationships based on veg-
etation index (Olioso et al., 2002¢). However, these latter relationships still
remain applicable for particular conditions only. Therefore special caution
must be exercised in applications to various crop types.

MESO-NH? is a 3D atmospheric model mainly developed by the Aerology
Laboratory and the CNRM’ from Toulouse. The surface scheme based on
the force restore method is ISBA (Noilhan & Planton, 1989) which has been
widely used in 1D version coupling assimilation methods with remote sensing
data (Calvet et al., 1998; Olioso et al., 2002a). The assimilation procedures
are not yet introduced in the 3D atmospheric model, but all input data may be
derived from remote sensing. An example is shown on Figure 7 corresponding
to the Alpilles area (5 x 5 km) where LAI and vegetation fraction were
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Table 5. Summary of the advantages and disadvantages of the different approaches used to
estimate ET from remote sensing data.

Methods-models

Advantage

Disadvantage

Simplified (Simplified
Relationship.)

Inference models (Kc
f(NDVI))

Graphic (SEBAL,
S-SEBI. . .)

Determinist (SVAT
1D) ISBA. ..

3D models: (PBL,
MesoNH. . .)

Operational from local to
regional scale

Operational if combined with
ground measurements or
models estimating accurate
ETR

Operational, low cost, need no
additional climatic data,
(Sebal: no atmospheric
corrections for 7T's)

Estimation of intermediate
variables (LAI), possible links
with climate, hydrogical
models, assimilation to find
some parameters

Estimation of climatic data,
lateral exchanges accounted,

spatial variations of
coefficients

requires calibration for each
crop type

Kc varies according to water
stress

requires presence of wet and
dry pixels Some empirical
relationships (zg), Tair

requires more parameters =+
easy to estimate Requires
accurate remote sensing
data

complex, and high cost for
CPU, only short

simulation for high spatial
resolution

possible to simulate landuse
modification (irrigation
scenario. . .)

computed from POLDER images using a neural network (Weiss et al., 2002).
Albedo in the visible and near infrared range were estimated using Liang’s
coefficients (Jacob et al., 2002), roughness and other parameters linked to the
stomatal resistance were derived from the land use map obtained from SPOT
images (Courault et al., 2002). The interest of such a 3D model is that it
simulates not only the main energy fluxes like evapotranspiration (Figure 7c)
over all the area but also the evolution of climatic variables like air temperature
for different land use practices. Thus, the irrigation of all the wheat fields over
the small agricultural area of Alpilles has been simulated with the Meso-NH
model. The map of 7air estimated at 2 m above the surface was compared to
the real situation without irrigation (Figure 8a, b). A significant temperature
decrease was observed because of irrigation (as expected), not only over the
wheat fields (—1.2 °C) but also over the other fields (—0.5 °C), that can
induce significant differences for crop development. Among the different
outputs, the surface temperature maps estimated by the model for several
days were compared with TIR images acquired during the experiment. The
results were globally satisfactory, even if the main difficulty still remains
the determination of the initial soil moisture variability on the whole area
(Courault et al., 2003).
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Figure7. (a) NDVIcomputed from POLDER reflectances over the Alpilles area (5 x 5 km 20 m
resolution) on April 18th 1997. (b) Surface temperature obtained with the airborne IRT camera
over the Apilles area for the same date at 12:00UTM. (c) LE map estimated with the Meso-NH
model over Alpilles on April 18 1997 at midday (hourly average, 50 m spatial resolution). (d)
Near IR albedo derived from POLDER reflectance using Liang coefficients (from Jacob, 1999)
on Apl897.

Figure 8. Maps of the air temperature (°C) estimated at 2 m above the surface with the Meso-
NH model, over the Alpilles area (spatial resolution 50 m) on April 18th 1997. (a) real case
without irrigation (b) irrigation of all wheat fields (30% of the whole area).
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Comparison between models

During the Alpilles—Reseda® project, several models have been used to esti-
mate the surface fluxes with remote sensing data (a direct flux equation using
T's, Tair and the exchange coefficient computed using the Monin—Obukhov
theory, the SEBAL model which computed 7air and wind speed, the 2D aggre-
gation model (“MAM model”, Hasager et al., 2002 where Tair and wind speed
were taken from radio sounding measurements, ISBA 1D and MESONH).
Figure 7c shows the LE map obtained with Meso-NH on April 18th 1997 at
midday. The fluxes showed a great spatial variability according to the develop-
ment stage of the different crops as expected: high values for well developed
crops (winter wheat in April, alfalfa well supplied in water), and low values
for dry and bared soils (the last rain was in January). (T's — T'a) varied from
0 to 15 °C for this date.

Figures 9a—9b show the results obtained for 3 models compared against
ground measurements (Olioso et al., 2002b). The estimations were globally
satisfactory. The different models gave similar results. On the other hand, if
the model outputs are compared with each other (Figures 10a and 10b), dif-
ferences appear on flux estimation, mainly due to the way of obtaining the
surface parameters and meteorological variables, especially air temperature
and roughness (Olioso et al., 2002b). SEBAL and the 1D model were based on
the same physic equations but had different input parameters, since MAM and
1D models had the same inputs but different physic equations. An accurate
description of the model inputs (surface parameters and meteorological vari-
ables) is therefore a first stage for the estimation of surface fluxes, which is
crucial to get realistic L E values. The other conclusions on the main results
about this experiment can be found in the special issue of Agronomie (2002,
vol. 22).
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Figure 9. Comparison of sensible heat flux simulations to ground measurements for three
models (a) SEBAL, (b) 2D MAM model (c) 1D model (rmse: root mean square error) (in
Olioso et al., 2002b).
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Figure 10. Comparison of sensible heat flux simulated by different models (a) 1D and SEBAL,
these two models have the same physical components but different input parameters (b) 2D
MAM and 1D model, these two models have different physical components but the same inputs
(o corresponds to simulations without corresponding ground measurements, rmsd: root mean
square difference) (in Olioso et al., 2002b).

Discussion and conclusion

An accurate estimation of evapotranspiration is very useful for an appropri-
ate water management, both at the farm and the irrigation project level. In
numerous countries, the method recommended by FAO is used. However, the
spatial and temporal variations of the surface characteristics can’t be taken
into account with high accuracy by this method. The use of remote sensing
brings a significant contribution for assessment of crop water status, either in
view irrigation scheduling or in global assessment of crop water use and its
spatial variations within an irrigated area (Vidal et al., 1987).

Evapotranspiration may be estimated from remote sensing data with dif-
ferent approaches: direct methods using TIR data, indirect estimates using
assimilation procedures combining different wavelengths to get various input
parameters (in particular related to vegetation water status). Some methods
are based on the spatial variability present in remote sensed images (like the
SEBAL or S-SEBI models), and try to use no additional meteorological data
to estimate ET for routine application. The interest of using SVAT models is
not only because they generally describe with more accuracy the crop func-
tions, but also because they allow access to intermediate variables like soil
moisture or LA, which are related to physiologic and hydrologic processes
that can be linked to other meteorological or hydrological models.

However, the use of remote sensing for operational applications presents
still several problems (see Table 5). The determination of ET for crop
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monitoring requires the routine processing of images on a near-real-time basis.
The relatively long turn-around time for image delivery and the cost involved
with the acquisition of high-resolution imagery make their use for operational
application often unattractive. Notice however, that since the rapid develop-
ment of internet accessible archives, some remote sensing data (like Landsat
images) can now be ordered in approximately 3 days after the overpass. Nev-
ertheless images processing are then necessary to get reliable information
overlaid to a reference map.

Data accuracy

Most methods use TIR data. Atmospheric corrections and surface emissivity
are necessary to get accurate 7s. Some models like SEBAL with their internal
calibration avoid this problem and are then more attractive for operational
applications. Thus SEBAL has been applied on a near-real-time basis to es-
timate actual evaporation in Sri Lanka on a 10-day basis from June 1999 to
2000 using NOAA AVHRR radiances (Bastiaanssen, 2003).

Spatial and temporal resolution

The thermal infrared measurements appear as useful tools for water use in irri-
gated area. For a global monitoring purpose, the availability of advanced very
high resolution radiometer (AVHRR) imagery from NOAA meteorological
satellites series on a daily basis at most of the national meteorological services
worldwide and at no extra cost, makes them a viable alternative for operational
estimation of evaporation. But more detailed observations would be needed
for analyzing the spatial distribution of water use in the irrigation network.
The NOAA resolution (1 km) is too coarse for that purpose. A higher resolu-
tion can be achieved by Landsat (120 m in 7/R for Landsat 5, 60 m for Landsat
7), but both the frequency (every 16 days) and time acquisition (for example
10:00 over France) are limiting factors. Moreover the future of Landsat is
uncertain, because the cooling techniques are too heavy and that makes the
payload too expensive. There are currently no operational solutions for this
problem. So, we have to find methods for combining information at different
wavelengths and resolutions.

The arrival of new satellites like ASTER (15 m in 3 visible near infrared
bands and 90 m in 5 TIR band from 8.1 to 11.6 um) may allow combining
high spatial resolution with other sensors with high temporal resolution (like
MODIS or GOES, see Table 3).

The method proposed by Kustas et al., (2003) to disaggregate the pixel to
estimate subpixel T's is promising and allows to estimate ET combining 7T's
with an energy balance model (DISALEXT).
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Meteorological forcing

It is important also to take into account the spatial variability of climatic data,
particularly air temperature, which is a key variable in the exchanges. Meteo-
rological variables may be directly measured, but often the station density is
poor. They can however be estimated by models simulating the evolution of
the planetary boundary layer (PBL model, Carlson et al., 1995, MESONH).
Some models like SEBAL use spatial information in images to derive air
temperature, but their estimations depend on the spatial variability of the
studied area. These simplified methods work correctly when the atmospheric
conditions are relatively constant over the image and sufficient wet and dry
pixels are present throughout the scene. When different wind speeds occur
that change values of extreme 7's (min and max), or if wet and dry pixels
cannot be found on the same images (e.g. England having no dry areas, Eu-
rope having variable atmospheric conditions) external meteorological data
(radio soundings or weather prediction model output) are necessary (Roerink
et al., 2003). Another way is to use Large Aperature Scintillometers (LAS,
see Gieske et al., 2003; De Bruin et al., 1995). Iterative flux-profile methods
allow calculation of sensible heat and momentum fluxes using temperature
gradients and wind speed data obtained in the lower atmosphere. Flux-profile
methods are also applied to the problem of regional evapotranspiration eval-
uation by the use of satellite imagery. An illustration is shown with AVHRR
data for a case study from western Turkey (Gieske, 2003). Other models use
air temperature at 50 m making the assumption that atmospheric conditions
are more homogeneous at this level.

There is a critical need to understand the feedback between the land sur-
face and atmosphere at various scales. The role of land surface modifying
the climate is not yet adequately considered in climate models, however its
effect like irrigation is significant for temperature (De Ridder et Gallée, 1998).
The current parameterizations of land processes are still too coarse and cur-
rently the trend is to describe the different surfaces with more accuracy. The
derivation of accurate surface parameters from remote sensing is a key for
determining the main terms of the energy balance depending on the type of
vegetation. It is also important for having an exhaustive view of the vegetation
cover types in order to analyze in detail model results and evapotranspiration
estimations. For that specific purpose, thermal infrared wavelengths appear as
the best suited, and, coupled with shortwave channels, allow one to quantify
the effect of water stress on biomass by the use of vegetation index. With
the increasing spatial resolution and the sensor profusion, we can expect that
remote sensing will continue to play an essential role in partitioning the sur-
face energy budget into sensible heat and evapotranspiration, and to provide
information at a low cost for improving the use of scare water resources.
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Notes

1. EARS: www.ears.n/EWBMS.

2. EUMETSAT: www.eumetsat.de/fr.

3. NDVI: Normalized Difference Vegetation Index is defined as the following ratio between
reflectances in the red () and near infrared (nir) range: NDVI = (pnir — 0r)/(Pnir + 0r)-

4. GCM: global circulation model.

5. LAI: Leaf area index is the surface of leaves per surface of ground (m2/m?).

6. MESO-NH Non-Hydrostatic Mesoscale atmospheric model, http://www.aero.obs-
mip.fr/~Meso-NH.

7. CNRM: Centre National de Recherches Météorologiques.

8. Alpilles Reseda: was an CEE project http://www.avignon.inra.fr/reseda.
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