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In C3 plants, CO2 concentrations drop considerably along mesophyll
diffusion pathways from substomatal cavities to chloroplastswhere
CO2 assimilation occurs. Global carbon cycle models have not explic-
itly represented this internal drawdownand therefore overestimate
CO2 available for carboxylation and underestimate photosynthetic
responsiveness to atmospheric CO2. An explicit consideration of
mesophyll diffusion increases the modeled cumulative CO2 fertiliza-
tion effect (CFE) for global gross primary production (GPP) from 915
to 1,057 PgC for the period of 1901–2010. This increase represents
a 16% correction, which is large enough to explain the persistent
overestimation of growth rates of historical atmospheric CO2 by
Earth system models. Without this correction, the CFE for global
GPP is underestimated by 0.05 PgC/y/ppm. This finding implies that
the contemporary terrestrial biosphere is more CO2 limited than
previously thought.
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To reach Rubisco, the carboxylating enzyme of the Calvin
cycle, CO2 molecules must diffuse through two consecutive

segments of a continuous pathway in leaves of C3 plant species.
The first segment connects leaf intercellular air space with ambient
air and is controlled by stomata; the second one consists of
mesophyll layers from intercellular air space to stroma of chloro-
plasts where Rubisco resides (1, 2). These two stages differ in the
media through which CO2 moves. Diffusion in the first segment
(stomatal diffusion) is through gases only; that in the second
segment (mesophyll diffusion) occurs in a variety of media in-
cluding liquids and lipids, i.e., cell walls, plasmalemma, cytosol,
chloroplast envelope membranes, and stroma. The path length
of this mesophyll diffusion is generally shorter than that of sto-
matal diffusion (2). However, diffusion of CO2 through liquids
is several orders of magnitude slower than it is through gases;
diffusion through lipids in membranes is even slower than it is
through liquid water (3), although it may be facilitated by
aquaporin-like channels (4). Consequently, mesophyll layers con-
stitute a major barrier for CO2 movement inside leaves (5–9).
However, the importance of this mesophyll diffusion limitation

for photosynthesis has yet to be reflected in carbon cycle mod-
eling. Current large-scale carbon cycle models (10, 11) have ex-
plicitly considered stomatal diffusion but not mesophyll diffusion.
Most carbon cycle models use some form of the biochemical
model of Farquhar, von Caemmerer, and Berry (FvCB) for
modeling photosynthesis (12). In theory, the FvCB model should
use the CO2 concentration at the site of carboxylation inside the
chloroplast (Cc). Nevertheless, most modelers have knowingly or
unknowingly applied it directly to the CO2 concentration inside
the substomatal cavity (Ci). Since Cc can be much smaller than Ci,
because of the mesophyll resistance to CO2 diffusion, a com-
pensating adjustment is needed to correct for this overestimate
of CO2 available for carboxylation, an adjustment that has been
provided by the use of phenomenological, rather than actual,
values of fundamental photosynthetic parameters. These param-
eters include the maximum carboxylation rate (Vcmax), maximum

electron transport rate (Jmax), and triose phosphate utilization rate
(TPU) and have typically been estimated from leaf gas exchange
measurements commonly known as A/Ci curves obtained under
carefully controlled environmental conditions (13, 14). The pa-
rameter estimation procedures used in such efforts have treated
mesophyll conductance (gm) as if it were infinitely large, even
though laboratory studies indicate that it is finite and that the
mesosphyll diffusion limitation on photosynthesis can be sub-
stantial (1–9, 15, 16).
Without explicit consideration of mesophyll diffusion, funda-

mental photosynthetic parameters inferred from A/Ci curves are
significantly underestimated (7, 15, 17). Vcmax is particularly sen-
sitive to gm and is underestimated by as much as 75% if gm is
assumed infinite (15). Therefore, the phenomenological parame-
ters used in current carbon cycle models substantially undervalue
the actual biochemical capacities of the photosynthetic machinery.
Will this underestimation of actual biochemical capacities of

photosynthetic apparatus compensate for the overestimation of
CO2 available for carboxylation in determining the long-term
terrestrial fertilization effect of anthropogenic CO2 emissions
estimated by carbon cycle models? Photosynthesis is more sen-
sitive to changes in CO2 at low CO2 than at high CO2 concen-
trations because the photosynthetic response to CO2 as an
enzyme-catalyzed reaction is a saturating curve. Consequently an
overestimation of CO2 at the carboxylation site leads to an un-
derestimation of photosynthetic sensitivity to variations in am-
bient CO2 concentration. The degree of this underestimation is
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not constant; rather, it will dynamically vary with all environmental
factors that affect photosynthesis. As a result, it may be difficult
for this dynamically varying bias to be compensated for by the use
of a few phenomenological parameters tuned to a limited number
of measurements made under narrow environmental conditions. If
so, lacking explicit consideration of gm represents an inherent
structual deficiency that may prevent carbon cycle models from
adequately simulating the long-term responses of global photo-
synthesis to historial and future changes in atmospheric CO2 con-
centration due to anthropogenic emissions.
To evaluate the consequence of this deficiency, we examine

the simulated responses of global annual gross primary pro-
duction (GPP) to the increase in atmospheric CO2 concentration
since the beginning of the last century. We focus on GPP because
it is the first step of the terrestrial carbon cycle and is affected
directly by mesophyll diffusion of CO2. Our interest is in the
long-term trend of global GPP, rather than in its absolute mag-
nitude for a particular year or the mean GPP over a period. For
short-term applications, the model structural deficiency can be
easily compensated for by a tuning of model parameters, i.e.,
Vcmax and/or Jmax can be adjusted so that a carbon cycle model
lacking gm will give the same GPP as estimated by a model in-
cluding gm, e.g., for the first year of a 100-year period alone, or
for that matter, for the last year alone; however, it is considerably
more difficult to match these two models all the way from the
first to last year for atmospheric CO2 that keeps rising during this
100-year period. Thus, focusing on the long-term trend is an
effective way to quantify the effects of model structural defi-
ciencies and their potential consequences.
We developed an empirical global gm model for C3 plant

species based on a synthesis of data in the literature (SI Text) and
implemented it into the state-of-the-art Community Land Model
4.5 (CLM4.5) (18, 19). This implementation allows us to contrast
simulations that either consider or omit the mesophyll diffusion
limitation. We refer to these simulations as the gm-including and
gm-lacking simulations, respectively.
To enable a correct comparison between the gm-including and

gm-lacking simulations, a matching correspondence must be es-
tablished between the original phenomenological photosyn-
thetic parameters in CLM4.5 (denoted thereafter as the gm-lacking
parameters) and the fundamental photosynthetic parameters that
reflect the actual capacities of the photosynthetic machinery
(denoted thereafter as the gm-including parameters). This match-
ing correspondence was achieved via a parameter conversion
function that was developed from a global leaf gas exchange
dataset collected by LeafWeb (leafweb.ornl.gov) (15, 20). The de-
velopment of this conversion function was based on the CLM4.5
formulation of the FvCB model (SI Text). Other measures have
also been taken to ensure that any difference in the trend of GPP
between simulations can be attributed unambiguously to the me-
sophyll diffusion treatments (SI Text).
We ran CLM4.5 including or lacking gm from 1901 to 2010

with historical climate in conjunction with either observed or
constant atmospheric CO2 concentrations (SI Text). In a given
year t, the CO2 fertilization effect [CFE, in units of petagram
(1015g) carbon (PgC) per year] on GPP of the historical an-
thropogenic carbon emissions was quantified relative to a base-
line reference (GPPref), set to be the average of annual GPP of
1901–1910 from simulations with constant CO2 (296 ppm)

CFEðtÞ = GPPðtÞ−GPPref : [1]

We examined the impact of accounting for mesophyll diffusion
via the difference in CFE (ΔCFE) between the gm-including and
gm-lacking simulations. If both models were to predict the CO2
fertilization effect equally well, there would be no long-term
trend in ΔCFE.

We also applied the so-called Keeling’s β factor to measure
divergence in the degree of CO2 fertilization between the gm-
including and gm-lacking simulations. The β factors for these two
types of simulations were compared through their ratio R

RðtÞ = βIðtÞ
βLðtÞ

=

�
GPPIðtÞ−GPPI;ref

�
GPPL;ref�

GPPLðtÞ−GPPL;ref
�
GPPI;ref

; [2]

where the subscripts I and L denote the gm-including and gm-
lacking simulations, respectively. The denominators of βI and βL
share a common logarithmic CO2 term, which cancels in the
expression of R. Because R is the ratio of two β factors, its dy-
namic behavior (e.g., in response to changes in ambient CO2) will
be different from those of the β factors themselves. If models
including and lacking gm were to predict the same effect of
CO2 fertilization on GPP, then R should be close to 1. A value
R > 1 indicates that the gm-lacking model underestimates the CO2
fertilization effect compared with the gm-including model; R < 1
indicates the opposite.

Results and Discussion
The ΔCFE for global GPP between the gm-including and gm-
lacking simulations increases from 1901 to 2010 (Fig. 1A). A
relatively gentle pre-1950 increase in ΔCFE is followed by an
upsurge after 1950. This pattern closely matches that of the rising
atmospheric CO2 over the same period (Fig. 1A) such that there
is a strong positive linear relationship between ΔCFE and at-
mospheric CO2 (Fig. 1B). These results indicate that the global
GPP modeled without explicit consideration of mesophyll dif-
fusion substantially underestimates the long-term fertilization
effect of anthropogenic CO2 emissions on global photosynthesis.
Globally, this underestimation is 0.05 PgC/y/ppm (Fig. 1B).
From 1901 to 2010, the fertilization of the anthropogenic fossil

CO2 emissions stimulates a cumulative total of 915 PgC (the time
integration of Eq. 1) to the global GPP of the entire period in the
gm-lacking simulations. In the gm-including simulations, however,
the cumulative anthropogenic stimulation is estimated to be 1,057
PgC. Thus, with the baseline reference CO2 of 296 ppm, an ex-
plicit consideration of mesophyll diffusion increases the modeled
cumulative CFE on global GPP by 16% by 2010.
Climate variability affects the magnitude of underestimation of

the CO2 fertilization effect by the gm-lacking simulations, which is
seen as interannual variations in ΔCFE (Fig. 1 A and B). The
relationship between ΔCFE and CO2 also varies spatially (Fig. 1
B and C). The global trend is mostly contributed by the tropics
(15°S to 15°N) and the boreal and arctic regions (>45°N). How-
ever, essentially all regions with vegetation activity have a positive
relationship between ΔCFE and CO2, suggesting that the need
for representing mesophyll diffusion to correctly model the CO2
fertilization effect is universal.
The results based on the analysis of R likewise indicate that

models lacking gm underestimate the degree of CO2 fertilization.
R is consistently larger than 1 for the globe as well as for all lat-
itudinal bands in northern and southern hemispheres (Fig. 2). It is
larger for the boreal and arctic regions, indicating that in a relative
sense, the simulated CO2 fertilization effect in high latitudinal
regions is more sensitive to the consideration of mesophyll diffu-
sion than in lower latitudinal regions. This latitudinal trend in R
can be explained by the generally lower temperatures and in-
creased presence of needleleaf evergreen trees in higher latitudes,
both factors leading to smaller mesophyll conductance (SI Text and
Fig. S1) and therefore larger sensitivity of modeled CO2 fertil-
ization to the representation of mesophyll diffusion.
This identification of elevated importance of mesophyll dif-

fusion in the tropics and the boreal and arctic regions over the
midlatitudes highlights the necessity of using both ΔCFE and R
in our evaluation. ΔCFE provides an absolute measure of the
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impact of mesophyll diffusion on estimated land CO2 fertiliza-
tion in carbon flux units. Consequently, it scales with vegetation
productivity and total baseline GPP. In contrast, R is calculated
from relative changes in GPP. As a result, it is suited for sensi-
tivity comparison across climate regions and vegetation types
which may differ in productivity. Thus, ΔCFE and R complement
each other by revealing different aspects of the importance of
mesophyll diffusion for modeling long-term global and regional
CO2 fertilization effects. The importance of representing meso-
phyll diffusion for modeling tropical photosynthesis lies in the
region’s high productivity and large contribution to global GPP,

whereas for the boreal and arctic regions, the importance comes
from the increased photosynthetic sensitivity associated with their
relatively high mesophyll diffusion limitation.
Our results imply that Earth system models (ESMs) will over-

predict the long-term growth rate of atmospheric CO2 concentra-
tions due to anthropogenic carbon emissions when their terrestrial
carbon cycle modeling components do not consider mesophyll dif-
fusion explicitly. Most ESMs investigated by the fifth phase of the
Coupled Model Intercomparison Project (CMIP5) show persistent
high bias in their predictions of historical atmospheric CO2, and it
has been suggested that weak ocean uptake could contribute to this
high bias (21, 22). We analyzed the outputs of CMIP5 for our sim-
ulation period of 1901–2010 and found that in 14 of 17 ESMs, the
prognostically computed atmospheric CO2 grows too fast compared
with the observations (Fig. 3). Relative to the 1901 value, the over-
predictions of these 14 ESMs range from 10 to 25 ppm by 2010.
By how much can their lack of explicit representation of meso-

phyll diffusion help explain the overpredictions of historical at-
mospheric CO2 growth by ESMs? To answer this question simply,
we assume that net primary production is half of GPP (23) and half
of the CO2 released into the atmosphere stays in the atmosphere
(24). With these two empirically supported assumptions, we esti-
mate that a quarter of the underestimated cumulative CO2 fertil-
ization effect bymodels lacking explicit representation ofmesophyll
diffusion will be reflected in an overpredicted growth of the at-
mospheric CO2 concentration. For the period from 1901 to 2010,
the underestimated cumulative CFE is 1,057 − 915 = 142 PgC,
which corresponds to an overprediction of 17 ppm in atmospheric
CO2 by 2010 [142/(4 × 2.123) ∼ 17 ppm; 1 ppm = 2.123 PgC], a
value right in the middle of the range of overpredictions by cur-
rent ESMs. This 17-ppm bias is significant because it almost
equals the observed increase in recent decades from intensive
fossil CO2 emissions and occurs over a period with a 100-ppm
increase in atmospheric CO2 (i.e., a 17% overestimation). The
lack in the ESMs of an explicit representation of mesophyll dif-
fusion provides a plausible explanation to their atmospheric CO2
prediction bias, as an alternative to weak ocean uptake.
A rigorous evaluation of the question posted above would be

much more complicated and require detailed global carbon
budget accounting and expensive simulations in a costly ESM

A B

C

Fig. 1. Temporal and spatial variations of the dif-
ference in the CO2 fertilization effect (ΔCFE, PgC/y)
on annual gross primary production simulated with
CLM4.5 between including and lacking explicit con-
sideration of mesophyll conductance (gm). (A) His-
torical trends in ΔCFE (blue curve, left ordinate) and
in atmospheric CO2 concentration (ppm, red dots,
right ordinate) from 1901 to 2010. (B) The variation
of the global and latitudinal ΔCFE with atmospheric
CO2 concentration. The global curve (red) is fitted
with a line (y = −13.55 + 0.05x, r2 = 0.98). (C) The
spatial variation in the slope (gC/m2/y/ppm) of the
linear regression of the grid-based ΔCFE as a func-
tion of atmospheric CO2 concentration. The increase
of ΔCFE with time and atmospheric CO2 concentra-
tion demonstrates that carbon cycle models without
explicit representation of mesophyll diffusion un-
derestimate CO2 fertilization effect.

Fig. 2. Changes with atmospheric CO2 concentration of the global and
latitudinal ratio (R) of the β factors calculated with CLM4.5 between including
and lacking explicit consideration of mesophyll conductance (gm). R fluc-
tuates erratically for the first half of the 20th century when the atmospheric
CO2 is close to the baseline reference of 296 ppm in 1901, causing the de-
nominator of R to vary around zero. Therefore, values of R when the at-
mospheric CO2 is less than 320 ppm are not shown. The dashed line at R = 1
separates the underestimation (R > 1) from the overestimation (R < 1) of the
CO2 fertilization effect on gross primary production by CLM4.5 lacking gm

compared with CLM4.5 including gm.
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framework for carbon-climate feedbacks. Biomass carbon resi-
dence time will need to be considered as not all net primary
production once fixed remains with vegetation for very long
(25). Also, recent studies found that plant respiratory CO2 may
be transported upward via a transpiration stream in xylem and
then be refixed (26), reducing direct dependence of carboxyla-
tion on ambient CO2. However, as all carbon in plant organs
must ultimately originate from CO2 moving through mesophyll,
the refixation of xylem-transported respiratory CO2 will unlikely
substantially diminish the impact of the mesophyll diffusion
limitation on photosynthesis.
Other model deficiencies besides lack of explicit representa-

tion of mesophyll diffusion, for example, inadequate consider-
ation of nitrogen deposition and land use and land cover change
(27), could also explain much of the overprediction of the growth
rate of historical atmospheric CO2 by current ESMs, assuming
the cause of their overprediction does reside over land. However,
because mesophyll diffusion affects the first step of terrestrial
carbon cycle, it is important for its effect to be accounted for so
that impacts of other factors can be evaluated more reliably.
Although our gm model is based on empirical data from a large

number of species (SI Text), its global application, as in any such
effort, is bound to have uncertainties. We therefore conducted a
leaf-scale uncertainty analysis with the global LeafWeb database
of leaf gas exchange measurements. In this leaf-scale analysis, no
gm model was needed; instead, actual parameters optimized from
leaf gas exchangemeasurements were used directly.We calculated
leaf-scale R (Eq. 2) for about 130 C3 species covering all major
plant functional types of the world from herbaceous temperate
plants to woody tropical species (15). This obtained leaf scale R is
consistent with our global analyses with CLM4.5 (Fig. 4). The
results show that under nonsaturating levels of photosynthetic
photon flux density (typically PPFD < 1,000 μmol/m2/s; Fig. 4 A–
C), the leaf scale R, which is averaged across all species, is signif-
icantly larger than 1 across a wide range of intercellular CO2 for all
temperature levels examined (intercellular instead of ambient
CO2 was used in this leaf-scale calculation to avoid uncertainties
associated with modeling stomatal conductance). For a given
nonsaturating PPFD level, the averaged leaf scale R tends to in-
crease with decrease in temperatures, consistent with the trend of
latitudinal R in the northern hemisphere simulated by CLM4.5.
Only under conditions similar to the measurement conditions of

the original A/Ci curves (i.e., saturating light levels and high tem-
peratures) is the averaged leaf-scale R close to 1 (Fig. 4D).
Why do carbon cycle models without explicit representation of

mesophyll diffusion underestimate the degree of CO2 fertiliza-
tion, even when their key photosynthetic parameters have been
fitted against A/Ci curves? Why does R vary so much with envi-
ronmental conditions? The answers are not straightforward but
can be most clearly understood through demonstrations with the
Excel spreadsheet-based Tool for Evaluating Mesophyll Impact
on Predicting Photosynthesis (TEMIPP), which is provided as
part of SI Text.
The key to understanding these two questions lies in a combi-

nation of two factors: (i) the wayA/Ci curves are measured and (ii)
the unique structure of the highly nonlinear FvCB model. A/Ci
curves are generally made under a saturating level of PPFD (typ-
ically >1,000 μmol/m2/s) and fixed temperature (e.g., 25 °C) and
thus represent measurements in one dimension (A vs. CO2 con-
centrations). This strict control of measurement conditions at
saturating PPFD and fixed temperature is necessary for obtaining
data about key biochemical processes of photosynthesis (13, 14). In
contrast, carbon cycle models have to run for natural environ-
mental conditions in a 3D space with PPFD, temperature, and
CO2 concentrations all varying simultaneously. Thus, model appli-
cations fall outside the ranges of conditions used for parameter
calibration. This mismatch is of concern because the highly non-
linear FvCB model consists of three distinct submodels (Rubisco-,
RuBP regeneration-, and TPU-limited carboxylation rates) whose
respective applicable domains vary dynamically with environmental

Fig. 3. Growth biases of atmospheric CO2 concentrations prognostically
computed by emission-driven ESMs in the fifth phase of CMIP5. The growth
bias in a given year t is calculated as Cm(t) − Cm(1901) – [Co(t) – Co(1901)],
where C is atmospheric CO2 concentration and the subscripts m and o de-
note model and observation, respectively. The reference baseline year is
1901 for which the growth bias is forced to be zero, allowing a focus on the
long-term trend. The thick black bar indicates our estimated bias (∼17 ppm)
caused by lacking explicit representation of mesophyll diffusion. Details
about these ESMs and CMIP5 can be found elsewhere (21, 22).

Fig. 4. Changes with intercellular CO2 concentration of the averaged ratio
(R) of the β factors for leaf net photosynthetic rates calculated with a leaf
photosynthetic model between including and lacking explicit consideration
of mesophyll conductance (gm). Each curve in each plot represents an aver-
age of >1,000 R ratio curves. For each nonsaturating level of photosynthetic
photon flux density (PPFD = 100, 200, and 400 μmol/m2/s, respectively, for A,
B, and C), five levels of temperature (10, 15, 20, 25, and 30 °C) are used.
Calculations are also done at the original leaf gas exchange (A/Ci) mea-
surement conditions which vary somewhat from measurement to measure-
ment (D). The averaged PPFD for the leaf gas exchange measurements is
1,255 ± 323 μmol/m2/s and the averaged temperature is 26 ± 5 °C. The 95%
confidence interval is shown for the mean R ratio curve at 30 °C (A–C) and at
the measurement conditions (D; although barely seen due to a large volume
of samples). This figure demonstrates that, although photosynthetic models
with and without gm show similar leaf-level CO2 fertilization effects for the
conditions used in measurements, this similarity degrades with increasing
distances from the measurement conditions.
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conditions that affect photosynthesis. When mesophyll diffusion is
not considered explicitly, the condition mismatch discussed above
will cause the submodel domains to be incorrectly identified, which
results in carboxylation rates being determined by wrong submodels.
Hence, even if A/Ci curves were fit apparently well, predictions
under naturally varying conditions will be still problematic.
Fig. S7 demonstrates the points made above with two measured

and one simulated examples of leaf photosynthetic response to
changes in intercellular CO2 concentration. An unlimited number
of cases can be generated with TEMIPP. In Fig. S7, the data were
obtained over a range of CO2 concentrations but at a constant
saturating PPFD and a fixed temperature, following the common
practices in A/Ci curve measurements that are used for tuning
model photosynthetic parameters. On a first look, both the gm-
lacking and gm-including models fit the original data very well.
Such an apparent good fit to data even by gm-lacking models is
very common in the literature ofA/Ci curve analyses and probably
has contributed to the underappreciation by carbon cycle mod-
elers of the importance of mesophyll diffusion for modeling
photosynthesis. However, the residual plots (the Insets in Fig. S7)
reveal biases easy to miss in visual examination: there are always
systematic differences in the predicted photosynthetic rate be-
tween the two models, depending on CO2 concentrations. More
importantly, when the fitted parameters are used to predict
photosynthetic rates at other values of PPFD and temper-
atures, the difference between them enlarges. The magnitude
of this enlargement depends on levels of CO2 concentration. At
extremely high values of CO2 that saturate photosynthesis, the
limiting effect of mesophyll diffusion diminishes and the gm-
lacking and gm-including curves tend to merge, regardless of
specific values of PPFD and temperature. However, within the
intermediate range of CO2, the gm-lacking curves are always
above the corresponding gm-including curves, indicating that the
gm-lacking model approaches photosynthetic saturation faster and
at a lower CO2 than does the gm-including model.
The reason for this faster approach to photosynthetic satura-

tion by the gm-lacking model is that it overestimates CO2 con-
centrations available at the site of carboxylation and therefore
underestimates photosynthetic sensitivity to variations in ambi-
ent CO2 concentration. Although this underestimation of sensi-
tivity to CO2 is minimized when model parameters are tuned
against measurements, the effectiveness of the tuned parameters
is limited to the narrow PPFD and temperature conditions under
which the measurements for parameter tuning are made. When
the natural environmental conditions deviate from these param-
eter tuning conditions, the tuned parameters become less effective
as the applicable domains of the highly nonlinear FvCB submodels
are misidentified and wrong submodels are applied to calculate
carboxylation rates. Thus, a lack of explicit consideration of me-
sophyll diffusion represents an inherent structural deficiency for
carbon cycle models, a structural deficiency that cannot be com-
pensated for by the use of phenomenologically obtained photo-
synthetic parameters.
In addition to providing a potential explanation for the cause

of the overprediction of historical atmospheric CO2 growth by
ESMs, our study has identified a common mechanism that could
help resolve several other important issues. A recent inventory
and field observation-based report showed that, contrary to ex-
pectation, the world’s forests have continued to serve as a large
persistent carbon sink (28), consistent with our finding that ter-
restrial ecosystems may have responded to historical anthropo-
genic CO2 emissions more strongly than models have indicated.
Also, carbon cycle models generally underestimate the long-term
trends in the seasonal amplitude of atmospheric CO2 (29) and
in forest ecosystem water use efficiencies (30). These under-
estimations could be explained by the underestimation by carbon
cycle models of the long-term response of net ecosystem pro-
ductivity to the increase in atmospheric CO2 concentration, which

in turn could be explained by our finding that models lacking ex-
plicit consideration of mesophyll diffusion underestimate the CO2
fertilization effect. Furthermore, in the northern hemisphere,
the increase in the seasonal amplitude of atmospheric CO2 has
been larger in high latitudes than in low latitudes and sub-
stantially larger than simulated by carbon cycle models (31),
which agrees with our finding that the estimated CO2 fertil-
ization effect in the regions of >45°N is particularly sensitive to
the consideration of mesophyll diffusion (Fig. 2).
Our results at the global scale are a logical extension of what

has long been known at the leaf scale by plant physiologists.
Numerous studies have reported that mesophyll and stomatal
conductances have similar magnitudes and are equally important
in controlling CO2 concentrations available for photosynthesis
(1–9, 15–17, 20). The drawdown of CO2 from substomatal cav-
ities to chloroplasts may reduce photosynthesis by 25–75%,
depending on species (32). Differences in gm may even have the
potential to alter the balance in species competitiveness as plant
communities respond to rising atmospheric CO2 because an at-
mosphere enriched in CO2 may favor species with lower gm such
as needleleaf evergreen trees and others (2, 6). Thus, mesophyll
diffusion can play a crucial role in our understanding and pre-
dicting photosynthetic responses to the increase in atmospheric
CO2 concentration from leaf to global scales.
An uncertainty in estimating the long-term impact of meso-

phyll diffusion on global land CO2 fertilization is the acclimation
of biochemical capacities of photosynthetic machinery to ele-
vated atmospheric CO2 concentrations. Photosynthetic accli-
mation has been observed in many free-air CO2 enrichment
(FACE) experiments of C3 plant species (33). Typical acclima-
tion involves down-regulation of Vcmax and Jmax to balance re-
source allocation to reactions controlling photosynthesis. Our
leaf-level analysis indicates that mesophyll diffusion plays similar
roles in controlling CO2 availability at the site of carboxylation
regardless of leaf productivity, which can be seen by comparing
Fig. S7 A and B with C. Thus, it is unlikely that photosynthetic
acclimation to elevated CO2 will qualitatively change the findings
reported here.
A related issue is how limited availability of nutrients, par-

ticularly nitrogen and phosphorous, interacts with the impact of
mesophyll diffusion on the CO2 fertilization effect. Model sim-
ulations have shown that explicit representations of nitrogen and
phosphorus limitations generally result in reduced response of
the terrestrial carbon sink to historical increases in atmospheric
CO2 concentrations (27, 34, 35). Thus, nutrient limitations may
reduce the impact of mesophyll diffusion on estimated CO2
fertilization effect. However, if the main effect of nutrient limi-
tations is to reduce Vcmax and Jmax, then our argument made
above on photosynthetic acclimation also applies to nutrient
limitation. Furthermore, it is possible that an explicit consider-
ation of mesophyll diffusion would influence model evaluations
of nutrient limitations on terrestrial carbon cycle. Given the
unequivocal fact that mesophyll diffusion limits CO2 availability
at the site of carboxylation, an interesting question is as follows:
will explicit representation of mesophyll diffusion delay the de-
velopment of nutrient limitation in the terrestrial carbon cycle in
response to increase in atmospheric CO2 concentrations? With
improved representations of nutrient limitation and mesophyll
diffusion, this question may be answerable in the near future.
In summary, the terrestrial biosphere may be more CO2 limited

and therefore absorb more carbon per unit increase of atmo-
spheric CO2 than previously thought. Over the period investigated
in this study (1901–2010), atmospheric CO2 only started to rise
rapidly after the 1950s. If the current trend of increasing atmo-
spheric CO2 continues, the underestimation of the CO2 fertiliza-
tion effect by models lacking explicit representation of mesophyll
diffusion should grow to well above the 16% determined for the
period of 1901–2010. Although mesophyll conductance increases
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with warming, this increase does not keep pace with the increased
carboxylation capacity of Rubisco and thus mesophyll diffusion
may become even more limiting for photosynthesis at high tem-
peratures (i.e., as measured by ΔCFE) (4). To adequately predict
long-term effects of anthropogenic emissions and carbon–climate
interactions, carbon cycle models should explicitly consider me-
sophyll resistance to CO2 diffusion. As we demonstrated with
our global mesophyll conductance model (SI Text), this con-
sideration does not add substantial computational burden or
excessive new parameterization. Carbon cycle models that lack
explicit representation of mesophyll diffusion will underestimate
historical and future terrestrial carbon uptake. Consequently, they
will overestimate historical and future growth rates of atmo-
spheric CO2 concentration due to fossil fuel emissions, with
ramifications for predicted climate change.

Methods
The global gm model was developed by synthesizing the latest advances in
plant physiological literature. Large-scale carbon cycle models generally use
the concept of plant functional types (PFTs) to simulate carbon, water, and
energy fluxes in terrestrial ecosystems. Our global gm model is likewise based
on the PFT concept so that it is consistent with current large-scale modeling

philosophy and applicable broadly to different vegetation types, rather than
to particular ecosystems. In the gm model, leaf structures, which differ
among PFTs, determine the maximum attainable gm, whereas temper-
ature and moisture stress factors and within-canopy environmental
gradients modify this maximum value (SI Text). The global gm model and
the conversion function that establishes the gm-lacking to gm-including
parameter correspondence are all of the structural elements that we
have added to CLM4.5. A series of global simulations were conducted
to verify the internal consistency and validity of the modified CLM4.5
(SI Text). All simulations are offline experiments driven by the CRU/NCEP/
NCAR reanalysis (www.cru.uea.ac.uk/cru/data/ncep/) and transient land
use. The historical atmospheric CO2 concentrations, which are used in all
simulations except in constant CO2 runs, are derived from ice cores and
atmospheric observations. A detailed description on methods is available
in SI Text.
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Development of a Global Mesophyll Conductance (gm) Model. A
model of mesophyll conductance (gm) suitable for global applica-
tions has not previously been available. We develop such an em-
pirical gm model by synthesizing the latest advances in field plant
physiological studies. Large-scale carbon cycle models generally
use the concept of plant functional types (PFTs) to simulate car-
bon, water, and energy fluxes of terrestrial ecosystems. We use
a similar strategy to develop a global gm model so that it is
consistent with large-scale modeling philosophy and applicable
broadly to different vegetation types, rather than to particular
ecosystems. Field measurements have shown that gm varies with
leaf structures and environmental conditions (1–4). Leaf structures
determine themaximum attainable gmwith external environmental
forcings modifying this maximum value. This consensus reflects
a recent understanding that environmental stress factors (e.g.,
temperature and water) can induce rapid physiological changes
(e.g., hardening of cell walls and aquaporin-mediated alteration of
membrane permeability) that cause gm to vary on time scales of
minutes to hours (5–8). Accordingly, we model gm as

gm = gmax0 · fIðxÞ · fTðTlÞ · fwðθÞ; [S1]

where gmax0 is the maximum gm (i.e., a value of gm under non-
stress conditions, here referring to the presence of ample soil
water and a temperature of 25 °C) of a leaf at the canopy top of
a PFT; fI(x) represents the vertical variation of gm as a function
of cumulative leaf area index x from canopy top, driven by light
gradient within the canopy; and fT(Tl) and fw(θ) are the response
functions of gm to leaf temperature Tl and to soil moisture θ,
respectively.
The present study makes no attempt to represent other po-

tential environmental effects, e.g., salinity, O3, nutrient avail-
ability (4), on gm because these effects are much less well
understood and seldom quantified in field studies. Also we
do not consider the potential rapid, direct responses of gm to
changes in ambient CO2 concentration and irradiance reported
in some previous studies as a recent analysis shows that such
responses may be due to methodological artifacts in experiments
(9). There is also the possibility that the spatial separation be-
tween Rubisco and the releasing site of CO2 from dark respi-
ration and photorespiration (mitochondria) may render gm to be
a composite variable, rather than a stable parameter (10). This
possibility can be addressed with a two-component model of
mesophyll conductance (10). However, currently there are no
data available to parameterize this two-component model. For-
tunately, observations often show that in C3 plant species, mi-
tochondria occupy the center of the cell and are surrounded by
chloroplasts that are positioned just under the plasmalemma
(11). In such a spatial configuration, CO2 molecules evolved
from mitochondria and released into cytosol must first diffuse
through chloroplasts to reach the intercellular air space. From a
modeling point of view, this arrangement has the same effect as
if Rubisco and mitochondria shared the same compartment (12).
Sun et al. (13) and Gu and Sun (9) used simulations to dem-
onstrate that a single gm model is sufficient for the purpose of
modeling photosynthesis. Therefore, in this study, we adopt the
framework of a single gm model.
The gmax0 varies significantly across plant species. A synthesis

of measurements for ∼100 plant species showed that this term is
related to the leaf dry mass per unit area Ma through an em-
pirical power law (2)

gmax0 = a ·Mb
a0; [S2]

where Ma0 represents Ma at canopy top. The constants a =
24.240338 and b = −0.6509 are two empirical parameters that
have been determined by fitting compiled data to Eq. S2 [r2 =
0.79; P < 0.001; see figure 2.1 in Niinemets et al. (2)]. All em-
pirical constants used in our global mesophyll conductance
model are listed in Table S1. Similar patterns were also reported
in other studies (4, 14) but with fewer species samples. The values
of a and b depend on the units of data used for the nonlinear
regression of Eq. S2. Our study uses μmol/m2/s/Pa for gmax0 and
gm, and g/m2 for Ma0 and Ma. The coefficient b is negative, in-
dicating gmax0 decreases with Ma0 across PFTs under nonstress
conditions. The gmax0 in Eq. S2 is area based, whereas Niinemets
et al. (2) used a mass-based unit. The area- and mass-based gmax0
differ by a factor of Ma0. Accordingly, the value of b in our study
is a notation on an area basis. In Eq. S2, gmax0 is represented as
a leaf trait associated with PFTs because it is determined by Ma0,
which is the product of two important leaf traits: leaf thickness
and foliar mass density (2).
Multiple steps are needed to derive an expression for fI(x),

which describes the variation of gm associated with the prevailing
light regime within a plant canopy. The light intensity shapes the
mesophyll cell morphology, the number of mesophyll cell layers,
and the leaf thickness. These factors are components that de-
termine Ma(x), the leaf dry mass per area at a cumulative leaf
area index x (15). They also affect the total surface area of
mesophyll cells exposed to intercellular air space per unit leaf
area and hence gm (2, 11). Consequently, gm tends to change
systematically from top to bottom of a canopy (16–22) and scales
well with the variation of Ma(x) with canopy depth (18, 21).
Therefore, Ma(x) is an important link between gm and the pre-
vailing light gradient within a canopy. Here this vertical variation
of gm is modeled as follows:

gmaxðxÞ = gmax0 · ½MaðxÞ=Ma0�d; [S3]

where d = 0.8109, an empirical parameter fitted from the data
(r2 = 0.67) in Montpied et al. (21). Rearranging Eq. S3, we have

fIðxÞ = gmaxðxÞ=gmax0 = ½MaðxÞ=Ma0�d: [S4]

According to Niinemets (15), Ma(x) is related to the seasonally
integrated photosynthetic active radiation I(x) via

MaðxÞ = Ma0 · ½IðxÞ=I0�f ; [S5]

where I0 is the value of I(x) at canopy top; f = 0.221897, a pa-
rameter fitted (r2 = 0.57) from Niinemets (15). Applying the
Beer’s law

IðxÞ = I0 · expð−kI · xÞ; [S6]

where kI = 0.50, a commonly used value for the seasonally aver-
aged light extinction coefficient (23, 24), and substituting Eqs. S6
and S5 to Eq. S4, we obtain

fIðxÞ = expð−kI · d · f · xÞ = exp
�
−kg · x

�
: [S7]

Here, kg = kI · d · f= 0.08997, a composite parameter that is the
product of three empirical coefficients kI, d, and f. Eq. S7 shows
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that the vertical variation of gm within a canopy can be modeled
as an exponentially decreasing function of cumulative leaf area
index x from the top of canopy, characterized with a single decay
coefficient kg. The advantage of creating a single composite pa-
rameter kg is that it facilitates the sensitivity test with this pa-
rameter, which may guide process-based measurements. The
joint control of Ma0 and x on gm is illustrated in Fig. S1, showing
that gm decreases with Ma0 and x.
It is important to clarify that the dependence of gmax0 on Ma0

in Eq. S2 is fundamentally different from the relationship be-
tween gm and Ma(x) in Eq. S3. Eq. S2 applies across PFTs,
whereas Eq. S3 is used to formulate fI(x) and applies to the
depth of a canopy within a PFT. Ma(x) is a composite leaf
structural variable and is modified by the prevailing vertical
gradient in light regime within a plant canopy. The variations of
leaf structures along canopy depth and thus Ma(x) are different
from the variations of leaf structures across leaf forms of PFTs
and thus the composite leaf trait Ma0. As stated earlier, the
light intensity gradient along the canopy depth affects Ma(x)
through its effects on the mesophyll cell morphology, the
number of mesophyll cell layers, and the leaf thickness. In
contrast, the variations of Ma0 across leaf forms of PFTs reflect
the changes in leaf robustness, e.g., the compactness of meso-
phyll cells, the thickness of cell walls, and the foliar mass
density. Detailed discussion on this issue is beyond the scope of
this paper but can be found elsewhere (2, 11).
Several functions have been proposed to describe the tem-

perature response of gm (5, 25–27). Here the formulation of
Bernacchi et al. (5), which was based on detailed measurements
and showed agreement with data from independent researchers
(28), is used

fTðTlÞ= exp½c−ΔHa=ðR ·TlÞ�=f1+ exp½ðΔS ·Tl −ΔHdÞ ðR ·TlÞ�g;=

[S8]

where c = 20.0, a scaling constant; ΔHa = 49.6 × 103 J/mol, the
activation energy; ΔHd = 437.4 × 103 J/mol, the deactivation
energy; ΔS = 1.4 × 103 J/mol/K, an entropy term; and R =
8.314 J/mol/K, the universal gas constant. Eq. S8 is normalized
to 25 °C; hence, fT(25 °C) = 1. It features an initial increase of gm
with Tl (10–35 °C) and decline at high Tl, thus allowing simula-
tion of high temperature inhibition.
Different forms of the water stress term have been applied to

gm in canopy models (29–32). For convenience, we use the
CLM4.5 water stress function (33), which has already been ap-
plied to Vcmax and stomatal conductance gs (34). In the CLM4.5
formulation

fwðθÞ =
Xn

i

froot;i ·wiðθÞ; [S9]

where n is the total number of soil layers; froot,i is the root frac-
tion within soil layer i; and wi(θ) is the plant wilting factor,
derived from the soil water content θ for each layer. The
calculation of froot,i and wi(θ) follows CLM4.5 procedures (33).
The term fw(θ) ranges from 1 (wet soil) to ∼0 (dry soil), depend-
ing on the soil water potential of each layer, and root distribution
of PFTs.

Implementation of a Global gm Model in CLM4.5.CLM4.5 divides the
canopy into sunlit and shaded fractions and calculates photo-
synthesis separately for these two groups of leaves. To be con-
sistent with the CLM4.5 canopy integration scheme, the mean,
weighted gm for sunlit and shaded fractions is calculated, re-
spectively, as

gmax sun = gmax0

Z L

0
exp

�
−kg · x

�
· fsunðxÞdx

Z L

0
fsunðxÞdx

= gmax0 ·
kb

kg + kb
·
1− exp

�
−
�
kg + kb

�
·L

�

1− expð−kb ·LÞ ;

[S10a]

gmax sha = gmax0

Z L

0
exp

�
−kg · x

�
· ½1− fsunðxÞ�dx

Z L

0
½1− fsunðxÞ�dx

= gmax0 ·
kb

kg
�
kg + kb

�

·
kb −

�
kg + kb

�
· exp

�
−kg ·L

�
+ kg · exp

�
−
�
kg + kb

�
·L

�

expð−kb ·LÞ− 1+ kb ·L
:

[S10b]

Here, L is the leaf area index; and kb is the direct beam extinc-
tion coefficient and is used to calculate fsun(x) and fsha(x), the
fractions of sunlit and shaded leaves respectively. kI in Eqs. S6
and S7 differs from kb in that kI is a seasonal mean, whereas kb
varies with solar zenith angle and thus the course of a day and
throughout a year and hence is typically updated each time step
in model simulations.
gm links the CO2 concentration inside leaf chloroplast (Cc) and

that at intercellular air space (Ci) with the net carbon assimila-
tion rate A through Cc =Ci −A=gm. Here Cc and Ci are in units
of Pa because A and gm are in units of μmol/m2/s and μmol/m2/s/Pa,
respectively; elsewhere in the paper, CO2 concentrations are
expressed in units of ppm. The original CLM4.5 used a numeri-
cal scheme to solve for photosynthesis by iterating over Ci. In the
gm-enabled CLM4.5, we iterate over Cc and A is calculated with
the photosynthesis model from Cc.
gmax0 is obtained from Ma0, which in turn is calculated from

the inverse of the canopy-top specific leaf area SLA0 [m2(gC)],
a parameter already specified in CLM4.5 (Fig. S1). Ma0 (g/m

2) in
Eq. S2 differs from 1/SLA0 (gC/m2) by a factor of two because
the former refers to total leaf dry mass, whereas the latter in-
cludes only the carbon fraction. Our gm model is applicable only
to C3 plants; the calculations for C4 photosynthesis are un-
changed in the present study.

Conversion of the gm-Lacking to gm-Including Photosynthetic Parameters
for CLM4.5. The development and implementation of a global gm
model allows photosynthesis to be calculated at the correct CO2
concentration; that is, the CO2 concentration at the site of car-
boxylation inside the chloroplast. Accordingly, the fundamental
biochemical photosynthetic parameters (i.e., Vcmax, Jmax, and TPU)
of the FvCB model used in conjunction with the gm model must
reflect the actual photosynthetic capacities of the chloroplast.
Current global carbon cycle models use phenomenological photo-
synthetic parameters (i.e., the gm-lacking parameters) that are
smaller than the true photosynthetic capacities (i.e., the gm-
including parameters) of the chloroplast because their deri-
vation did not represent mesophyll diffusion of CO2 explicitly (13,
35–37). A matching correspondence between the gm-including and
gm-lacking photosynthetic parameters must be established so that
the dynamic behaviors of carbon cycle models with and without
explicit representation of mesophyll diffusion can be compared.
A complication in establishing the matching correspondence

between the gm-including and gm-lacking fundamental photo-
synthetic parameters is that at least two different forms of the
FvCB model have been used to model leaf photosynthesis. There
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is no a priori argument that the correspondence between the gm-
including and gm-lacking parameters is invariant between the
different forms of the FvCB model. In one form, which we call the
monolimiting form [see, for example, the implementation in Gu
et al. (38)], the net photosynthetic rate A is given by the following
expression:

A = min
�
Wc;Wj;Wp

�ð1−Γp=CcÞ−Rd; [S11]

where Wc, Wj, and Wp represent the carbon carboxylation rate
limited by Rubisco, RuBp regeneration, and TPU, respectively,
and Γ* and Rd denote the chloroplastic CO2 photosynthetic
compensation point and day respiration, respectively. In the mono-
limiting FvCB model, the smallest of three limitations exclusively
defines the photosynthetic rate for any particular set of forcing
conditions, whereas the other two limitations play no role (except
that they help to determine which one is the smallest). It is the
most frequently used form. In another form, which is called the
colimiting form (39), A is given by the smaller root of the following
equations:

ΘcjA2
i −

�
Ac +Aj

�
Ai +AcAj = 0

ΘipðA+RdÞ2 −
�
Ai +Ap

�ðA+RdÞ+AiAp = 0;
[S12]

where Ai in the first equation is a transient variable for calculat-
ing A in the second equation; Θcj and Θip are two fixed empirical
curvature parameters (0.98 and 0.95, respectively, in CLM4.5);
and Ac, Aj, and Ap are, respectively, given by

Ac = Wcð1−Γp=CcÞ
Aj = Wjð1−Γp=CcÞ
Ap = Wpð1−Γp=CcÞ:

[S13]

In contrast to the monolimiting FvCBmodel, the colimiting FvCB
model calculates the photosynthetic rate for any particular set of
forcing conditions with inputs from all three limitations, although
its value is dominated by the most limiting of the three limitations
(when Θcj and Θip are set to 1, the mono- and colimiting FvCB
models are identical).
Sun et al. (13) showed that, for the monolimiting FvCB model,

the following relationship can be used to estimate the gm-including
parameters accurately from the corresponding gm-lacking parame-
ters if gm is known:

y = w exp
�
p

wu

gqm + v

	
: [S14]

Here (w, y) represents the pairs of gm-lacking and gm-including
Vcmax, Jmax, and TPU at a reference temperature of 25 °C; and p,
q, u, and v are empirical constants and differ among these pairs
(Table S2). To estimate p, q, u, and v in Eq. S14, Sun et al. (13)
used a worldwide database of leaf gas exchange measurements
collected by LeafWeb (leafweb.ornl.gov). The measurements
used in Sun et al. (13) contained more than 1,000 A/Ci curves
from nearly 130 C3 plant species covering all major plant func-
tional types of the world, which include grasses, herbs, crops,
shrubs, and trees (deciduous and evergreen broadleaf and coni-
fers). These curves were analyzed for gm-lacking and gm-includ-
ing Vcmax, Jmax, and TPU, as well as gm with an optimization
approach (36, 38). The obtained parameters are then used to
estimate the empirical constants in Eq. S14.
However, CLM4.5 in contrast to its earlier versions applies the

colimiting FvCB model and also somewhat different temperature
response functions (33, 34). To ensure consistency and compara-
bility between the gm-lacking and gm-including simulations, we re-
analyzed the LeafWeb A/Ci curves for gm-lacking and gm-including

Vcmax, Jmax, and TPU, as well as gm with exactly the same for-
mulations of the FvCB model and temperature response functions
used by CLM4.5. The obtained parameters are then used to re-
estimate p, q, u, and v in Eq. S14. The reestimated p, q, u, and v are
given in Table S2. For convenience, we use monolimiting and
colimiting conversion functions to denote Eq. S14 with the em-
pirical constants estimated for the monolimiting and colimiting
FvCB models, respectively.
Fig. S2 shows the relationship between the gm-including pa-

rameters estimated directly from the A/Ci curves for the col-
imiting FvCB model and those calculated from the colimiting
conversion function. The agreement is reasonable for Vcmax, Jmax,
and TPU, although the monolimiting conversion function ap-
pears to fit better overall [compare Fig. S2 with figure 5 in Sun
et al. (13)]. Fig. S3 compares the difference between the mono-
and colimiting conversion functions for a few selected values of
gm. Both conversion functions show that Vcmax is the most sen-
sitive, TPU is the least sensitive, and Jmax has an intermediate
sensitivity to gm. However, the colimiting Vcmax and Jmax appear to
be more sensitive to gm than their monolimiting counterparts,
whereas the opposite is true for TPU. In fact, the colimiting TPU
differs little between with and without explicit consideration of
mesophyll diffusion such that all empirical constants are effec-
tively zero for the colimiting TPU conversion function (Table S2).
Because the empirical constants in the colimiting conversion

function are estimated in accordance with CLM4.5 photosyn-
thetic model formulations, we report global simulation results
based on the colimiting conversion function. However, the col-
imiting conversion function may be more uncertain than the
monolimiting conversion function as the fitting of an A/Ci curve
with the colimiting FvCB model is considerably more difficult than
with the monolimiting FvCB model. In any A/Ci curve measure-
ment, one or two carboxylation limitation states (Rubisco, RuBP
regeneration, and TPU) may be missing (40, 41). When the
monolimiting FvCB model is used to fit the data, any missing
limitation state can be detected and its associated parameters be
removed from the parameter estimation process with the enu-
meration strategy developed by Gu et al. (38). In contrast, the
application of the colimiting FvCB model has to simply assume
all three limitation states are always present in the data, which
may or may not be true for any particular curve. Consequently,
more unreasonable parameter values are produced with the
colimiting FvCB model and have to be disqualified according to
the objective criteria proposed in Gu et al. (38). Even after the
application of this data quality control procedure, there are still
some unusually large parameter values compared with those
obtained for the monolimiting FvCB model [compare Fig. S2
with figure 5 in Sun et al. (13); the same original dataset are used
in both analyses], indicating not all curves used in the final fitting
contain sufficient constraining power for parameter estimation
for the colimiting conversion function. As a precaution, the mono-
limiting conversion function is also applied in additional global
simulations so that impacts of uncertainty in the conversion func-
tion can be evaluated.
CLM4.5 accounts for the influence of day length f(D) on (gm-

lacking) Vcmax (adjusted to 25 °C), i.e., Vcmax = V 0
cmax· f(D). Here

V 0
cmax is the value of Vcmax unattenuated by shortening in day

length. The same f(D) is propagated to Jmax and TPU (at 25 °C)
via their linear dependence on Vcmax. We perform parameter
conversion on the unattenuated (gm-lacking) parameters (PFT-
specific) and then apply the factor f(D) to the corresponding,
converted gm-including values. In this way, we preserve the
functional relationships among the fundamental photosynthetic
parameters both before and after the conversion (13). Finally,
the conversions of photosynthetic parameters are all performed
on values at canopy top so that the vertical profiles of photo-
synthetic parameters are not altered. In short, the canopy in-
tegration strategy of the gm-enabled CLM4.5 is not altered from
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that of the original CLM4.5, which helps ensure that any difference
between the gm-lacking and gm-including simulations is caused
entirely by the explicit consideration of mesophyll diffusion. Table
S3 compares gm-lacking and gm-including photosynthetic parame-
ters in CLM4.5 with either monolimiting or colimiting conversion
functions.

Global Simulations and Consistency Checks. Because mesophyll dif-
fusion of CO2 affects gross primary production (GPP) directly
and because GPP is the first step of the terrestrial carbon cycle,
we focus on GPP in this current study. The cascade effects of
mesophyll diffusion through GPP on downstream carbon pro-
cesses are also important to recognize. However, models of
terrestrial carbon cycling are complicated and many processes
are represented without precise knowledge. As the first study
(to our knowledge) of mesophyll diffusion effects at the global
scale, focusing on GPP provides a clear demonstration of the
impact of mesophyll diffusion and a direct explanation of the
cause of its impact.
We also decided to conduct simulations only on a historical

period (1901–2010) for which observational forcing data are
available. Thus, our estimation of impact of mesophyll diffusion
is likely to be conservative because this impact is expected to be
more important on long term than on short term and for the
historical period, models, including the gm-lacking models, are
presumably already well calibrated. An extension of the simu-
lations to future climate, for example, to 2100 using represen-
tative concentration pathways (RCPs) of the Intergovernmental
Panel on Climate Change (IPCC) should show larger impacts
of mesophyll diffusion. However, focusing on a relatively short
historical period removes many uncertainties inherently involved
in making future prediction and allows us to concentrate on il-
luminating processes and mechanisms rather than on showing
magnitudes.
As stated earlier, for the objective of this study, it is important to

ensure that any difference between the gm-lacking and gm-including
simulations is caused entirely by an explicit consideration of me-
sophyll diffusion. That is why strict correspondence between gm-
lacking and gm-including fundamental photosynthetic parameters
must be established. However, ensuring this strict parameter
correspondence is not sufficient to obtain comparable simulations.
We must also make sure that the gm-lacking and gm-including
simulations are done for the same model terrestrial biosphere.
This is achieved by using the same state variables (e.g., CLM4.5
specified leaf area indices) in all our simulations. This strategy
also avoids potentially large biases in prognostically evolving state
variables of the biosphere which can be caused by, for example,
uncertainties in the representations of limitations of nutrients
(particularly nitrogen and phosphorous) on photosynthesis.
Multiple simulations are carried out to clarify and quantify the

dynamic behaviors of CLM4.5 with or without the developed gm
model implemented (Table S4): the CTRL run, a control sim-
ulation with the original CLM4.5 that has no explicit represen-
tation of mesophyll diffusion; the IMED run, a simulation that
incorporates the developed gm model only but retains the orig-
inal gm-lacking photosynthetic parameters in CLM4.5; and the
MESO run, a simulation with both the explicit consideration
of mesophyll diffusion and the corresponding gm-including
photosynthetic parameters. The MESO run is repeated with the
colimiting and monolimiting conversion functions as a test for
the effect of uncertainty in the conversion function. The IMED
run serves as an intermediate step to illustrate the effect of in-
corporating a gm model and also as a consistency check. Because
the gm-lacking photosynthetic parameters are smaller than the
corresponding gm-including photosynthetic parameters (13, 35–
37) and because the implementation of a gm model will lead to
reduced CO2 concentrations at the site of carboxylation, we
expect the annual GPP of the IMED run will be smaller than

either that of the CTRL run or that of the MESO run if the gm
model and the conversion function have been applied correctly
in CLM4.5. We also carry out two additional experiments to
provide baseline references for quantifying the historical CO2
fertilization effect on GPP: CTRL_cCO2 and MESO_cCO2,
both of which are similar to CTRL and MESO except that the
atmospheric CO2 concentration is fixed at the level of year 1901,
i.e., 296 ppm.
All simulations are offline experiments driven by the CRU/

NCEP/NCAR reanalysis (www.cru.uea.ac.uk/cru/data/ncep/). The
historical atmospheric CO2 concentrations, which are used in all
simulations except in constant CO2 runs, are derived from ice
cores and atmospheric observations (42). All simulations have
a spatial resolution of 1.9° × 2.5° with a prescribed transient land
cover (33, 43).
We compare the mean global annual GPP of 1985–2004 from

different runs with the reanalysis climate and observed atmo-
spheric CO2 concentrations to ensure that the gm-enabled
CLM4.5 behaves as expected. From 1985 to 2004, the atmo-
spheric CO2 concentration increased from 345 to 377 ppm. The
CTRL run estimates the global annual GPP to be 145.17 PgC/y
averaged over the period of 1985–2004 (Fig. S4A). The IMED
run reduces the mean global annual GPP by ∼15 PgC/y (Fig. S4
B and D) compared with CTRL. This reduction is consistent
with our expectation as mentioned above. The GPP decrease is
throughout the globe, but most prevalent in the tropics. The use
of a gm model together with the gm-including photosynthetic
parameters in the MESO run with the colimiting conversion
function leads to a mean annual GPP of 146.60 PgC/y, a slight
increase of ∼1 PgC/y compared with CTRL (Fig. S4C) and about
17 PgC/y higher than the IMED run, again consistent with ex-
pectation. The mean annual GPP for the MESO run with the
monoconversion function is 144.60 PgC/y, a less than 1 PgC/y
decrease from CTRL and more than 15 PgC/y higher than IMED,
again consistent with expectations.
Currently there are no direct global GPP measurements to

verify our simulation results. Published estimates of contempo-
rary global GPP are highly uncertain. One estimate based on
scaled-up eddy flux measurements coupled with diagnostic
models placed global GPP at 123 PgC/y (44). A different ap-
proach using atmospheric oxygen isotopes suggested 150–175
PgC/y (45). Thus, our simulated GPP values for the MESO runs
for the contemporary time (1985–2004) are in the middle of
these published estimates.
The comparisons among the CTRL, IMED, and MESO runs

indicate that our implementation of the global gmmodel in CLM4.5
is internally consistent. This internal consistency is an important
check on representation of mesophyll diffusion in CLM4.5 because
our gm model and the parameter conversion function are in-
dependently derived. These comparisons also demonstrate that it
is important to update the gm-lacking photosynthetic parameters
to the corresponding gm-including photosynthetic parameters in
models that represent mesophyll diffusion explicitly; without doing
so, the models would not be self-consistent.
Fig. S5 shows the difference in the CO2 fertilization effect

(ΔCFE) on GPP between the gm-including and gm-lacking
CLM4.5 when the monolimiting conversion function is used in the
simulations. The results are similar to those with the colimiting
conversion function (compare Fig. S5 with Fig. 1), even though
the two conversion functions differ somewhat (Fig. S3). This
similarity suggests that any imperfection in establishing the
matching correspondence between the gm-including and gm-
lacking biochemical parameters through the parameter con-
version functions does not fundamentally alter our findings.

Under What Conditions Do the gm-Lacking and gm-Including Models
Match? Comparison of absolute values of GPP predicted by gm-
lacking and gm-including models is not an appropriate way of
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evaluating the impact of explicit representation of mesophyll
diffusion on modeling the long-term trend of the CO2 fertilization
effect because the two models may have different baseline refer-
ences against which the fertilization effects are quantified. How-
ever, a direct comparison of absolute values of GPP can help
identify conditions under which the phenomenological photosyn-
thetic parameters can be used to compensate for the effect of the
model structural deficiency due to a lack of explicit representation
of mesophyll diffusion. Fig. S6 shows the temporal variation of the
difference in the annual global GPP simulated with CLM4.5 be-
tween with and without explicit consideration of mesophyll diffu-
sion. Before the early1970s (atmospheric CO2 < 320 ppm), the gm-
lacking model predicts a higher GPP, and after the middle 1980s
(atmospheric CO2 > 350 ppm), it predicts a lower GPP compared
with the gm-including model. From the early 1970s to the middle
1980s (320–350 ppm), the two models have similar GPP. Thus,
320–350 ppm is the range of ambient CO2 for which the gm-lacking
model is adequate for simulating GPP.
The minimal bias of the gm-lacking model for a range of am-

bient CO2 in some intermediate past probably reflects the history
of model development and calibration. It is interesting to note
that 320–350 ppm is generally within the range of ambient CO2
emphasized in leaf gas exchange measurements and thus is well
constrained in curve fitting for photosynthetic parameters (40,
41). Therefore, Fig. S6 may be viewed as a vindication of a well-
known modeling principle: a structurally deficient model may
work well for the conditions to which its parameters are carefully
tuned, but once the conditions deviate from the tuning con-
ditions, its reliability becomes questionable. This general prin-
ciple evidently applies to carbon cycle models.

Analyses of Leaf-Scale CO2 Fertilization Effect Based on Leaf
Gas Exchange Measurements
Leaf gas exchange measurements (A/Ci curves) collected by
LeafWeb (leafweb.ornl.gov) were used in this study for two pur-
poses. One was to determine the empirical constants in the con-
version function (Eq. S14). The other was to analyze the difference
in leaf-scale CO2 fertilization effect between models with and
without explicit consideration of mesophyll diffusion. Both tasks
depended on the paired gm-including and gm-lacking Vcmax, Jmax,
and TPU, as well as gm estimated from these A/Ci curves (13, 38).
The leaf-scale analyses (Fig. 4) used directly in the calculations

more than 1,000 pairs of gm-including and gm-lacking photosyn-
thetic parameters and gm values, removing any uncertainty that
may be related to the parameter conversion function or to the
global gm model. The leaf-scale simulations are run at multiple
levels of PPFD and temperature and also at all measurement
conditions of the original A/Ci curves from which the gm-
including and gm-lacking photosynthetic parameters and gm are
estimated. The average measurement conditions of the original
A/Ci curves are 1,255 ± 323 μmol/m2/s for PAR and 26 ± 5 °C for
temperature. From these leaf-scale runs, the ratio R of the gm-
including to gm-lacking β factors for each PPFD and temperature
combinations was calculated and averaged across all curves.

An Excel Spreadsheet-Based Tool for Evaluating Mesophyll Impact on
Predicting Photosynthesis.
Purpose. Tool for Evaluating Mesophyll Impact on Predicting
Photosynthesis (TEMIPP) is a Microsoft Excel spreadsheet-
based, leaf-scale photosynthetic modeling tool. It is used for
demonstrating the impact of lacking an explicit representation of
mesophyll diffusion in a photosynthetic model on the predicted
response of photosynthesis to the increase in atmospheric CO2
concentrations.
Approach. TEMIPP simulates the measurement, analysis and
application of curves of photosynthesis A against intercellular
CO2 concentrations Ci (i.e., the so-called A/Ci curves). A/Ci
curves are typically measured at a saturating level of photosyn-

thetic photon flux density (PPFD) and a fixed temperature.
TEMIPP generates an A/Ci curve at a set of measuring envi-
ronmental conditions (PPFD, temperature, atmospheric pres-
sure, and oxygen) and a set of actual fundamental photosynthetic
parameters (e.g., Vcmax, Jmax, TPU, dark respiration Rd, meso-
phyll conductance gm), all specified by the user. The photosyn-
thetic rate is then calculated by applying the Farquhar–von
Caemmerer–Berry (FvCB) model (46) extended with a finite gm
(36, 38). A gm-lacking model, which is the FvCB model applied
with an assumption of an infinite gm, is fit to the generated A/Ci
curve. The obtained key photosynthetic parameters are then
used in the gm-lacking model as in current carbon cycle models to
predict photosynthesis at a new set of conditions that is different
from the original set of measuring conditions under which the
A/Ci curve for fitting was produced.
Instead of using simulated A/Ci curves, users have the option to

apply real A/Ci measurements to TEMIPP. When real A/Ci curves
are used, users will need to provide TEMIPP independently esti-
mated photosynthetic parameters including gm. Users can examine
the impact of lacking an explicit representation of gm by comparing
model performance between the fitting to the original A/Ci curve
and the prediction at new conditions. It is useful to check the re-
siduals between the actual value and the value calculated by the
gm-lacking model as the residuals can reveal model performance
more clearly than a simple direct comparison which can be mis-
leading. Also it is important to compare the limitation states de-
termined by the gm-lacking model with the actual limitation states.
This comparison will provide insight as to why an apparently well-
calibrated gm-lacking model can perform poorly in predictions.
The fitting uses the evolutionary method in Solver provided by

Microsoft Excel. The Evolutionary algorithm is selected because
the FvCB model is a classic change-point model, and its optimi-
zation is not smooth (38). If users do not wish to use the Microsoft
Solver, they can use any optimization software they might have or
LeafWeb (leafweb.ornl.gov) to estimate the parameters and then
input their own parameters directly into TEMIPP.
The temperature response functions used in TEMIPP are from

Sharkey et al. (41). If users wish to use different temperature
response functions, they can input their own temperature re-
sponse funcitons as well.
Detailed instructions.
i) Generate a new A/Ci curve. A new A/Ci curve can be gen-
erated in any of the following ways:

a) Change the values of the standardized fundamental pa-
rameters Vcmax25, Jmax25, TPU25, gm25, Rd25 (cells
E10–I10). Users can also change the Rubisco kinetic
parameters (J10–L10) or the leaf absorptance parame-
ter (M10) if they wish.

b) Change the A/Ci curve measuring conditions of temper-
ature, PPFD, atmospheric barometric pressure, and oxy-
gen partial pressure (E20–H20).

c) If they wish, users can provide their own coefficients in
the temperature response functions in the section from
E15 to L17.

d) The A/Ci data for fitting are automatically computed
from cells B36 to B53, depending on the values of Ci
from A36 to A53. Users can adjust the Ci values from
A36 to A53 as they wish. Leave any unused cell blank.

ii) Fit the gm-lacking model:

a) Click the cursor at Data in the top of Excel Spreadsheet.
b) Click Solver. You may have to install the Excel Solver first.
c) This brings up the Solver Parameters menu.
d) The settings should have been already specified.
e) Click Solve to minimize the value in the objective cell F54.
f) Wait for the Solver to complete its job. This may take

a while.
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g) When Solver results menu appears, choose “Keep
Solver Solution” and click OK.

iii) Provide a new set of environmental conditions for which
the gm-lacking model will make predictions. Put these val-
ues in E21–H21. Try different conditions to see how the
performance of the gm-lacking model vary as the conditions
for prediction deviate from the conditions for which the
original A/Ci curve for fitting was produced.

iv) Examine the two plots around row 70. Also check to see if
the gm-lacking model has identified the limitation states
correctly (the limitation states are displayed in the section
AD34–AE56 and AU34–AV136).

v) The default setting in the Solver Parameters menu is for
optimizing Vcmax25, Jmax25, and Rd25 for the gm-lacking
model. TPU25 for the gm-lacking model is set to be equal to
that users provide in cell G10 to take advantage of the fact
that TPU-limited photosynthesis is 3*TPU − Rd, which does
not depend on CO2 concentrations and therefore gm. This
avoids potential overfitting and unreasonable parameter val-
ues. However, if users wish to estimate TPU25 for the gm-
lacking model as well, go to the Solver Parameters menu,
add “,$G$11” (without the quotation marks) after “$I$11” in
the box under “By Changing Variable Cells.”

vi) If they wish, users can also optimize for the Rubisco kinetic
parameters for the gm-lacking model by adding “,$J$11,$K
$11,$L$11” under “By Changing Variable Cells” in the Solver
Parameters menu. However, A/Ci data generally do not con-
tain enough information to constrain all these parameters.

vii) Use real A/Ci measurements with independently estimated
parameters. To use real A/Ci measurements with parameters
estimated by other means for TEMIPP, do the following steps:

a) Save a copy of TEMIPP.
b) Manually input the real A/Ci data in the section A36–

B53 and leave any unused cells blank (do not cut and
paste as this will cause disabling of the auto-computing
functions).

c) Input the standardized fundamental parameters esti-
mated with explicit consideration of gm into E10–L10

(TEMIPP can be modified to estimate gm for the pur-
pose of testing).

d) Input the A/Ci measuring conditions in E20–H20.
e) If in their A/Ci curve analysis, users used a set of coef-

ficients for the temperature response functions different
from those listed in TEMIPP, input the users’ coeffi-
cients into the section E15–L17.

f) If users have independent estimates of the correspond-
ing parameters for the gm-lacking model, input them to
E11–I11 and skip the Microsoft Solver; otherwise, in-
voke the Solver.

g) Check the plots and limitation states.

viii) Modify TEMIPP to estimate gm and associated fundamental
photosynthetic parameters.

a) Save a copy of TEMIPP.
b) Manually input the real Ci data in the section A36–A53

and leave any unused cells empty (do not cut and paste).
c) Manually input the A (net photosynthesis) data in the

section M36–M53 and leave any unused cells empty (do
not cut and paste).

d) If users wish to use a different set of coefficients for the
temperature response functions, input these different
coefficients into the section E15–L17.

e) Bring up the Solver.
f) Replace the content in “Set Objective:” with “$O$54”

(without the quotation marks).
g) Replace the content in “By Changing Variable Cells:”

with “$E$10,$F$10,$G$10,$H$10,$I$10”.
h) Replace all “$11”s in the box under “Subject to the

Constraints” with “$10”.
i) Click Solve.
j) Wait for the Solver to complete its job.
k) The optimized parameters will be displayed in the cells

from E10–I10.

TEMIPP is meant to be a demonstration tool only. For actual
A/Ci curve analyses, methods such as LeafWeb (leafweb.ornl.
gov) are more appropriate (38).
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Fig. S1. The gm model (scaled to the leaf temperature of 25 °C and saturating soil moisture). The 3D surface shows the maximum mesophyll conductance gmax

[=a ·Mb
a0 ·expð−kg · xÞ, the product of Eqs. S2 and S7] as a function of canopy-top Ma (Ma0) and cumulative leaf area index (x). The purple curve in the x = 0 plane

shows the relationship between gmax0 andMa0 (Eq. S2). The dotted curves show the gm profile within canopy (Eq. S7) for the specified PFTs in CLM4.5. The values of
Ma0 are PFT specific, calculated from the canopy top-specific leaf area SLA0 in CLM4.5. For clarity, we display these dotted curves on the Ma0 = 300 (g/m2) plane.
Here, NET, NDT, BET, BDT, and BDS denote needleleaf evergreen tree, needleleaf deciduous tree, broadleaf evergreen tree, broadleaf deciduous tree, and
broadleaf deciduous shrub, respectively.
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Fig. S2. Comparison of the gm-including (A) Vcmax, (B) Jmax, and (C) TPU predicted with the colimiting conversion function to corresponding values optimized
directly from A/Ci curves with the colimiting FvCB model. In each plot, the 1:1 line is included as a reference. The correlation coefficient is 0.91, 0.87, and 0.98
for Vcmax, Jmax, and TPU, respectively.

Sun et al. www.pnas.org/cgi/content/short/1418075111 8 of 14

www.pnas.org/cgi/content/short/1418075111


0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

g
m

−lacking V
cmax

 (µmol m−2s−1)

g m
−i

nc
lu

di
ng
V
cm
ax

 (µ
m

ol
 m

−2
s−1

)

g
m

1.0 (Mono−limiting)
1.5 (Mono−limiting)
2.0 (Mono−limiting)
1.0 (Co−limiting)
1.5 (Co−limiting)
2.0 (Co−limiting)

0 25 50 75 100 125 150
0

50

100

150

200

250

g
m

−lacking J
max

 (µmol m−2s−1)

g m
−i

nc
lu

di
ng
J m
ax

 (µ
m

ol
 m

−2
s−1

)

0 5 10 15 20
0

5

10

15

20

g
m

−lacking TPU (µmol m−2s−1)

g m
−i

nc
lu

di
ng
TP
U

 (µ
m

ol
 m

−2
s−1

)

A

B

C

Fig. S3. The comparison of the monolimiting (solid curves) and colimiting (dashed curves) conversion functions at different values of mesophyll conductance
gm (μmol/m2/s/Pa) for (A) Vcmax, (B) Jmax, and (C) TPU.
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A

B D
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Fig. S4. Mean annual GPP (gC/m2/y) of the period 1985–2004 for the simulation of (A) CTRL, the control simulation with CLM4.5; (B) IMED, the intermediate
simulation with mesophyll conductance model and gm-lacking photosynthetic parameters; and (C) MESO, the final, fully updated simulation with mesophyll
conductance model and gm-including photosynthetic parameters. (D and E) Differences from the CTRL simulation for the IMED and MESO simulations, re-
spectively. The value shown on the Upper Right of each panel is the estimated mean annual global GPP (PgC/y). All simulations are driven by reanalysis climate
and observed atmospheric CO2 concentrations. The colimiting conversion function is used in these simulations.

Sun et al. www.pnas.org/cgi/content/short/1418075111 10 of 14

www.pnas.org/cgi/content/short/1418075111


A B

C

Fig. S5. Temporal and spatial variations of the difference in the CO2 fertilization effect (ΔCFE, PgC/y) on annual gross primary production simulated with
CLM4.5 between with and without explicit consideration of mesophyll conductance (gm). The monolimiting conversion function is used to establish the gm-
lacking to gm-including photosynthetic parameter correspondence. (A) Historical trends in ΔCFE (blue curve, left ordinate) and in atmospheric CO2 concen-
tration (ppm, red dots, right ordinate) from 1901 to 2010. (B) The variation of the global and latitudinal ΔCFE with atmospheric CO2 concentration. The global
curve (red) is fitted with a line (y = −10.233 + 0.035x, r2 = 0.96). (C) The global variation in the slope (gC/m2/y/ppm) of the linear regression of the grid-based
ΔCFE as a function of atmospheric CO2 concentration.

Fig. S6. Temporal variation of the difference in the annual global GPP simulated with CLM4.5 between with and without explicit consideration of mesophyll
conductance (gm). This figure is similar to Fig. 1A except that there is no offset in the baseline reference GPP between the two models. The colimiting con-
version function is used to establish the gm-lacking to gm-including photosynthetic parameter correspondence. The historical atmospheric CO2 concentration is
also shown. The two dash vertical (black) and horizontal (red) lines identify the years and the range of atmospheric CO2, respectively, in which the gm-lacking
model has minimal bias.
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Fig. S7. Typical examples of the contrast in leaf net photosynthetic rate as a function of intercellular CO2 concentration calculated with a leaf photosynthetic
model between including (dashed curves) and lacking (solid curves) explicit consideration of mesophyll conductance (gm). In each panel, the uppermost dashed
and solid curves represent direct fitting of the gm-including and gm-lacking models, respectively, to the data (dots) measured (A and B) or simulated (C) at
indicated PPFD (μmol/m2/s) and temperatures (°C). The difference in fit between the gm-including and gm-lacking models is more clearly seen in the Inset of
each panel, which shows the difference in calculated leaf photosynthetic rate (y axis, μmol/m2/s) as a function of intercellular CO2 concentration (ppm). The
photosynthetic parameters obtained in the fittings are then used to calculate photosynthesis at other PPFD and temperatures, which are indicated in A only
but are the same in B and C.
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Table S1. Empirical constants used in the gm model

Symbol Equation Value Source

Modeling mesophyll conductance
at canopy top
a Eq. S2 24.240338 Fit from Niinemets et al. (2)
b −0.6509

Canopy integration of
mesophyll conductance
d Eqs. S3, S4, S7 0.8109 Fit from Montpied et al. (21)
f Eqs. S5, S7 0.221897 Fit from Niinemets (15)
kI Eqs. S6, S7 0.5 Theoretical value (23)
kg Eq. S7 0.08997 = kI ·d · f

Temperature response function
c Eq. S8 20 Bernacchi et al. (5)
ΔHa 49.6 × 103 J/mol
ΔHd 437.4 × 103 J/mol
ΔS 1.4 × 103 J/mol/K

Table S2. Empirical constants in the conversion function that relates the gm-lacking to gm-including parameters at
a reference temperature of 25 °C

Photosynthetic parameter
(μmol/m2/s) p q u v r2

RMS
(μmol/m2/s) Source

Monolimiting conversion function
Vcmax 0.1164 1.2643 0.6429 0.9431 0.83 18.0437 Sun et al. (13)
Jmax 0.0084 0.7552 0.6230 −0.1166 0.97 7.5290
TPU 0.1249 1.8059 0.2525 1.5905 0.99 0.3597

Colimiting conversion function
Vcmax 0.0340 1.1253 0.8787 0.4801 0.83 42.9184 This study
Jmax 0.2935 1.4838 0.0858 0.1726 0.75 62.7638
TPU 0 0 0 0 0.97 0.9254

Two sets of constants are given: one is for the monolimiting FvCB model and reproduced from Sun et al. (13) and the other is for the
colimiting FvCB model and estimated in this study. TPU for the colimiting FvCB model differs little between the gm-including and
-lacking considerations and as such all its associated constants are effectively zero (Eq. S14).

Table S3. Values of key photosynthetic parameters for each PFT in CLM4.5

PFTs
Ma0

(gC/m2)*
gmax0

(μmol/m2/s/Pa)
gm-lacking

Vcmax (μmol/m2/s)
gm-lacking Jmax

(μmol/m2/s)
gm-including

Vcmax (μmol/m2/s)†
gm-including

Jmax (μmol/m2/s)

NET temperate 100.00 1.21 62.50 107.19 132.16 (132.31) 143.59 (124.39)
NET boreal 125.00 1.05 62.60 107.36 145.20 (143.68) 152.81 (127.06)
NDT boreal 41.67 2.14 39.10 67.06 52.83 (55.23) 76.29 (71.89)
BET tropical 83.33 1.36 55.00 94.33 100.90 (103.48) 120.77 (106.83)
BET temperate 83.33 1.36 61.50 105.47 120.11 (121.29) 135.36 (120.53)
BDT tropical 33.33 2.47 41.00 70.32 53.89 (55.91) 78.14 (74.94)
BDT temperate 33.33 2.47 57.70 98.96 83.47 (84.91) 110.32 (107.07)
BDT boreal 33.33 2.47 57.70 98.96 83.47 (84.91) 110.32 (107.07)
BES temperate 83.33 1.36 61.70 105.82 120.73 (121.85) 135.81 (120.96)
BDS temperate 33.33 2.47 54.00 92.61 76.50 (78.20) 103.18 (99.89)
BDS boreal 33.33 2.47 54.00 92.61 76.50 (78.20) 103.18 (99.89)
C3 arctic grass 33.33 2.47 78.20 134.11 126.66 (125.09) 149.94 (147.52)
C3 grass 33.33 2.47 78.20 134.11 126.66 (125.09) 149.94 (147.52)

Leaf temperature and mean growth temperature are assumed to be 25 °C. Here the mean growth temperature refers to the 10-d mean air temperature,
which is used to account for the acclimation effect of Jmax/Vcmax ratio in CLM (33). BDS, broadleaf deciduous shrub; BDT, broadleaf deciduous tree; BES,
broadleaf evergreen shrub; BET, broadleaf evergreen tree; NDT, needleleaf deciduous tree; NET, needleleaf evergreen tree.
*Some PFTs share the same values of SLA0 and therefore Ma0 (=1/SLA0) in CLM, which leads to the same values of Ma and gmax at canopy top for these PFTs.
†Two sets of Vcmax and Jmax values are shown here when gm is included, corresponding to colimiting and monolimiting conversion functions, respectively.
Values in parentheses are those from the application of the monolimiting conversion function.

Sun et al. www.pnas.org/cgi/content/short/1418075111 13 of 14

www.pnas.org/cgi/content/short/1418075111


Table S4. Summary of global simulations

Simulation Description

Transient CO2 simulations
CTRL Control simulations with the default CLM4.5
IMED Intermediate simulations that use CLM4.5 with the mesophyll conductance

(gm) model only, but retain the original phenomenological (gm-lacking)
photosynthetic parameters

MESO Fully updated simulations that use CLM4.5 with the gm model and the
gm-including photosynthetic parameters

Constant CO2 simulations
CTRL_cCO2 Same as CTRL, but with a constant atmospheric CO2 concentration (296 ppm at 1901)
MESO_cCO2 Same as MESO, but with a constant atmospheric CO2 concentration (296 ppm at 1901)

The MESO simulations are repeated with the colimiting and monolimiting conversion functions.

Other Supporting Information Files

Dataset S1 (XLSX)
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