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Abstract To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate
Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the
Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface
between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data
assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based
land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a
compromise between computational cost and the data assimilation performance. The localization distance, a
parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water
equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in
regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely
reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly
ameliorated in the lower-middle latitudes (23°–45°N). Only minimal modifications are made in the
higher-middle (45°–66°N) and high latitudes, part of which is due to the agreement between model and
observation when snow cover is nearly 100%. In some regions it also reveals that CLM4-modeled snow cover
lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snow
move polewardmainly due to the northwardmovement of the snowline (i.e., where largest SCF uncertainty is
and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with
vegetation types, withmixed performance over forest regions and consistently good performance over grass,
which can partly be explained by the linearity of the relationship between SCF and SWE in the model
ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data.
Differences between CMC and CLM4 are generally reduced in densely monitored regions.

1. Introduction

Snow plays a unique role in the global hydrological cycle, water resources management, and atmospheric
predictability. Its special physical properties (high albedo, low thermal conductivity, and ability to change
phase) significantly modulate energy and water exchanges between the atmosphere and the land surface
[Goodison et al., 1999]. In regions where streamflow is dominated by snowmelt, the performance of
hydrological forecasts largely depends on snowpack estimates at the beginning of the forecast period [Clark
and Hay, 2004]. Snowpack acts as a key boundary condition for the atmosphere and influences atmospheric
predictability. A more realistic simulated snowpack enhances springtime surface air temperature
predictability [e.g., Peings et al., 2010]. Furthermore, snowpack impacts atmospheric circulations through
teleconnections. Numerous modeling and observational studies have shown an inverse relationship
between the winter and springtime Eurasian snow-covered area and the summertime Indian Monsoon
rainfall [e.g., Vernek et al., 1995; Bamzai and Shukla, 1999; Turner and Slingo, 2011].

A variety of snowpack products have been generated for hydroclimatic analysis and evaluation of climate
models. Ground measurements usually lack spatial representativeness, especially in regions of high
heterogeneity [Liston, 2004], and are difficult to obtain in many regions especially in complex terrains;
therefore, satellite remote sensing plays an important role in producing global snowpack estimates. Based on
the optical properties of snow, observations of visible and near-infrared bands can detect snow extent in
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most land surfaces [e.g., Hall et al., 2002], and observations of passive and active microwave can estimate
snow mass [e.g., Chang et al., 1982]. However, satellite remote sensing has large errors in certain
circumstances. For example, visible and near-infrared observations cannot discriminate snow from clouds
[Hall and Riggs, 2007], and microwave-based snow retrievals will greatly underestimate snow mass when
water is present in snow [Foster et al., 2005]. Moreover, products from different observing systems may show
discrepancies due to their varied retrieval methods and spatial resolutions. With the absence of ground truth,
comparing these products is difficult. For example, year-round disagreements among products are reported
in the Tibetan Plateau [Savoie et al., 2007].

Land surface models (LSMs) offer another alternative whose advantages include providing spatially and
temporally continuous land states that are energy and water balanced. But LSMs contain inevitable errors
resulting from biased input forcing data, simplified model structure, and imperfect parameterization
schemes [Kato et al., 2007]. We will show that incorporating satellite snow observations into state-of-the-art
LSMs is a way to obtain more accurate and spatially temporally continuous snow products.

Data assimilation techniques, which statistically combine model forecasts with observations based on their
uncertainties, have been developed to improve our estimates of snowpack [e.g., Andreadis and Lettenmaier,
2006; Slater and Clark, 2006; Su et al., 2008]. A variety of observations have been assimilated into LSMs at
regional and continental scales, showing promising results [e.g., Su et al., 2010; De Lannoy et al., 2012]. This
study differs from previous studies in the way that we apply a new data assimilation framework with a large
ensemble atmospheric forcing and provides future potentials for testing multiple ensemble-based data
assimilation algorithms. We also provide analysis of data assimilation performance in various perspectives,
which offers ideas in improving snow data assimilation for future work.

This study employs the Data Assimilation Research Testbed (DART) to assimilate the Moderate Resolution
Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) data into the Community Land Model version
4 (CLM4) and update snow water equivalent (SWE) and snow depth. Background information including data
assimilation techniques, CLM4, DART, and the linkage between DART and CLM4 is provided in section 2.
Observational data assimilated into our DART/CLM4 system, meteorological forcings for CLM4, and
experimental design are discussed in section 3. Results are analyzed in section 4, followed by conclusions in
section 5.

2. Background
2.1. The Ensemble Adjustment Kalman Filter and DART

The ensemble Kalman filters (EnKFs) uses a Monte Carlo method to estimate model forecast error statistics
[Evensen, 1994]. The DART has incorporated a variety of ensemble-based filters, e.g., the traditional EnKF, the
deterministic ensemble adjustment Kalman filter (EAKF), and a non-Gaussian rank histogram filter. The EAKF is
used in this paper; equations and implementations are documented in Anderson [2001]. As opposed to the
traditional EnKF that adds a randomperturbation to observation, the EAKF is a deterministic algorithm based on
the observation uncertainty and the estimated model forecast error.

Land data assimilation algorithms are commonly embedded within LSMs [e.g., Su et al., 2010], which
makes it difficult to maintain the codes if LSMs or data assimilation algorithms are updated frequently. The
DART developed at the National Center for Atmospheric Research (NCAR) has overcome this difficulty by
developing a well-organized software environment with various ensemble-based assimilation methods
that are independent of the details of a dynamical model or biogeophysical model. DART has already been
coupled with the Community Atmospheric Model (CAM4) [Raeder et al., 2012] and produced an
80-member ensemble atmospheric reanalysis. The atmospheric ensemble reanalysis output can provide
ensembles of atmospheric forcing fields for land or ocean ensemble assimilations. The atmospheric
reanalysis samples the uncertainty associated with atmospheric model error and limited atmospheric
observations while maintaining appropriate relationships (for instance, approximate geostrophic balance)
between the variables in each ensemble member. Many traditional land data assimilation studies add
random perturbations to a single set of forcing fields (mainly precipitation and temperature) and may not
retain the appropriate balances between different atmospheric variables. Besides providing basic
ensemble data assimilation algorithms, DART also includes other algorithms necessary to produce high
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quality assimilations in high-dimensional models. More details about DART are documented in an overview
paper [Anderson et al., 2009].

2.2. CLM4 and Its Snow Model

CLM4 [Lawrence et al., 2011], the land component of the Community Earth System Model (CESM) [Gent et al.,
2011], is used in this study for several reasons. First, CLM is a land surfacemodel that benefits from the efforts of
the worldwide community. Active improvements and refinements are continuously being added into CLM.
Second, CLM4 is a state-of-the-art model that has an advanced hydrology scheme. It deepens soil columns to
42m using 15 layers, with the first 10 layers (3.8m) hydrologically active and the bottom 5 layers accounting
for thermal interactions with the underlying deep ground. Third, CLM4 has a sophisticated snow
parameterization scheme that simulates snowpack with up to five layers depending on the snowpack’s
thickness. Besides internal physical processes such as water-heat transport, thawing-freezing, liquid water
retention, and densification, the CLM4 snow model also accounts for snowpack radiation properties by
coupling to the Snow and Ice Aerosol Radiation model [Flanner and Zender, 2005, 2006; Flanner et al., 2007].
Climate models parameterize SCF as a function of grid-mean snow depth, and this functional relationship takes
a wide range of forms in literature [Liston, 2004]. Note that these SCF and snow depth relationships are
equivalent to the snow depletion curves in watershed-scale snowmodeling [Luce and Tarboton, 2004]. Niu and
Yang [2007] parameterized SCF as a function of snow density and snow depth based on monthly analyses; this
SCF depletion curve was implemented in CLM4 and generates more realistic SCF [Lawrence et al., 2011]. This
snow depletion curve is used as the observation operator in the EAKF to simulate the observed state (SCF)
based on prognostic variables (snow depth) in CLM4.

CLM4 is run at 0.9° × 1.25°. The spatial land surface heterogeneity in CLM4 enables that each grid may have
multiple columns to capture potential variability in the snow state variables within a grid cell [Oleson et al.,
2010]. We area-weight all the columns of SCF in a grid cell to get an observational estimate, which is
suboptimal when the observation grid is different from the model grid (e.g., site observations). We directly
update SWE via data assimilation and adjust snow depth based on the physical relationship between SWE
and snow depth, i.e., the change in snow depth is the change in SWE divided by snow density. Snow density
is calculated as prior snow mass divided by prior snow depth. The CLM snow-layer division and combination
is handled by comparing the snow depth in each layer with its predetermined minimum and maximum
values. From the assimilation perspective, it is desirable to adjust SWE directly and then redistribute the new
SWE to the snow depth in each layer according to the above snow-layering scheme.

2.3. DART and CLM4

The CESM version 1_1_1 fully supports a “multiinstance” capability that enables multiple instances of model
components to be run within a single executable. This capability is leveraged by the CLM4/DART assimilation
facility. The ensemble of CLM4 instances is stopped every 24 h (at 00 UTC), and restart files are written. DART
then reads a subset of the variables from the restart file (the prior or forecast) and a set of observations for that
time. An observation operator projects the model states to the observation space, and DART performs
assimilation. The updated variables (the posterior or analysis) are then inserted back into the CLM4 restart file to
be used for the next forecast cycle (Figure 1).

The snow depletion curve in CLM4 parameterizes SCF, a diagnostic variable, as a function of snow density and
snow depth, serving as the observation operator in the EAKF. The model resolution is 0.9° × 1.25°, and MODIS
observations are scaled up to the same resolution. DART only needs to find the grid cells of the observations
and performs assimilations there. In rare occasions where CLM4 ensemble members are not consistent in
regard to the snow presence, i.e., some members may predict that it is snow-free in a particular grid while
others may predict that there is a shallow snow layer in that grid, we do not perform data assimilation.

3. Experimental Setup and Data Sets
3.1. MODIS Satellite SCF Observations

We assimilated the MODIS SCF observations into CLM4 through DART. MODIS sensors (http://modis.gsfc.
nasa.gov/) detect snow cover based on the property that snow has higher reflectance in visible bands and
lower reflectance in near-infrared bands [Salomonson and Appel, 2004]. This retrieval algorithm is
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supplemented by several approaches to map snow on cloudy days [Parajka and Blöschl, 2008; Hall
et al., 2010].

The MODIS/Terra daily, 0.05° resolution global climate modeling grid snow products (MOD10C2; http://
modis-snow-ice.gsfc.nasa.gov/?c=MOD10C2) are used in this study. The absolute accuracy of MODIS SCF
observations can be about 90% but really depends on snow conditions and land cover types [Hall and Riggs,
2007]. The accuracy is largely limited under cloudy conditions, when trace amounts of snow are present, and
over complex terrain and forested regions. To take into account the data quality problem associated with
clouds, we followed Rodell and Houser [2004] to upscale the MODIS SCF data from its original resolution to the
model resolution (0.9° × 1.25°), discarding the proxy observations with sky visibility less than 20% and
average all the other proxy observations within one model grid cell to obtain the MODIS-observed snow
cover of that grid cell. A stationary observation error, 0.1, is chosen as suggested by previous studies
[e.g., Andreadis and Lettenmaier, 2006].

3.2. Meteorological Forcings From DART/CAM4

We use an atmospheric ensemble reanalysis to introduce uncertainties to the snow states in CLM4; the
ensemble reanalysis products are from DART/CAM4 and preserve the full covariance of each model state
while maintaining variability consistent with observational uncertainty. CAM4 is the atmospheric component
of the Community Climate System Model, version 4, a general circulation model used widely for both past
and current climate studies as well as climate projections [Gent et al., 2011]. DART/CAM4 [Raeder et al.,
2012] assimilated observations that are used in the NCEP-NCAR reanalysis plus radio occultation
observations from the Constellation Observing System for Meteorology Ionosphere and Climate [Anthes
et al., 2008]. The CAM4 ensemble reanalyses have been used to force version 2 of the Parallel Ocean
Program (POP2) [Danabasoglu et al., 2012], generating a reasonable ensemble spread and a significantly
improved POP2 analysis. We assume that the ensemble spread in CLM4 members is mainly from the
meteorological forcing, which is consistent with previous studies [e.g., Carpenter and Georgakakos, 2004;
Slater and Clark, 2006] indicating that the uncertainty of hydrological models is dominated by forcing
uncertainty. Investigating uncertainties caused by model structures or parameterization schemes is
beyond the scope of this study. We use 40 out of the 80-member DART/CAM4 reanalyses randomly to
drive the same number of CLM4 ensemble members. We chose 40 ensemble members as a compromise
between computational cost and the EAKF performance [e.g., Reichle et al., 2002].

3.3. Independent Observation-Based Snow Product for Comparison

The Canadian Meteorological Center (CMC) produces one of the few global snow maps (http://nsidc.org/
data/nsidc-0447) incorporating site observations, aircraft detections, and snow models [Brown et al., 2003].
CMC snow depth is generated based on a 6 hourly optimal interpolation of extensive in situ snow depth
reports from the World Meteorological Organization information system. To obtain a reasonably
representative data set, observations taken at elevations 400m higher or lower than the grid-average
elevation are not used, although there is still a low-elevation bias in the data [Brasnett, 1999]. The CMC snow
map has been recognized as the best available global data and is used by many studies to validate model
results [e.g., Su et al., 2010; Reichle and Koster, 2011]. Daily snow depth and seasonal snow maps were
compared directly to our model results.

Figure 1. Flowchart showing the coupling of DART and CLM4.
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3.4. Experiments

In addition to the open-loop case that uses the standard CLM4 settings, we conducted eight experiments to
tune the localization distance [Gaspari and Cohn, 1999] to optimize the data assimilation performance. The
experiments are listed in Table 1.

The localization distance limits the influence of observations to nearby grid cells. The influence of
observation on nearby grid cells is quantified by their correlation multiplied by a regression weight
factor [Gaspari and Cohn, 1999] that decreases with distance. The regression weight decreases to zero at
2 times the localization distance. The significance of spreading information from the observed to the
unobserved grids through the background correlations in land data assimilation is identified by Reichle
and Koster [2003]; however, spurious correlations in two widely spread variables, due to a limited ensemble
size [Anderson, 2007], will degrade the data assimilation performance [Hamill et al., 2001]. The localization
distance should be properly set to avoid spurious error correlations and maximize the value of
observations. Based on our knowledge of the correlations between horizontal grid cells of CLM4, we
tested a set of localization distances (0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, and 0.3 rad) and chose the
distance that optimizes the data assimilation performance as defined in section 4.1.

4. Results and Discussion
4.1. Observation Space Diagnostics

The effectiveness of the data assimilation can be evaluated in “observation space” by comparing the model
forecast estimates of the observations to the actual observations. We used root-mean-square error (RMSE),
the square root of the average squared difference between the model estimates and observations, to
evaluate the data assimilation performance. The evolution of daily RMSE of SCF (Figure 2) shows how the
model forecast errors are reduced by the assimilation of observations. The RMSE has little variability as a
function of time, indicating that the assimilation is stable, neither drifting away from the observations nor
converging to the observations. Figure 2 also shows that the RMSE varies with the number of observations.
November and early December have fewer observations which can be associated with increased RMSE in the
same time period. Large cloud obscurations are found over the extratropics in the Northern Hemisphere

Table 1. List of Eight Experiments With Localization Distance (LD)

LD
LOC0.01 LOC0.03 LOC0.05 LOC0.07 LOC0.1 LOC0.15 LCC0.2 LOC0.3Experiments

Radians 0.01 0.03 0.05 0.07 0.1 0.15 0.2 0.3
Kilometers 60 180 300 420 600 900 1200 1800

Figure 2. Evolution of daily RMSE of SCF in the latitudinal bands spanning from 25° to 75°N. The black curve is for the
forecast (prior) and the red is for the analysis (posterior). Blue circles show the number of observations available, and
blue solid dots show the number of observations that are actually assimilated. Time series spans from November 2002 to
May 2003. Experiment LOC0.01 is chosen.
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(figures not shown), impeding snow cover identification in this time period; consequently, the number of
reliable SCF observations decreases. As observations become more numerous after late December, there is
an obvious decreasing trend in the RMSE.

To determine the localization distance that optimizes the data assimilation performance, we analyzed
eight localization experiments (Table 1); the daily forecast RMSE of SCF from these experiments in the
latitudinal bands spanning from 25°N to 75°N are shown in Figure 3. The RMSE evolves in time with similar
patterns, i.e., increasing as the number of observations decreases and vice versa. The spread of RMSE
among these eight experiments becomes large after December. Case LOC0.05 is clearly superior to the
other experiments as it produces the smallest RMSE for most days. To better quantify the behaviors of
these seven experiments, we calculated area-averaged forecast and analysis RMSE for several regions
(Figure 4). It confirms that LOC0.05 outperforms other experiments in the region of 25°N to 75°N, and in
the regions of 45°N to 75°N and North America (NA). LOC0.03 produces slightly smaller RMSE than
LOC0.05 in Eurasia, which demonstrates that the optimal localization distance may vary with space.
Overall, LOC0.05 outperforms other localization distance experiments, which indicates that the horizontal
error correlation length of snow states in CLM4 is roughly 0.05 rad (about 300 km). Since the error
correlation in the land model is solely dependent on that of the atmospheric forcing, we believe the
heterogeneity of localization distance is decided by the atmosphere model. Knowing that, we do not
further explore the space-dependent localization distance and choose 0.05 rad (about 300 km) as the
optimal localization distance that produces the smallest RMSE globally.

4.2. Model Space Diagnosis

Based on the EAKF theory, data assimilation tends to reduce biases in regions with large model ensemble
spread (i.e., uncertainty); hence, the ensemble spread pattern offers hints of where we expect the assimilation
to have the greatest impact. In DJF (December-January-February; Figure 5a), the SCF spread is largest in the
lower-middle latitudes (23°–45°N), with particularly high values in the Tibetan Plateau, northeastern China,
the Caspian Sea and Black Sea region, and the Rocky Mountain areas. The SCF-ensemble spreads in the
southern Alaska and Canadian boreal forest regions are also comparatively large. Spread in higher-middle
(45°–66°N) and high latitudes is hardly observable; this is simply because the SCF in all the land model
members increases to unity quickly in DJF. In MAM (March-April-May; Figure 5b), the ensemble spread
increases both in the higher-middle and high latitudes. Conversely, it decreases in the lower-middle
latitudes; values are still large in the Tibetan Plateau and part of the Rocky Mountain regions. Figure 5
suggests that the SCF uncertainty is large along snowline (typically over high-elevation regions and dense
vegetation-covered regions). The CAM4-induced reanalysis has accordingly large snowfall and surface air
temperature spread in high-elevation areas (e.g., the Tibetan Plateau, the Iranian Plateau, the Mongolian

Figure 3. Evolutions of daily forecast (prior) RMSE of SCF in the latitudinal band spanning from 25° to 75°N for eight experi-
ments, each has a different localization distance. The black curves are for seven experiments: LOC0.01, LOC0.03, LOC0.07,
LOC0.1, LOC0.15, LOC0.2, and LOC0.3. The red line is for LOC0.05. The blue circles show the number of observations
available, and the blue solid dots show the number of observations that are actually assimilated.

Journal of Geophysical Research: Atmospheres 10.1002/2013JD021329

ZHANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 7096



Plateau, and the Rocky Mountains) and are very likely to pass a large uncertainty into CLM. In
dense-vegetated regions, the interaction between plants and the land surface are complex, and the
parameters are less constrained by observations, resulting in a large uncertainty in CLM4. For example, as
small forcing uncertainty (in CAM4) is found in southern Alaska, large snow uncertainty is thus mostly
due to the dense vegetation as it has a fairly large portion of needle-leaf-evergreen boreal trees. Based on
the SCF spread pattern, we expect that data assimilation will mainly impact the lower-middle latitude
regions in DJF and higher-middle and high latitudes in MAM.

Comparisons between modeled and MODIS-observed SCF reveal internal CLM4 biases and the effects of
data assimilation. In DJF, a large portion of observations are unavailable due to cloud obscuration and lack
of sunlight. We only compare the regions where we have observations throughout more than half of the
season. The open-loop run overestimates SCF in the Tibet Plateau, northern and northeastern China,
central Great Plains, and underestimates SCF in the southern part of the Rocky Mountains, compared to
MODIS SCF (Figure 6a). Discrepancies between model and observations are reduced in the data
assimilation run as would be expected (Figures 6c and 6e); however, assimilation updates are limited in the
higher-middle and high latitude regions (e.g., central Eurasia, northern Alaska, and western Canada;
Figure 7a), due to the small spread of the CLM4 ensembles in these regions and the lack of observations.
Almost all ensemble members generate full snowpack and are no longer strongly influenced by the
observations. In cases where model members indicate full snowpack while the observations do not, this
could possibly be ameliorated by incorporating rule-based algorithms to manually adjust snowpack
[e.g., Zaitchik and Rodell, 2009; De Lannoy et al., 2012] or by adding some spread to the ensembles. In

(a) (b)

(d)(c)

Figure 4. Variations of forecast RMSE (blue dots) and analysis RMSE (red dots) for eight experiments with localization
distances (radians on the X axis) for four regions: (a) 25°–75°N, (b) 45°–75°N, (c) Eurasia, and (d) NA.
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MAM, we have more observations available (Figures 6b and 6d). Data assimilation reduces SCF biases in
most observed regions (e.g., the Tibetan Plateau and northern China) but increases SCF biases in some
particular regions (e.g., northeastern China; Figure 6f); the adjustments move poleward from DJF to
MAM as expected (Figures 7a and 7c). Increased SCF biases in some of the regions suggest that even
though we insert a SWE estimate that incorporates MODIS SCF information, a more accurate SCF estimate
is not guaranteed.

The overall modification of SWE is consistent with that of SCF (Figures 7b and 7d); however, the
poleward shift of the pattern from DJF to MAM is not apparent for SWE, which can be attributed
to the nonlinear relationship between SWE and SCF in CLM4. As stated in section 2.2, we directly
updated the unobserved SWE given the observed SCF through the EAKF, and let the model physics
and parameterization schemes propagate the observation information. Hence, the data assimilation
performance partially depends on the snow depletion curve. In the lower-middle latitudes, since SCF is
generally less than 80%, SCF is very sensitive to SWE and is more sensitive during the snow accumulation
season (i. e., DJF; Figure 8a) than during the snow melting season (i.e., MAM). For example, SWE is reduced
by almost the same amount in DJF and MAM in the Tibetan Plateau, but SCF is reduced much more in
DJF than in MAM. In the higher-middle and high latitudes, SCF is much larger and closer to unity,
especially in DJF; as a consequence, SCF is not sensitive to SWE (Figure 8b). Although SWE is changed by a
fair amount, SCF remains almost unchanged (Figures 7c and 7d; e.g., over the vast Siberia region).

The EAKF linearly regresses the SCF observational increments onto the increments of the unobserved SWE
[Anderson et al., 2009]. As a result, the linearity of the relationship between the ensemble SWE and the
ensemble SCF is important in limiting the error of the EAKF. Figure 9 shows the relationship between SWE and
SCF over two typical grid cells, one over grass and the other over boreal forest. SCF usually reaches unity
quickly in DJF in boreal forest. In the case that the SCF of all the ensemble members equals one, no ensemble
spread is present, and hence the MODIS-observed SCF has no effect on the model. However, some ensemble

(a)

(b)

%

Figure 5. The ensemble spread of SCF averaged for (a) DJF and (b) MAM in 2002–2003. The ensemble spread is calculated
as the standard deviation in SCF among 40 ensemble members. SCF values are averaged for two seasons before calculating
the ensemble spread.
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members may diverge from the majority as suggested by Figure 9a. The ensemble spread of SCF is still
present but is not Gaussian, nor is the relationship between SCF and SWE linear. The situation becomes better
in MAM when snow starts to melt (Figure 9b). Figures 9c and 9d display the relationship between SCF and
SWE over one grass-dominant grid cell for DJF and MAM, respectively. The relationship is quite linear, though
not perfectly. Consequently, the data assimilation performance may be limited, or even degraded, over
boreal forest in DJF, and will show better quality in boreal forest in MAM and over grassland. Quality controls
could be introduced to discard the SWE increments when large errors appear (e.g., the linear regression
coefficient between SCF and SWE is negative).

(a) (b)

(d)(c)

Snow Cover Fraction Snow Water Equivalent

% mm

Figure 7. Seasonal mean differences (data assimilation minus open loop) for (a and c) SCF and (b and d) SWE. Figures 7a
and 7b are for DJF, and Figures 7c and 7d are for MAM.

(a) (b) MAM 2002–2003DJF 2002–2003

(d)(c)

(f)(e)
%

Figure 6. SCF biases (i.e., modeled SCF minus MODIS SCF) for the (a and b) open-loop runs and the (c and d) data assimila-
tion runs. (e and f) The differences (i.e., data assimilation minus open loop) in the normalized absolute SCF biases.
Figures 6a, 6c, and 6e are for DJF, and Figures 6b, 6d, and 6f are for MAM. Normalized absolute SCF biases are defined as the
absolute biases betweenmodeled SCF and MODIS SCF, divided by MODIS SCF. The blank areas in the plots indicate regions
where MODIS observations are missing for more than half of the season.
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4.3. Comparisons With CMC Snow Depth

Our modeled snow depth was evaluated using CMC data. The normalized absolute difference between
assimilated output and CMC data is compared to the normalized absolute difference between the open-loop
output and CMC data (Figure 10). Negative values in Figure 10 indicate reduced difference between CLM4

(a) (b)

Figure 8. Seasonal mean SCF-SWE relationship for two latitudinal bands spanning (a) from 25° to 55°N and (b) from 55° to
75°N. The X axis is SWE in mm, while the Y axis shows the percentage of snow-covered area. Each black dot represents
model states over a particular grid for DJF, and each blue dot represents model states over a particular grid for MAM.

(a) (b)

(d)(c)

MAMDJF

Figure 9. Seasonal mean SCF-SWE relationship over one typical forest grid for (a) DJF and (b) MAM, and one typical grass
grid for (c) DJF and (d) MAM. Each dot in each plot represents one ensemble member.
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and the CMC snow depth (i.e., improvement), and positive values indicate degradation. Considering that the
CMC network is sparse in much of the Northern Hemisphere, large differences between model and CMC
snow depth do not necessarily indicate large model bias. Referring to the site-density map of the CMC
data [Reichle and Koster, 2011, Figure 9c], we compared our model results to the CMC data in densely
monitored regions, which include eastern Europe, the northern Great Plains in Canada, the northeastern United
States, and northern Asia (highlighted in Figure 10 with rectangles). Differences between the model and
CMC data are generally reduced after assimilating MODIS in these highlighted regions. The time series
comparisons of snow depth from the model runs and from CMC (Figure 11) confirm that the data assimilation
results match CMC data better. Over some portions of the observation-sparse regions, typically in dense
forests and high-elevation regions, the data assimilation results are further away from the CMC data. A good
example is over the Tibetan Plateau, where various snow products are often found to disagree [Fret et al., 2012].
Future work on reducing the uncertainty of simulated snowpack in data-sparse regions is needed.

Region 2
Region 3

Region 4

(a) (b)

Region 1

Figure 10. Differences (data assimilation minus open loop) in the normalized absolute snow depth biases for (a) DJF and
(b) MAM. Normalized absolute snow depth biases are defined as the absolute biases between modeled snow depth and
CMC snow depth, divided by CMC snow depth.

(d)(c)

(b)(a)

Figure 11. Time series of snow depth (in meters) in four regions (the highlighted rectangles in Figure 10). The black curve
represents CMC data, the blue for the open-loop runs, and the red for the data assimilation runs (the localization distance
is set to be 0.05 rad).
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5. Conclusions

This study developed an extensible system, DART/CLM4, for land data assimilation, and tested the system by
assimilating MODIS snow cover fraction (SCF) observations. This system is flexible in that land surface models
(e.g., CLM) and data assimilation methods (DART) can each be developed independently. The system can be
easily updated when new versions of CLM are available or when DART includes new data assimilation
algorithms. The large ensemble of reanalysis products used for atmospheric forcing variables overcome the
random perturbations introduced in conventional data assimilation approaches. In addition, DART allows
tuning of the localization distance to maximize the value of observations and to ameliorate spurious
error correlations.

Compared to the open-loop simulations, the RMSE of SCF is largely reduced when MODIS data are
assimilated. The ensemble spread of SCF for DJF (December-January-February) is mainly located in the lower-
middle latitudes, while for MAM (March-April-May), the ensemble spread extends northward. Consequently,
the data assimilation of MODIS SCF is exclusively effective in the lower-middle latitudes in DJF, while notable
adjustments appear in the higher-middle and high latitudes in MAM. Because of the small ensemble size,
sampling errors exist when using the SCF observational increments to calculate the SWE increments,
especially in forests. Compared to the open-loop results, the snow depth simulations from the data
assimilation runs are generally closer to CMC data in the densely observed regions but are farther away from
the CMC data in some portions of the Northern Hemisphere where observations are sparse (e.g., in dense
forests and high-elevation regions). Further work on improving the data assimilation effectiveness in DJF and
controlling the errors in the relationship between the ensemble SCF and snow water equivalent (SWE)
is needed.
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