
Regional feedbacks among fire, climate, and tropical deforestation

William A. Hoffmann1

Departamento de Engenharia Florestal, Universidade de Brası́lia, Brası́lia, Brazil

Wilfrid Schroeder
Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brası́lia, Brazil
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[1] Numerous studies with general circulation models suggest that tropical deforestation
can result in regional-scale climate change; namely, increased air temperature and wind
speed and reduced precipitation and relative humidity. To quantify how this climate
change should affect fire risk, we used the National Center for Atmospheric Research
(NCAR) CCM3.2 general circulation model and remote sensing to estimate the effect of
tropical deforestation on fire risk through the McArthur forest fire danger index (FFDI).
Deforestation reduced precipitation and relative humidity and increased wind speed in
the Amazon, Congo, and Indonesia/New Guinea. FFDI increased by 41, 56, and 58% in
these three regions, respectively, primarily owing to higher wind speeds and reduced
precipitation. Actual fire occurrence in the Amazon, as determined from NOAA-12
images, was strongly correlated with the FFDI calculated from meteorological data (P �
0.0001). Using the observed relationship between FFDI and fire occurrence, we estimate
increases in fire frequency of 44, 80, and 123%, in the Amazon, Congo, and Indonesia,
respectively, with deforestation. In all three regions the largest relative increases in fire
risk occurred in the more humid areas with the lowest original fire risk. INDEX TERMS:

0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 3360 Meteorology and
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1. Introduction

[2] Uncontrolled fire is a principal factor contributing to
the degradation of deforested and selectively logged tropical
forests. Thinning or removal of the forest canopy permits
greater insolation at the soil surface, which dries fuel,
increases air temperature and reduces relative humidity near
the soil [Uhl and Kauffman, 1990]. So although undisturbed
tropical forest is not typically flammable, even during
moderate drought, selectively logged forest and areas
cleared for pasture are prone to burning [Holdsworth and
Uhl, 1997; Uhl and Kauffman, 1990]. Large areas of pasture
and selectively logged forest burn annually [Cochrane et
al., 1999; Nepstad et al., 1999]. This burning further
reduces tree cover and prevents tree regeneration, resulting

in a positive feedback at the local scale [Cochrane et al.,
1999; Cochrane and Schulze, 1999; Nepstad et al., 2001].
[3] In addition to local changes in microclimate, regional

climate change resulting from large-scale deforestation
should contribute further to this vegetation-climate feedback
[Laurance and Williamson, 2001; Hoffmann and Jackson,
2000; Hoffmann et al., 2002; Nepstad et al., 2001]. Simu-
lations with general circulation models (GCMs) have
repeatedly demonstrated that changes in albedo, roughness
length, leaf-area index and rooting depth caused by tropical
deforestation reduce precipitation and relative humidity and
increase surface temperature and wind speed [Dickinson
and Kennedy, 1992; Hahmann and Dickinson, 1997;
Henderson-Sellers et al., 1993; Nobre et al., 1991; Polcher
and Laval, 1994; Sud et al., 1996; Zeng et al., 1996; Zhang
et al., 1996]. All four of these climatic changes should
increase fire risk [Hoffmann et al., 2002; Noble et al., 1980].
[4] Although these changes are often described as

regional effects of deforestation, such GCM results combine
both local and regional effects [Salati and Nobre, 1991].
Distinguishing between regional and local climate change is
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important because the two are likely to have very different
impacts on fire occurrence. If the changes are entirely local,
the increased fire risk would be limited only to disturbed
sites and would be relatively unaffected by the regional
extent of deforestation. In contrast, a regional component to
this feedback could extend the increased fire risk to undis-
turbed areas and would depend more strongly on the scale
of deforestation.
[5] Here we focus on the regional effects of tropical

deforestation on fire occurrence, using GCM simulations
and remote sensing to answer the following questions: What
are the predicted changes in fire risk and fire occurrence due
to tropical deforestation? What are the relative contributions
of precipitation, relative humidity, wind speed, and temper-
ature to this overall change in fire risk? How does the
increase in fire risk respond to the scale of deforestation?

2. Model and Simulations

[6] Simulations were run using the NCAR Community
Climate Model (CCM3.2) with a spatial resolution of
approximately 2.8� � 2.8� of Earth’s surface (T42 spectral

truncation) and 18 vertical levels. A detailed model descrip-
tion is available from Kiehl et al. [1998]. CCM3.2 is coupled
with the NCAR Land Surface Model (LSM) described by
Bonan [1996]. LSM simulates the fluxes of momentum,
radiation, latent heat and sensible heat between the land and
the atmosphere. An analysis of the control climatology of
CCM3.2/LSM is presented by Bonan [1998].
[7] Within LSM, each grid cell of the vegetated surface of

Earth is assigned one of 28 vegetation types. Each vegetation
type is composed of one or more plant types and/or bare soil.
When vegetation is composed of more than one plant type,
surface variables as well as fluxes of water, energy, and
momentum are averaged over separate vegetation subgrid
cells, each occupied by the respective plant type. A total of
12 plant types are represented in LSM, differing in leaf area,
stem area, root profile, leaf dimension, optical properties,
stomatal physiology, roughness length, and displacement
height. We added a new plant type ‘pasture grass’ for
use in the deforestation scenarios. The LAI of pasture grass
was changed to correspond to data from the Anglo-Brazilian
Amazonian Climate Observation Study (ABRACOS)
project made available by the UK Institute of Hydrology
and the Instituto Nacional de Pesquisas Espaciais (Brazil).
[8] In LSM, albedo is not prescribed as a single param-

eter, but is calculated with a two-stream radiation procedure
based on LAI, leaf optical properties, and leaf orientation.
Leaf optical properties of broadleaf evergreen trees and
pasture grass were adjusted to ensure that simulated albedos
corresponded to values measured over forest and pasture in
the Amazon by ABRACOS (Table 1). This was done by
performing offline simulations of the two-stream procedure
of LSM and adjusting the leaf and stem transmittances and
reflectances accordingly. Following this adjustment, initial
one-year simulations were performed for both the control
and deforested scenarios, yielding average albedo values
of 13.0% and 17.6%, close to measured values of 13.2%
and 17.6% (ABRACOS). Finally, the empirical rooting
parameter b was obtained from the database of Jackson
et al. [1997]. This unitless parameter is defined by the
relation Y = 1 � bd, where Y is the cumulative root
fraction from the soil surface to depth d (cm) [Jackson et
al., 2000].
[9] The use of subgrid cells of different cover types makes

LSM useful for examining local versus regional effects of
deforestation. In LSM, surface variables and fluxes are
normally simulated for each subgrid cover type and a
weighted average is calculated over all subgrid cells of a
given grid cell. For model output, we changed this spatial
averaging, analyzing these variables only over pasture grass
subgrid patches, while retaining the usual subgrid averaging
for feeding the atmospheric model. To permit this, a small
area of pasture grass (5%) was included in control (forest)
simulation. So in all scenarios, wind speed, surface air
temperature, and relative humidity (RH) were analyzed only
over pasture grass cover types, ensuring that any change in
these variables is due to regional changes rather than local
changes caused by the underlying vegetation.
[10] In all simulations performed here, the daily values of

precipitation, maximum wind speed at 10m height, maxi-
mum air temperature, and minimum RH were used to
calculate the McArthur Forest Fire Danger Index [Noble
et al., 1980]. This index was developed to provide a

Table 1. Relevant Surface Characteristics Used in the Simulationsa

Parameter Forest Pasture

Albedo 10.130 0.176
Root distribution parameter 0.972b 0.943b

Roughness length 2.62 0.06
Jan. LAI 4.5 1.8
Feb. LAI 4.5 1.4
Mar. LAI 4.5 1.1
Apr. LAI 4.5 1.7
May LAI 4.5 2.2
June LAI 4.5 2.8
July LAI 4.5 3.3
Aug. LAI 4.5 3.3
Sep. LAI 4.5 3.3
Oct. LAI 4.5 3.3
Nov. LAI 4.5 2.7
Dec. LAI 4.5 2.1
Jan. SAI 0.5 0.3
Feb. SAI 0.5 0.3
Mar. SAI 0.5 0.3
Apr. SAI 0.5 0.4
May SAI 0.5 0.5
June SAI 0.5 0.5
July SAI 0.5 0.6
Aug. SAI 0.5 0.6
Sep. SAI 0.5 0.6
Oct. SAI 0.5 0.6
Nov. SAI 0.5 0.5
Dec. SAI 0.5 0.5
Leaf VIS reflectance 0.095 0.1056
Leaf NIR reflectance 0.428 0.5568
Leaf VIS transmittance 0.0475 0.0475
Leaf NIR transmittance 0.2375 0.2112
Stem VIS reflectance 0.152 0.3456
Stem NIR reflectance 0.37 0.5568
Stem VIS transmittance 0.00095 0.2112
Stem NIR transmittance 0.00095 0.3648

aNote that albedo is not prescribed directly in LSM, but is calculated
from the leaf area index (LAI), stem area index (SAI), as well as the
reflectances and transmittances of the leaves and stems. LAI and SAI values
are for the Northern Hemisphere; for the Southern Hemisphere, the values
are offset by 6 months.

bFor these root distribution parameters, 99% of root surface area occurs
in the top 162 cm of soil for forest trees and in the top 78 cm for pasture
grass.
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Figure 1. (a) Area subjected to deforestation in experiment 2. In the second experiment, six scenarios
were simulated, with 1, 4, 9, 16, 25, and 36 grid cells deforested, respectively. The numbered regions 1 to
6 indicate the sequence of progressive increase in deforested area, i.e., in the one-cell scenario, area 1 was
deforested; in the four-cell scenario, areas 1 and 2 were deforested, etc. (b) The nine areas within which
daily counts of NOAA-12 hot spots were obtained within the Brazilian Amazon. Each is an area defined
by a 100km radius around a meteorological station. Shading indicates forest and white indicates
deforested and savanna ecosystems.
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quantitative measure of fire risk directly related to the
probability of fire occurrence and to the rate of spread. It
is calculated as

FFDI ¼ 2:0 exp �0:450� 0:0345H þ 0:0338T þ 0:0842Vð
þ 0:987 ln Dð ÞÞ; ð1Þ

where H is minimum RH (%), T is maximum air
temperature (�C), V is maximum wind velocity at 10 m in
the open (m/s), and D is a drought factor [Noble et al.,
1980]. The drought factor, which is restricted to values less
than 10, is

D ¼ 0:191* I þ 104ð Þ N þ 1ð Þ1:5

3:52 N þ 1ð Þ1:5þP � 1
; ð2Þ

where N is the number of days without rain, and P is the
amount of precipitation (mm) of the last rainfall event
[Noble et al., 1980]. The Keech-Byram drought index (I), is
calculated based on the time series of past precipitation
events and maximum daily temperatures [Keetch and
Byram, 1968].
[11] Surface RH was calculated at the LSM reference

height (2 m above zero plane displacement). Wind speed at
10 m was calculated as

u10 ¼ u* ln 10� dð Þ=zoð Þ � ymð Þ=k; ð3Þ

where u
*
is friction velocity, d is zero-plane displacement,

z0 is roughness length, k is the von Karman constant, and
Ym is the stability correction factor [Garratt, 1992].

2.1. Experiment 1

[12] Climate was simulated under three scenarios: control
(forest), partial deforestation, and complete deforestation
(pasture). In the control scenario, the vegetation was com-
posed of 95% broadleaf evergreen tree and 5% pasture
grass. In the complete deforestation scenario it was com-
posed of 90% pasture grass and 10% bare soil. The partial
deforestation scenario was intermediate, with 47.5% broad-
leaf evergreen tree, 47.5% pasture grass, and 5% bare soil.
[13] The forest and deforested simulations were run for

13 model years, while the partial deforestation simulation
was run for 9 years. In all cases, the first year of simulation
was discarded as a spin-up to the actual simulation. Simu-
lations were run with AMIP sea surface temperatures.

Table 2. Simulated Effects of Vegetation Change on Mean Annual Values of the Four Meteorological Variables Used to Calculate the

Forest Fire Danger Index (FFDI)

Precipitation, mm
yr�1

Maximum
Temperature, �C

Maximum Wind
Speed, m s�1

Minimum Relative
Humidity, %

Forest Fire Danger
Index

Control Change Control Change Control Change Control Change Control Change

Amazon 2024 �683a 32.4 �0.3a 3.6 +1.9a 60.6 �4.9a 7.00 +2.90a

Africa 2530 �648a 30.8 �0.3a 3.4 +1.6a 64.8 �4.7a 4.33 +2.44a

SE Asia 1023 �86b 28.0 �1.3a 4.2 +1.5a 54.5 +3.2a 8.57 �0.99b

Indonesia 2524 �431a 29.4 �0.0c 2.9 +1.3a 77.1 �1.9a 1.36 +0.79a

Average 2039 �549 31.2 �0.4 3.6 +1.7 62.8 �3.2 5.93 +1.92
aP < 0.005.
bP < 0.01.
cNot significant.

Figure 2. The effect of deforestation on the McArthur
Forest Fire Danger Index (FFDI) in (top) the Amazon basin,
(middle) the Congo Basin, and (bottom) southeast Asia,
Indonesia, and New Guinea. The outlined areas were the
tropical forest regions subjected to the deforestation
scenario. See color version of this figure in the HTML.
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[14] The t-test was used to compare scenarios. Daily
output was first averaged over all grid cells in a region
(Amazon, Congo, SE Asia, Indonesia), and the t-test per-
formed on these daily means. To correct for temporal
autocorrelation in these daily values, the degrees of freedom
were adjusted as recommended by Zwiers and von Storch
[1995].
[15] We calculated the contribution of each of the four

meteorological variables to the overall increase in FFDI.
This was done by calculating FFDI using output from the
forest scenario, but substituting the values of one of the four
variables from the deforested scenarios. For example, to
determine the contribution of increased wind speed to the
overall increase in fire risk, FFDI was calculated from RH,

precipitation, and temperature taken from the control sce-
nario, along with wind speed taken from the deforested
scenario. This estimates the change in FFDI resulting from a
change in only one variable at a time.
[16] To relate fire risk to the El Niño Southern Oscillation

(ENSO), we used the Southern Oscillation Index (SOI)

Figure 3. Contribution of the various meteorological
variables to the overall increase in the forest fire danger
index (FFDI).

Figure 4. Relationship between FFDI and number of
remotely sensed hot spots observed within a 100 km
radius. Each point represents the mean of �50 days of
observations.
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calculated as described by Trenberth [1984] and available
from the NCAR Climate Analysis Section at http://
www.cgd.ucar.edu/cas/catalog/climind/soi.html.

2.2. Experiment 2

[17] These simulations were performed to determine the
effect of increasing area of deforestation on climate and fire
risk. Six simulations were run using the same vegetation
compositions as in experiment 1, but with deforested areas
of 1, 4, 9, 16, 25, and 36 grid cells (2.8� square) in the
Amazon region. The deforested areas of the six scenarios
were nested within each other, as shown in Figure 1a. Each
simulation was run for six years.

3. Meteorological Data and Remote Sensing

[18] To relate FFDI to actual fire activity, FFDI was
calculated for 1998–2002 at nine sites in the Amazon basin

from meteorological data obtained from the Centro de
Previsão do Tempo e Estudos Climáticos (CPTEC/INPE,
Figure 1b). These were chosen from the 20 stations man-
aged by CPTEC within Brazilian Legal Amazon, because
they had the most complete data sets. We eliminated one
station (São Gabriel da Cachoeira) because fires were
detected on only four dates during the study period.
[19] Daily fire counts within a 100km radius of each

meteorological station were obtained from the evening pass
(16:30 to 17:30 local time) of NOAA-12. Evening passes
were used to avoid spurious hot spots from warm or bright
surfaces. To avoid any potential problems resulting from
uncertainty in the absolute area or number of fires, we limit
our interpretation to relative changes in fire number.

4. Results

[20] Deforestation had a substantial effect on the climate
of the tropical forest regions examined. Precipitation
declined by 34% in the Amazon basin, 26% in the Congo
basin, 8% in Southeast Asia, and 17% over Indonesia and
New Guinea (Table 2). Mean daily maximum wind speed
increased by nearly half (1.3–1.9 m s�1) in all four regions
(Table 2). Air temperature at reference height in the open
declined slightly, but significantly in the Amazon, Congo,
and SE Asia. Minimum RH declined by >4.5% in the
Amazon and Congo basins and by 1.9% in Indonesia and
New Guinea, while increasing in Southeast Asia (Table 2).
[21] As a result of these changes in climate, McArthur

Forest Fire Danger Index increased by 41%, 56%, and 58% in
theAmazon, the Congo, and Indonesia/NewGuinea (Table 2,
Figure 2). However, FFDI declined by 12% in Southeast
Asia (Table 2). In the Amazon, the increase in FFDI in
the deforested scenario was due entirely to reduced precip-
itation and increased wind speed, whereas in the Congo
and Indonesia, reduced RH also contributed considerably
(Figure 3).
[22] The observed number of hot spots was significantly

correlated to FFDI at each of the nine study sites (Figure 4;
F > 51.1, P � 0.0001), and for the pooled data (F = 740.4,
P � 0.0001). Pooling data from all sites yielded the
function H = 0.0879*FFDI1.891, where H is the number of
hot spots observed in a day. Using this relationship to
estimate the increase in fire occurrence caused by defores-
tation, we predict fire occurrence to increase 43.9%, 79.5%,
and 123% in the Amazon, Congo and Indonesia/New
Guinea, respectively (Figure 5). In contrast, fire occurrence
is predicted to decline by 24% in SE Asia. Within the
Congo and Amazon regions, the increase was not uniform,
with large areas showing more than a four-fold increase in
predicted fire number. These areas of greatest increase lie
within the humid equatorial regions with the lowest initial
fire risk. In many areas peripheral to the deforested regions,
there was a reduction in fire risk in the deforested scenario
(Figures 2 and 5) relative to the control. This reduction was
associated with increased precipitation and relative humid-
ity and reduced surface air temperature (data not shown).
[23] These predictions of climate change are based on the

unrealistic scenario of complete deforestation over entire
regions. However, even partial deforestation should provoke
a change in climate and fire risk as shown by the nearly
linear responses of FFDI, predicted fire number, and the

Figure 5. The predicted increase in fire occurrence due to
the regional climate change provoked by complete defor-
estation. See color version of this figure in the HTML.
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four meteorological variables to percent deforestation
(Figure 6). Similarly, the magnitude of change in all of these
variables depends on the total area deforested (Figure 7).
[24] Fire risk in the Amazon and in Indonesia was

negatively, but weakly, correlated to the Southern Oscilla-
tion Index (Figure 8, 0.059 < r2 < 0.162, P < 0.003).
Negative values of the SOI indicate El Niño conditions,
so greatest fire risk was observed in El Niño years.

5. Discussion

[25] The simulated climate change caused by tropical
deforestation substantially increased fire risk and predicted

fire number. This increased fire risk due to regional climate
change is additional to that caused by local microclimatic
changes in degraded and deforested sites. Both the local
microclimatic change and the regional climate change are
likely to contribute to a positive feedback loop in which
deforestation results in increased fire frequency and further
reductions in tree cover.
[26] The positive feedback provoked by the local effects

of deforestation is already very evident in the Amazon.
When a forest is degraded by selective logging, a more open
canopy permits higher understory temperatures, lower rel-
ative humidity, and more rapid fuel drying. Consequently,
the forest becomes much more flammable, permitting large

Figure 6. Relationship between completeness of deforestation and climate. In the intermediate scenario,
forest cover in each grid cell was reduced by half, and in the deforested scenario, all forest cover was
removed.
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areas of degraded forests to burn every year [Cochrane et
al., 1999; Nepstad et al., 1999], causing widespread tree
mortality and impeding further regeneration. Thus, by
preventing canopy closure, fire maintains conditions that
promote future fires.
[27] Although these microclimatic effects of deforestation

do not extend more than a few tens of meters into forest
patches [Davies-Colley et al., 2000; Giambelluca et al.,
2003; Newmark, 2001], the regional climate change exam-
ined in the present study should increase fire risk in areas
not directly degraded by humans. In consequence, even
large, well-protected forest reserves may be affected. Pri-
mary tropical forest typically requires prolonged drought to
become flammable, so in most years relatively little undis-
turbed forest burns. However, due to regional climate
change, these conditions will likely be met more frequently
in the remaining forest patches.
[28] Unlike the local changes in microclimate, regional

climate change depends on the spatial extent of deforesta-
tion. FFDI and the meteorological variables were all corre-
lated with the number of grid cells deforested (Figure 7).
Furthermore, FFDI was nearly linearly related to the frac-
tion of deforestation within grid cells (Figure 6). These two
results indicate that even partial deforestation could worsen
the problem of fire in tropical forests.
[29] The increased fire risk in the deforestation scenario

was caused by increased wind speed and reduced precipi-
tation and relative humidity. Air temperature, which de-

creased in response to deforestation, did not contribute to
the increased fire risk. This decline in temperature was
unexpected, as other deforestation studies have almost
invariably shown an increase in surface temperature. In
the present study, however, air temperature, along with wind
speed and relative humidity, was obtained exclusively over
pasture subgrid cells in all scenarios to control for the local
effects of underlying vegetation. When averaged over all
subgrid cells in these simulations, as is typically done in
LSM, deforestation causes an increase of 	1.7�C (data not
shown), a change comparable to other GCM studies. The
increase in air temperature due to deforestation is caused
principally by a reduction in roughness length [Eltahir and
Bras, 1993; Hahmann and Dickinson, 1997; Hoffmann and
Jackson, 2000], but this effect disappears when we control
for underlying vegetation type, indicating that it is a local
effect of deforestation limited to the sites where deforesta-
tion occurs. In reality, we would expect the increased air
temperature to extend a few tens of meters into surrounding
areas [Davies-Colley et al., 2000; Giambelluca et al., 2003;
Newmark, 2001], but LSM does not allow for such advec-
tion among subgrid patches.
[30] Here, air temperature over pasture patches actually

declined in response to deforestation of the remaining
forest, probably due to the increased wind speed, which
facilitates the dissipation of sensible heat to the atmosphere.
[31] Deforestation caused the greatest relative increases in

fire risk in the humid equatorial zone (Figures 2 and 5).

Figure 7. Relationship between deforested area and climate. The fitted lines represent the average slope
through the points of the separate regions, as determined by analysis of covariance. The five regions refer
to the nested blocks in Figure 1.

ACL 4 - 8 HOFFMANN ET AL.: FEEDBACKS OF VEGETATION, CLIMATE, AND FIRE



These are the areas with the lowest initial fire risks, so
despite large relative increases, the contribution to regional
means is relatively low. For example, in the Amazon where
much of the area is predicted to experience an increase in
fire number of >400% (Figure 5), the basin-wide total is
expected to increase only 44%. Most fires occur in the
seasonally dry forest regions near edges of the core forest
areas, where there was little or no increase in fire risk
following deforestation. And in the areas peripheral to the
tropical forests, fire risk was reduced. However, these areas
dominated by savanna vegetation are being cleared even
more quickly than in the tropical forests, causing increased
fire risk likely to offset the reductions seen here [Hoffmann
et al., 2002].
[32] Predicting future fire frequencies will require a more

complete understanding of the contributions of other deter-
minants such as greenhouse warming and ENSO. Climate
change due to the greenhouse effect is likely to be additive

to that caused by deforestation [Costa and Foley, 2000;
Zhang et al., 2001], so the increase in fire risk shown here
will be compounded with that expected from greenhouse
warming [e.g., Flannigan et al., 2000; Williams et al.,
2001]. Furthermore, increase in fuel accumulation due to
elevated CO2 may increase fire frequency and intensity
[Sage, 1996]. The role of El Niño is also important, since
the Amazon and Indonesia experience drought during El
Niño events [Trenberth et al., 1998], resulting in increased
fire occurrence [Nepstad et al., 2001; Siegert et al., 2001].
In the present study, fire risk was significantly, albeit
weakly, correlated to the Southern Oscillation Index, as
expected, since CCM3 generates weather patterns similar to
El Niño in response to sea surface temperatures [Meehl and
Arblaster, 1998].
[33] Several factors limit our ability to predict the effect

of climate change on future fire regimes. The coarse scale of
GCM is not adequate for simulating mesoscale circulations
that may arise from the landscape heterogeneity resulting
from tropical deforestation [Baidya Roy and Avissar, 2002;
Weaver et al., 2002]. Because of convection generated over
pasture sites, mesoscale models suggest that low levels of
deforestation may actually increase precipitation [Avissar et
al., 2002]. Also, because of the poor temporal and spatial
resolution of AVHRR hot spots, the number of hot spots is
not a perfect surrogate for total area burned. Furthermore,
fire intensity and fuel consumption, two aspects of fires that
have important consequences for forest regeneration and
carbon storage, also respond to climate but cannot be
resolved with the data presented here.
[34] The role of humans as the primary ignition source in

tropical forest regions also introduces considerable uncer-
tainty in how fire regimes will respond to future climates.
The use of fire by humans is largely a function of socio-
economic factors such as land use, population density, and
distance from roads. These pressures are likely to increase
ignition events in the future [Cardoso et al., 2003], but here
we disregard such changes to separate them from climatic
impacts.
[35] Although humans set most of the fires in tropical

forest regions, we can expect climate to be the primary
driver of interannual variations in fire occurrence, as has
been shown in other regions where fires are primarily
anthropogenic [Veblen et al., 1999; Millán et al., 1998;
Barbosa et al., 1999]. Even so, possible interactions
between climate and human behavior may confound esti-
mates of climate impacts on fire occurrence. The observed
relationship between FFDI and hot spot number might be
partially determined by human behavior, since land owners
typically burn recently deforested lands at the end of the dry
season when fuel and atmospheric conditions ensure more
complete combustion of the fuel. If such burning of slash
accounts for all of the area burned, then climate change may
not strongly increase fire occurrence, since the rate of
deforestation would limit annual area burned. However,
Cardoso et al. [2003] found that, of five variables exam-
ined, rate of deforestation was the least useful for explaining
the number of observed hot spots in the Amazon. Similarly,
in a study involving >900,000 ha in 202 land holdings in
five regions in the Brazilian Amazon, Nepstad et al. [1999]
found that deforestation fires accounted for only 13% of
burned area, suggesting that the timing of these fires can

Figure 8. Relationship between Southern Oscillation
Index (SOI) and relative monthly anomaly in FFDI in the
Amazon Basin. The relative monthly anomaly was
calculated as (X � X forest)/(X forest) where X is the monthly
mean and X forest is the multiyear mean for that month under
the forest scenario. Fire risk was greater under El Niño
conditions (negative SOI values).
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account for little of the correlation between FFDI and hot
spot number.
[36] While human behavior may influence the relation-

ship between FFDI and area burned by determining the
timing of ignitions, it is important to note that total area
burned also depends strongly on the mean area burned per
ignition. The success of ignition, the rate of spread, the
likelihood of escaping control, and consequently, area
burned per ignition are largely determined by atmospheric
conditions and fuel dryness. The FFDI takes current weather
and fuel dryness into account, explaining the strong rela-
tionship between FFDI and observed fire number. These
factors are likely to be particularly important for determin-
ing the number and extent of accidental burnings. In the
aforementioned study, Nepstad et al. [1999] found that 67%
of the burned area was unintentional. Climate change is
likely to have a particularly strong impact on these unin-
tentional burns by increasing the number of fires that escape
control and the subsequent area burned.

6. Conclusion

[37] Climate has a strong impact on fire frequency and
intensity, which in turn have strong impacts on vegetation
dynamics. Consequently, fire is likely to play an important
role in vegetation-climate feedbacks. This is particularly
true in tropical forests, where a combination of rapid
deforestation, widespread fire use, and fire-sensitive vege-
tation create conditions that permit such a feedback to occur.
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