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Carbon Cycling and Partitioning
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Trend of Carbon Partitioning
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Large Uncertainty of Land C Sink to
Climate by model simulation (historical)

Trendy
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Large
Uncertainty
of Land C
Sink to CO2

increase and
Climate
(Projection)

CMIP5
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Terrestrial Carbon Cycle: Concepts

Dickinson, 2012; Bonan, 2008
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Mesophyll Diffusion of CO2

Mesophyll Diffusion:
CO2 diffusion from Intercellular to Chloroplast

Intercellular

Space

Chloroplast

CO2 in

O2, H2O out

Stomata

(Niinemets, 2009)
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CO2

enters

here

CO2 is 

assimilated 

here

Mesophyll diffusion

Current carbon cycle models predict photosynthesis as if CO2 was 

assimilated inside the substomatal cavities

CO2 is assimilated in the stroma inside the 
chloroplasts

http://micro.magnet.fsu.edu/cells/plantcell.html
http://micro.magnet.fsu.edu/cells/plantcell.html
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Stomatal diffusion vs. mesophyll diffusion

Medium Diffusivity (m2s-1)

Air 1.381 × 10-5

Cell wall 1.7 × 10-9

Plasmalemma 10-14 - 10-11

Cytosol 1.7 × 10-9

Chloroplast envelope 10-14 - 10-11

Stroma 1.7 × 10-9

CO2 diffusivity in different media

Stomatal diffusion: Gas phase only

Mesophyll diffusion: Liquid and lipid phases – cell walls, 

plasmalemma, cytosols, chloroplast envelopes, and stroma 

CO2 diffusion in liquids and lipids is several orders of magnitude slower than in air

Mesophyll layers constitute a major barrier for CO2 movement inside leaves



CO2 drawdown
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Chloroplast

Stomata

Journey of CO2 inside C3 Plant Leaves

CaCO2 @ Atmosphere

CsCO2 @ Leaf Surface

CiCO2 @ Intercellular

Cc
CO2 @ Chloroplast

Intercellular 
Space

gb
Boundary 

Conductance

gs
Stomatal

Conductance

gmMesophyll 
Conductance
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Methods of determining mesophyll conductance

 Chlorophyll fluorescence

- Variable J (Harley et al. 1992; Gu and Sun 2013)

- Constant J (Harley et al. 1992)

 Online carbon isotope discrimination (Evans et al. 
1986; Gu and Sun 2013)

 Fitting of leaf gas exchange measurements (A/Ci
Curve fitting; Ethier and Livingston 2004; Gu et al. 
2010)

- LeafWeb (leafweb.ornl.gov)
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Photosynthesis Model

Farquhar, 1980

The Photosynthesis Model

A = min(Ac, Aj, Ap)  
Ac: Rubisco-limited (Vcmax)

Aj: RuBP regeneration-limited (Jmax)

Ap: Export-limited (TPU)

A = f (Vcmax, Jmax, TPU, CO2) 

A Variant Photosynthesis Model

(co-limilation)

aAi
2 - (Ac+Aj) Ai + AcAj = 0

bA2 - (Ai+Ap) A + AiAp = 0
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CO2 Response Curve (A/Ci Curve)
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Cc = Ci – An /gm

An : Net C Assimilation

(= A - Rd)

If infinite gm, Cc = Ci

Otherwise, Cc < Ci

By assuming an 
infinite value, gm is 

omitted! 

CO2 drawdown

CO2 @ Atmosphere

CO2 @ Leaf Surface

CO2 @ Intercellular

CO2 @ Chloroplast

A = f (Vcmax, Jmax, TPU, Ci) A = f (Vcmax, Jmax, TPU, Cc) 
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“LeafWeb” 

(leafweb.ornl.gov)

A/Ci A/Cc

Infinite gm Explicit gm

True 

Vcmax, Jmax, TPU

• Multiple continents

• >100 Species

• >1000 curves

Leaf gas exchange measurements

Apparent 

Vcmax, Jmax, TPU

Conversion of Fundamental Photosynthetic
Parameters
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Omission of gm leads to underestimation 
of photosynthetic parameters

Mesophyll Conductance gm(μ mol m-2 s-1 Pa-1)
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Ratio (
𝑨/𝑪𝒊 𝒃𝒂𝒔𝒆𝒅 𝑽𝒂𝒍𝒖𝒆

𝑨/𝑪𝒄 𝒃𝒂𝒔𝒆𝒅 𝑽𝒂𝒍𝒖𝒆
) ~ gm

• Parameters are underestimated if not 
explicitly considering gm 

• Divergence diminishes as gm increases
• Vcmax is most sensitive to gm variation 
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The gm modifies functional 
relationships between parameters
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“True” parameters can be obtained from 
A/Ci-based values
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• A/Ci based values can be converted to A/Cc 
based values using an empirical function

• Coefficients differ among Vcmax, Jmax, TPU
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Global Impact of
Mesophyll Diffusion
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A modeling framework for gm

• Leaf-level parameterization

• Scaling up to canopy level

• Sunlit leaf

gm = gmax ∙ fT (T) ∙ fw (θ)

• Shaded leaf

• Vertical gradient
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New Advances from field studies

Ma (g m-2) 

(foliage mass per leaf area)

gmax
(m mol g m-2)

Niinemets, 2009

• A Meta-analysis 
for > 100 species

• No Stress 
(T,water,light)

Maximum gm (no stress )

Y = a ∙ X b ,  R2= 0.79
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Variation of gm with Ma & canopy depth
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Environmental Modifiers

• T Response Function • Water Stress factor

• βtran Calculated 
in host model 
CLM4.5 

• βtran Scaled to 0 
to 1
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Implementation of global mesophyll conductance model in 
CLM4.5

 Structural Updates:

Inclusion of mesophyll conductance model

Photosynthesis model based on Cc instead of Ci

 Parameter Recalibration:

Transformation of apparent photosynthetic parameters (Vcmax, Jmax

and TPU) to corresponding true values using “conversion function”

developed by “LeafWeb”

 Pair Comparison:

Differences in dynamic behaviors between with and without explicit 

representation of mesophyll diffusion
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Simulation protocols
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GPP (1985-2004
mean)

145.17

129.94

146.60

GPP simulation agrees
between with and
without mesophyll
conductance for
contemporary period
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 Runs with or without mesophyll diffusion from 1901 to 2010

 Average annual GPP of 1901 to 1910 used as a reference for quantifying 

the CO2 fertilization effect (CFE) on GPP of the historical anthropogenic 

carbon emissions

 The difference in CFE (CFE) between the runs with and without 

mesophyll diffusion in a given year t

    refiirefcc GPPtGPPGPPtGPPCFE ,, 

CFE with mesophyll CFE without mesophyll

 The ratio of the beta factors of the with-mesophyll to without-

mesophyll runs

 
 
 
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refirefcc

i

c

GPPGPPtGPP

GPPGPPtGPP

t

t
tR

,,

,,










Metrics for quantifying impact of mesophyll diffusion 
on global terrestrial CO2 fertilization
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Globally, ignoring mesophyll diffusion, CO2 fertilization is 

underestimated by 0.05PgC/yr/ppm;

Cumulative total of 142 PgC underestimation, equivalent to the 

total global fossil CO2 emission from 1901 to 1978

Two primary contributors: Tropics (high productivity) and

Boreal region (high mesophyll limitation)
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 Runs with or without mesophyll diffusion from 1901 to 2010

 Average annual GPP of 1901 to 1910 used as a reference for quantifying 

the CO2 fertilization effect (CFE) on GPP of the historical anthropogenic 

carbon emissions

 The difference in CFE (CFE) between the runs with and without 

mesophyll diffusion in a given year t

    refiirefcc GPPtGPPGPPtGPPCFE ,, 

CFE with mesophyll CFE without mesophyll

Metrics for quantifying impact of mesophyll diffusion 
on global terrestrial CO2 fertilization

1057 - 915 = 142 PgC (16%)

142 PgC ~ 17 ppm (17% overestimation)

Assumption: NPP = 1/2 GPP
1/2 released CO2 stays in atmos

1ppm = 2.123 PgC
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From tropics to boreal, the ratio of the beta factors increases, 
indicating higher sensitivity of CO2 fertilization to mesophyll 
diffusion in higher latitudes (high mesophyll limitation)
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Zero bias

17 ppm (mesophyll correction)

Ignoring mesophyll diffusion, Earth System Models over-predict 
the growth rate of atmospheric CO2 due to fossil fuel emissions

Bias of atmos CO2 growth rate in CMIP5 simulations
= [CO2, model(t) – CO2, model(ref)] – [CO2, obs(t) - CO2, obs(ref)]

14 out of 17 model
10-25ppm bias
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2D Graph 3
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Why lacking mesophyll diffusion 
underestimate the CO2 fertilization effect?

 Photosynthetic response to CO2 is a saturating curve

 Larger sensitivity at lower CO2 than at higher CO2

 Models without mesophyll diffusion OVERESTIMATE
CO2 available to Rubisco

 This model structural deficiency is tentatively 
compensated for when models are forced to match 
measurements made at narrowly controlled 
conditions

 The problem worsens when models run for natural 
environmental conditions that deviate from the 
original measurement conditions against which model 
parameters were tuned
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Leaf-scale illustration of Beta factor ratio: Deviation from
measurement conditions bias photosynthesis simulation if
mesophyll diffusion is ignored
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Conclusions

1

2

3

Current global carbon cycle models may over-

predict historical and future growth rates of 

atmospheric CO2 concentration

Mesophyll diffusion is a key process for modeling 

terrestrial primary production and must be 

represented explicitly

Terrestrial biosphere may be more CO2-limited and 

more responsive to the increase in atmospheric 

CO2 concentration than previously thought


