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ABSTRACT

An assessment is made of downscaling estimates of screen temperature and precipitation observed at 976
European stations during 1983–94. A statistical downscaling technique, in which local values are inferred from
observed atmospheric predictor variables, is compared against two dynamical downscaling techniques, based
on the use of the screen temperature or precipitation simulated at the nearest grid point in integrations of two
climate models. In one integration a global general circulation model (GCM) is constrained to reproduce the
observed atmospheric circulation over the period of interest, while the second involves a high-resolution regional
climate model (RCM) nested inside the GCM.

The dynamical and statistical methods are compared in terms of the correlation between the estimated and observed
time series of monthly anomalies. For estimates of temperature a high degree of skill is found, especially over western,
central, and northern Europe; for precipitation skill is lower (average correlations ranging from 0.4 in summer to 0.7
in winter). Overall, the dynamical and statistical methods show similar levels of skill, although the statistical method
is better for summertime estimates of temperature while the dynamical methods give slightly better estimates of
wintertime precipitation. In general, therefore, the skill with which present-day surface climate anomalies can be
derived from atmospheric observations is not improved by using the sophisticated calculations of subgrid-scale processes
made in climate models rather than simple empirical relationships. It does not necessarily follow that statistical and
dynamical downscaling estimates of changes in surface climate will also possess equal skill.

By the above measure the two dynamical techniques possess approximately equal skill; however, they are
also compared by assessing errors in the mean and variance of monthly values and errors in the simulated
distributions of daily values. Such errors arise from systematic biases in the models plus the effect of unresolved
local forcings. For precipitation the results show that the RCM offers clear benefits relative to the GCM: the
simulated variability of both daily and monthly values, although lower than observed, is much more realistic
than in the GCM because the finer grid reduces the amount of spatial smoothing implicit in the use of grid-box
variables. The climatological means are also simulated better in the winter half of the year because the RCM
captures some of the mesoscale detail present in observed distributions. The temperature fields contain a me-
soscale orographic signal that is skillfully reproduced by the RCM; however, this is not a source of increased
skill relative to the GCM since elevation biases can be largely removed using simple empirical corrections based
on spatially averaged lapse rates. Nevertheless, the average skill of downscaled climatological mean temperature
values is higher in the RCM in nearly all months. The additional skill arises from better resolution of local
physiographical features, especially coastlines, and also from the dynamical effects of higher resolution, which
generally act to reduce the large-scale systematic biases in the simulated values. Both models tend to overestimate
the variability of both daily and monthly mean temperature. On average the RCM is more skillful in winter but
less skillful in summer, due to excessive drying of the soil over central and southern Europe.

The downscaling scores for monthly means are compared against scores obtained by using a predictor variable
consisting of observations from the nearest station to the predictand station. In general the downscaling scores
are significantly worse than those obtained from adjacent stations, indicating that there remains considerable
scope for refining the techniques in future. In the case of dynamical downscaling progress can be made by
reducing systematic errors through improvements in the representation of physical processes and increased
resolution; the prospects for improving statistical downscaling will depend on the availability of the observational
data needed to provide longer calibration time series and/or a wider range of predictor variables.

1. Introduction

Global atmospheric general circulation models
(GCMs) used in long-term climate change experiments
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are currently limited to a horizontal resolution of about
300 km (e.g., Johns et al. 1997). Results from GCMs
are the primary source of information for assessments
of the future impacts of climate change. For some types
of impact assessment (e.g., risk of drought or flooding
on large catchments) areally averaged quantites such as
the grid-box variables output from a GCM may be suf-
ficient; however, in many cases information will be re-
quired at a network of point locations (Robinson and
Finkelstein 1991), implying the need to ‘‘downscale’’
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the GCM output. This is particularly true when the mod-
el results are required to drive impact models such as
agricultural crop models (e.g., Mearns et al. 1997). This
paper therefore addresses the problem of downscaling
to individual sites, although the importance of validating
GCMs at the grid-box scale (e.g., Osborn and Hulme
1997) is also recognized.

Any viable downscaling technique must take account
of the regional forcings (arising from orography, coast-
lines, lakes, land surface characteristics, etc.) known to
influence local climate. Three distinct methods can be
identified. First, the local variable in question (e.g., sur-
face air temperature T or precipitation P) can be pre-
dicted from values of the corresponding variable sim-
ulated at nearby GCM grid points, with empirical ad-
justments to allow for systematic simulation errors and
unresolved subgrid-scale effects. Second, output from
the GCM can be used to drive a nested high-resolution
regional climate model (RCM), whereupon the predic-
tion is derived from simulated values of the variable at
nearby RCM points. Following previous authors these
will be referred to as ‘‘dynamical’’ downscaling tech-
niques. The third method is to use a fully statistical
approach based on the development of relationships
linking the local variable to atmospheric predictor var-
iables [see Wilby and Wigley (1997) for a review]. The
assumption underlying the statistical approach is that
the atmospheric circulation in a GCM simulation is more
likely to be reliable than the distributions of surface
climate elements such as T or P (e.g., Karl et al. 1990),
since these are more directly influenced by errors arising
from the parameterization of subgrid-scale physical pro-
cesses such as radiative transfer, cloud and precipitation
formation, and turbulent transports in the boundary lay-
er.

Computationally, the most expensive approach is the
nested modeling method, in which sea surface temper-
atures (SSTs) and lateral boundary conditions (surface
pressure and atmospheric winds, temperatures, and hu-
midities) saved from the GCM integration are used to
drive an RCM of resolution 50–100 km. Following ini-
tial experiments by Giorgi and coauthors (Giorgi and
Mearns 1991), RCM integrations (sometimes driven by
operational analyses rather than GCM output) have now
been run by a number of groups for different parts of
the world, including several multiannual integrations in-
corporating the seasonal cycle (Giorgi et al. 1993a;
Giorgi et al. 1994; R. G. Jones et al. 1995, 1997; Hir-
akuchi and Giorgi 1995; Giorgi and Marinucci 1996).
Results show that distributions of T and P contain a
significant signal on scales not resolved by the global
GCMs, whereas the large-scale circulation in the RCM
generally follows that of its driving model, provided the
domain is not too large. Thus the RCM acts, as required,
as a physically based interpolator of the GCM output.

This intensive approach can only be justified if dy-
namical downscaling based on RCM output is found to
be more skillful than either dynamical or statistical

downscaling directly from GCM output. In order to ad-
dress this question the three approaches are compared
in this paper. Station observations of daily and monthly
averaged T and P over Europe are estimated using the
value of T or P simulated by each model at the nearest
land point to the target station. These dynamical meth-
ods are compared against each other. For monthly mean
data, they are also compared against statistical estimates
obtained from regression equations linking the station
observations to atmospheric predictor variables.

In this study the downscaling methods are assessed
under present climate conditions. Use of the methods
for climate change predictions will be discussed in a
future paper. The required model integrations are per-
formed using a GCM and RCM that are both configu-
rations of the U.K. Meteorological Office Unified Fore-
cast/Climate Model (UM; Cullen 1993). They possess
identical subgrid-scale physics packages and the same
distribution of vertical levels, differing only in hori-
zontal resolution (;300 km vs 50 km) and related as-
pects (time step, diffusion, etc.). They are updated ver-
sions of the models used in the simulations of European
climate described by R. G. Jones et al. (1995, 1997).

Calibration and verification of the downscaling meth-
ods is carried out using observations from June 1983
to February 1994. For each of the 129 months in the
period regression relationships required for statistical
downscaling are calibrated using parallel observed time
series of the predictor and predictand (station) variables
that exclude the target month. The relationships are then
applied in the target month to generate a downscaling
estimate of the observed station value. In order to obtain
corresponding dynamical estimates, simulated fields of
T and P must be generated that are consistent with the
observed circulation over the same period. This is ac-
complished by forcing the GCM with a time series of
operational analyses using the UM data assimilation
code for numerical weather prediction (Noguer et al.
1998). The RCM is then integrated using a time series
of atmospheric lateral boundary conditions saved from
the GCM. During the RCM integration no attempt is
made to assimilate analysis data in the interior of the
domain. This is because only large-scale analyses were
available, the assimilation of which would restrict the
development of fine-scale features in the RCM. How-
ever, the RCM is integrated using a small domain so
that the synoptic-scale circulation is constrained to fol-
low that of the GCM (and hence observations) as closely
as possible.

Note that by adopting this experimental design the
influence of systematic errors in the GCM circulation
is explicitly excluded, as in a similar study recently
performed by Kidson and Thompson (1998). This is
done to allow a clean comparison between the different
approaches under idealized conditions. In practice the
influence of circulation errors will degrade the skill of
both the statistical and dynamical methods but will not
necessarily change their relative performance.
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The dynamical downscaling results for monthly
means are compared using simple measures of skill:

1) the correlation between downscaled and observed
variations in time; and

2) the magnitude of corrections to the mean and vari-
ance of the simulated distributions needed to repro-
duce the mean and variance of the observed distri-
butions.

It is perfectly possible to obtain skillful predictions of
(say) the phase of interannual anomalies from a model
that gives poor predictions of the interannual variance,
or vice versa. Unless a dynamical downscaling method
shows skill according to both criteria 1 and 2, it is
reasonable to conclude that the model does not ade-
quately represent all the relevant physical processes. On
the other hand, skillful performance under present con-
ditions does not guarantee a skillful performance in pre-
dicting anthropogenic climate change scenarios, since
the physical factors determining the response to changes
in radiative forcing are in general different from those
that influence the natural variability in the present cli-
mate.

The comparison between statistical and dynamical
downscaling results for monthly means is based solely
on criterion 1. Criterion 2 is not used because a) the
statistical methods only predict anomalies from the cli-
matological mean; and b) when calibrating specification
equations based on statistical regression the required
correction to the variance of the downscaling estimates
is directly determined by the correlation between inter-
annual anomalies of the predictor and predictand vari-
ables, hence assessing variance errors does not add any
new information (in contrast to dynamical downscal-
ing).

The dynamical downscaling results for daily values
are compared by assessing the magnitude of corrections
needed to reproduce the frequency distributions of the
observations.

The models, integrations, and observed data are de-
scribed in section 2. The results for downscaling of
monthly mean and daily data are presented in sections
3 and 4, respectively. A concluding discussion follows
in section 5.

2. Models, experiments, and observed data

a. Description of models

The RCM and GCM are both hydrostatic primitive
equation models containing 19 levels described by a
hybrid vertical coordinate that follows the terrain in the
lowest layers. They are integrated on regular latitude–
longitude grids of resolution 0.448 3 0.448 and 2.58 3
3.758, respectively, using time steps of 5 min (RCM)
and 30 min (GCM). Quasi-uniform resolution is
achieved in the RCM by shifting the coordinate pole so
that its domain appears as a rectangular equatorial seg-

ment on a rotated grid. The state variables are surface
pressure, the horizontal wind components, and gener-
alized temperature and moisture variables designed to
be conserved during cloud water phase changes (Smith
1990).

The representations of subgrid-scale physical pro-
cesses are identical in both models. The radiation
scheme includes the seasonal and diurnal cycles of in-
solation and computes fluxes that depend on tempera-
ture, cloud amount, water vapor, carbon dioxide, and
ozone. Layer cloud cover and precipitation are calcu-
lated using a scheme based on an explicit cloud water
variable (Smith 1990). The shortwave and longwave
cloud radiative properties depend on cloud water path
according to Slingo (1989) and Stephens (1978), re-
spectively. Convection is parameterized using a pene-
trative mass flux scheme (Gregory and Rowntree 1990)
including an explicit downdraft (Gregory and Allen
1991). Boundary layer transports are calculated from a
first-order turbulent mixing scheme (Smith 1990). Over
land, surface temperature, soil moisture content, and
snow depth are computed. Evaporation from the soil is
limited by stomatal resistance and is further reduced
once the soil moisture falls below a critical value. Soil
heat transfer is represented using a four-layer thermo-
dynamic model, and a vegetative canopy intercepts and
re-evaporates some of the incoming rainfall (Warrilow
et al. 1986; Dolman and Gregory 1992). Vegetation and
soil properties are prescribed from the 18 3 18 dataset
of Wilson and Henderson-Sellers (1985).

Certain improvements to the physics and dynamics
have been implemented relative to a previous version
of the model used by R. G. Jones et al. (1995, 1997).
These changes are listed in appendix A.

b. Nesting technique

The RCM is driven using a time series of output saved
from a previous GCM integration, that is, one-way nest-
ing. The state variables are relaxed toward GCM values
at each model level across a four-point boundary buffer
zone. Orographic heights in the RCM are set equal to
GCM values in the buffer zone and also in the four rows
and columns immediately inside it. SSTs are prescribed
from the values used to drive the GCM. See R. G. Jones
et al. (1995) for further details.

c. Experiments

1) ASSIMILATION OF OPERATIONAL ANALYSIS

DATA IN THE GCM

As discussed in the introduction, the GCM integration
is required to reproduce the observed time-varying at-
mospheric circulation during the period used for cali-
bration and verification of the downscaling methods.
This was achieved by relaxing toward operational anal-
ysis fields using the repeated insertion data assimilation
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FIG. 1. Domain of RCM (excluding boundary buffer zone) and locations of observing stations.
The locations of GCM grid boxes over land are also shown.

scheme employed in numerical weather prediction
(NWP) at the U.K. Meteorological Office (UKMO; Lor-
enc et al. 1991). The required analyses were obtained
from a twice-daily archive (0000 and 1200 UTC) of
UKMO operational analysis fields interpolated to the
GCM grid. Only fields available throughout the exper-
imental period (May 1983–February 1994) were used,
consisting of mean sea level pressure (PMSL); temper-
ature on the pressure levels 850, 700, 500, 400, 300,
250, 200, 150, 100, 70, and 50 mb; and horizontal wind
components on the pressure levels 400, 300, 250, 200,
150, 100, 70, and 50 mb. See Noguer et al. (1998) for
further details of the assimilation procedure. Note that
specific humidity fields were not used because they were
only available from 1986 and also because they contain
systematic biases arising from the NWP model used to
produce the analyses (e.g., McNally and Vesperini
1996). The influence of model biases is likely to be
smaller for pressure, temperature, and wind fields, since
observations of these quantities are much more plentiful
than observations of humidity over the area of interest
(Fig. 1). Even over Europe, however, the sequence of
forcing analyses is likely to contain temporal inhomo-
geneities due to historical changes in the NWP model,
analysis techniques, and observation sources. In future
integrations of this type it is planned to minimize such
problems by using fields obtained from the reanalysis
project recently carried out at the European Centre for
Medium-Range Weather Forecasts (Gibson et al. 1997).

2) INTEGRATIONS

The GCM was integrated from 1 May 1983 to 28
February 1994 using an initial state taken from a pre-
vious simulation. Atmospheric state variables were con-

tinuously relaxed toward observations as described
above. The integration was also driven by observed
SSTs and sea ice extents (Parker et al. 1995), using
monthly mean fields interpolated in time every 5 days.
Results from the GCM integration are discussed by No-
guer et al. (1998). They find that the time-averaged gen-
eral circulation remains close to observations, as re-
quired. For example, the rms error in climatological
mean PMSL is 0.5 mb or less in each season. In addition,
observed patterns of daily variance are almost perfectly
reproduced by the GCM (not shown), confirming the
effective operation of the assimilation procedure.

The RCM integration was started from 10 May 1983,
using the European domain shown in Fig. 1. The in-
tegration was driven at its lateral boundaries by output
from the GCM, as described in section 2b. The use of
a small domain reflected the need to constrain the large-
scale circulation to follow the GCM, and hence obser-
vations, as closely as possible. However, it was not pos-
sible to ensure complete correspondence by assimilating
atmospheric observations within the interior of the RCM
domain, because this would have led to undesirable
damping of fine scale features in the RCM solution.
Nevertheless, errors in the time-averaged circulation are
small apart from in summer when the influence of the
lateral boundary forcing is at its weakest, allowing ex-
cessively high continental surface temperatures to drive
erroneous warming of the troposphere and errors in up-
per-air winds (Noguer et al. 1998). Daily variations in
the RCM circulation follow those in the driving fields,
although the correspondence is not perfect. For PMSL
the average correlation between simulated and observed
anomalies ranges from 0.91 in January to 0.70 in July.
The effect on the downscaling results of circulation er-
rors in the RCM will be discussed in section 3.
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When referring to GCM output, values of variables
that are assimilated directly from the driving analyses,
such as mean sea level pressure or 850-mb temperature,
will be referred to as ‘‘observed’’ values. Values of var-
iables that are not directly assimilated, such as surface
temperature or precipitation, will be referred to as ‘‘sim-
ulated’’ values. All values of RCM variables will be
referred to as simulated values. Note, however, that the
GCM and RCM integrations are not climate simulations
in the normal sense, due to the use of relaxation terms
or lateral boundary conditions designed to suppress the
development of systematic errors in the atmospheric cir-
culation.

d. Station observations

The required station observations were obtained from
daily synoptic reports extracted from the Global Tele-
communication System by the Climate Analysis Center
(now renamed the Climate Prediction Center; Miskus
et al. 1988) and archived at the National Center for
Atmospheric Research. Daily values of maximum and
minimum screen temperature and accumulated precip-
itation from 1 June 1983 to 28 February 1994 were taken
from this archive for stations lying within the RCM
domain. Only stations providing at least 200 valid daily
reports for each variable in every month were consid-
ered. In order to be selected, a station was required to
pass quality control checks applied to the precipitation
and temperature data (see appendix B). Following qual-
ity control 976 stations were identified as suitable (Fig.
1).

No attempt was made to correct the station time series
for errors arising from a) inhomogeneities caused by
changes in location, instrumentation, or observing prac-
tices, or b) systematic undercatch of precipitation caused
by obstruction of the wind by the rain gauge, wetting
losses, or evaporation from the gauge. This is because
the information required to calculate corrections was not
available in most cases. The error arising from under-
catch increases with wind speed and is larger for snow
than for rain. On average it amounts to about 10% (Le-
gates and Willmott 1990).

3. Downscaling monthly mean data

This section describes downscaling results for station
precipitation (P) and diurnally averaged surface air tem-
perature (T), taken as the average of the daily maximum
and minimum temperatures.

a. Simulated and observed climatologies

In order to interpret the downscaling results it is first
necessary to compare simulated and observed (OBS)
climatologies of P and T over the available years (i.e.,
from 1983 to 1993 for June–December, from 1984 to
1994 for January and February, and from 1984 to 1993

for March–May). We consider multiannual monthly
means, denoted by ^ &, and the interannual standard de-
viation of monthly values, denoted by s, concentrating
mainly on January and July. In all cases the simulated
value for a given station is taken from the nearest land
point. The biases in the simulated multiannual means
for January and July are generally similar to the seasonal
biases for winter and summer discussed by Noguer et
al. (1998), whose analysis will be used to help explain
the results presented in section 3a(1).

1) MULTIANNUAL MEANS

Figure 2a shows annual cycles of ^P& averaged over
all stations for the RCM, GCM, and OBS. The RCM
mean consistently exceeds that of the GCM due to great-
er large-scale precipitation caused by stronger vertical
motion (R. G. Jones et al. 1995). The difference is small-
est in summer when the bulk of precipitation is con-
vective. The RCM also overestimates the OBS value,
by amounts ranging from 10% to 50%. The OBS values
will themselves be too low due to rain gauge undercatch
(section 2d); however, this is unlikely to account fully
for the differences from the RCM. Noguer et al. (1998)
found that part of the precipitation bias in the RCM
arises from an excessive supply of moisture from the
lateral boundaries: the specific humidities inherited from
the GCM are typically 5%–10% too high. In the GCM
itself, mean precipitation is closer to OBS but is still
too high apart from in the autumn.

The OBS spatial distributions of ^P& are illustrated in
Figs. 3a,d for January and July by plotting the values
on a 0.58 3 0.58 grid, where the gridded values are the
mean of the nearest five stations weighted by inverse
distance.1 In January (Fig. 3b) the GCM tends to un-
derestimate OBS in west-facing coastal regions due to
poor resolution of coastlines and the effects of oro-
graphic uplift on the moist climatological westerlies.
The GCM overestimates OBS almost everywhere else
except over North Africa, although here the density of
observing stations is very low (Fig. 1). In the RCM the
tendency to underestimate OBS near coasts is removed;
however, the overestimate of OBS over central and east-
ern parts of the domain is enhanced relative to the GCM.

In July ^P& is too large over much of northern, west-
ern, and central Europe in the GCM, with errors ex-
ceeding 1 mm day21 in many places (Fig. 3e). On the
other hand, there is too little precipitation over south-
eastern parts of Europe, probably due to excessive dry-

1 These gridded distributions are provided to show errors in model
simulations of station values. In areas such as North Africa and south-
eastern Europe, where the station network is sparse, the error distri-
butions will not capture local variations in skill. Similarly, the OBS
distributions will not show the fine scale signal present in observed
climatologies based on a greater density of stations and more so-
phisticated interpolation techniques (e.g., Hulme et al. 1995).
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FIG. 2. Multiannual monthly means for 1983–93 (Jun–Dec), 1984–94 (Jan–Feb), or 1984–93
(Mar–May) of (a) precipitation (mm day21) and (b) diurnal mean surface air temperature (8C)
averaged over all 976 observing stations for the observed station value (OBS) and the values
simulated at the nearest regional model (RCM) and global model (GCM) land points.

ing of the soil resulting from insufficient cloud cover.
Over much of western and central Europe cloud cover,
soil moisture, and precipitation are lower in the RCM
than in the GCM (Noguer et al. 1998), although both
models overestimate the OBS precipitation values (Figs.
3e,f). The RCM also produces too much precipitation
adjacent to its northern and eastern outflow boundaries,
probably due to enhanced convergence of moisture
caused by the application of the boundary relaxation
terms (Giorgi et al. 1993b).

Both models slightly underestimate the mean value
of ^T& throughout the year (Fig. 2b), mainly because the
mean station elevation is about 200 m lower than that
of the relevant model grid points. This can be demon-
strated by performing a multiple linear regression of
observed station temperature against latitude, longitude,
and elevation for each month: the resulting lapse rates
suggest a mean elevation bias of 20.98C for the RCM
and 21.38C for the GCM. However, this cannot fully
account for the cooling found in the GCM in winter:
the mean temperature for December–February is 1.48C
lower than in the RCM and 2.98C lower than observed.

In Figs. 4a–c distributions of simulated and observed
January temperature are compared after correcting for
elevation bias using a lapse rate determined as described
above. The excessive winter cooling in the GCM is
found to be widespread (Fig. 4b), whereas errors in the
RCM are generally smaller (Fig. 4c). According to No-
guer et al. (1998) the errors in the GCM in coastal areas
are associated with inadequate resolution of coastlines,

while in the southern half of the domain the RCM is
warmer than the GCM due to stronger solar heating,
although this is achieved at the expense of larger errors
in cloud cover. Over northern Europe the smaller errors
in the RCM appear to arise from the dynamical effects
of finer resolution. First, the frequency of low wind
speeds is smaller due to the presence of mesoscale cir-
culations not resolved by the GCM. This reduces the
frequency of extreme low values of nighttime minimum
temperature (see also section 4). Second, stronger ver-
tical motion in the RCM promotes more efficient mixing
through the boundary layer. Since there is a temperature
inversion in the boundary layer in the northern half of
the domain, this implies stronger warming of the surface
in the RCM.

In summer the simulated temperatures are too low
over most of northern Europe in both models (Figs.
4e,f). This bias is probably associated with excessive
evaporation, while the additional bias to the east of the
Baltic Sea in the GCM is caused by insufficient surface
solar heating (Noguer et al. 1998). In the southern half
of the domain excessive solar heating leads to positive
errors, with the exception of some areas where precip-
itation is too high. In the RCM the area affected by
warming errors extends farther north and west due to
drier soil.

2) INTERANNUAL VARIABILITY OF MONTHLY MEANS

Figure 5a shows annual cycles of s (P) averaged over
all stations. The GCM values are consistently too small,
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FIG. 3. Spatial distributions of multiannual monthly mean precipitation in mm day21 for Jan [(a)–(c)] and Jul [(d)–(f )]. OBS is observed
station values, (a) and (d); GCM 2 OBS is difference from OBS of value simulated at nearest land point in global model, (b) and (e); RCM
2 OBS is difference from OBS of value simulated at nearest land point in regional model, (c) and (f ). The distributions are plotted on a
0.58 3 0.58 grid, where the values at each grid point are inverse-distance weighted means of the nearest five stations.

whereas the RCM values are quite close to OBS except
in winter when they are too large. The first step in un-
derstanding these results is to recognize that much of
the variability on this timescale arises from the time-
averaged characteristics of the daily precipitation dis-
tributions (Gregory et al. 1993). In particular, errors in
s (P) will be strongly linked to errors in wet day prob-
ability (pw) and errors in the average intensity per pre-
cipitation event (iw). This in turn implies a link between
errors in s (P) and errors in ^P&, since ^P& 5 pwiw. In
the present study errors in pw or iw may arise from the
spatial smoothing implicit in the use of grid-box vari-
ables (e.g., Mearns et al. 1995), from errors in the phys-
ical representation of processes leading to precipitation
or (in the case of the RCM) from errors in the supply
of moisture from the lateral boundaries. In general the
biases in s (P) and ^P& can be addressed by changing
the simulated values of pw, iw or both. Here we make
an empirical estimate of the impact of changing iw by
scaling each precipitation event in the relevant model
by the ratio of the observed and simulated values of ^P&
averaged over all stations. This allows us to estimate
the potential of each model to reproduce the observed
interannual variability once tuned to simulate the correct
level of space- and time-averaged precipitation.

Following application of this scaling both models are
now found to show too little variability, but the RCM
is always closer to OBS than the GCM (Fig. 5b). This
is consistent with Figs. 17 and 18, which show that both
models underestimate the variance of daily precipitation
(i.e., pw too large and iw too small), with the RCM being
closer to OBS than the GCM. These errors arise because
the RCM and GCM grid-box variables effectively rep-
resent spatial means whereas the station variables rep-
resent point locations (see section 4). By comparing
Figs. 5a and 5b it is clear that the good fit between the
mean RCM and OBS values in Fig. 5a results from a
cancellation of errors: the tendency to underestimate
s (P) arising from spatial smoothing is compensated by
an increase in the mean intensity of precipitation events
arising from an overactive hydrological cycle.

For bias-corrected precipitation the underestimation
of observed variability is geographically widespread for
both models. In January (Figs. 6b,c) the only areas
where the simulated variance exceeds the observed val-
ue are those where ^P& is significantly too high. In July
(Figs. 6e,f) the shortfalls in variance are larger, espe-
cially for the GCM. This is because the errors in pw and
iw are larger than in winter (cf. Figs. 18 and 17), re-
flecting the seasonal shift from large-scale to convective
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FIG. 4. As in Fig. 3 for surface air temperature (8C). The simulated temperatures have been corrected for elevation bias.

precipitation. The models simulate too little variability
everywhere, except in parts of North Africa and south-
ern Europe where the OBS variance is very small and
near the outflow boundaries in the case of the RCM.

Both models slightly overestimate the mean value of
s (T) in each month (Fig. 5c). The RCM is closer to
OBS during the winter while the GCM is closer in sum-
mer. In winter (e.g., Fig. 7a) the variability is larger in
the northern half of the domain for several reasons,
including stronger variability in the synoptic circulation,
stronger east–west gradients in climatological mean
temperature, and reduced evaporative damping of sur-
face temperature anomalies. The GCM agrees qualita-
tively with the broad-scale pattern in OBS, but over-
estimates the OBS value over most of the domain (Fig.
7b). The errors are relatively large along parts of the
Atlantic coast, probably due to poor resolution of the
modification of mild westerly airstreams by coastal land.
Errors in coastal areas are generally smaller in the RCM
(Fig. 7c). Some other factors influencing the errors
shown in Figs. 7b and 7c are discussed in the context
of daily temperature distributions in section 4.

In summer the OBS variances (Fig. 7d) are smaller
than in winter due to reduced synoptic variability. How-
ever, both models still simulate too much variability in
most locations (Figs. 7e,f). Errors exceed 0.58C in the
southeastern part of the domain; in the RCM the region
affected by errors of this magnitude extends farther

north and west. These errors occur in areas where the
soil moisture content drops below the critical value at
which evaporation becomes water limited, suggesting
that summer drying is too strong in both models, es-
pecially the RCM.

b. Downscaling equations

Let X and XOBS represent specified and observed val-
ues of monthly precipitation or temperature for a par-
ticular station. In general the climatological mean (^ &)
and variance (s) of X will differ from the climatological
mean and variance of XOBS, so it is necessary to remove
these biases empirically when converting X into an op-
timum downscaling estimate XDOWN, that is,

XDOWN 5 [s (XOBS)/s (X)](X 2 ^X&) 1 ^XOBS&. (1)

From Eq. (1) it follows that ^XDOWN& 5 ^XOBS& and that
s (XDOWN) 5 s (XOBS). The magnitudes of the required
adjustments to the mean and variance are taken as in-
dicators of the reliability of the downscaling method
(see the introduction). A further indicator is the corre-
lation in time between DXDOWN and DXOBS, the down-
scaled and observed anomalies in a given year. We thus
define three measures of downscaling quality:

1) Scaled error in climatological mean, ERRM(X,
XOBS), given by
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FIG. 5. Interannual standard deviation of monthly means averaged over all 976 observing
stations, for the observed station value (OBS) and the values simulated at the nearest regional
model (RCM) and global model (GCM) land points. (a) Precipitation (mm day21), (b) precipitation
with simulated values scaled to remove the space- and time-averaged bias relative to OBS, and
(c) surface air temperature (8C).

ERRM 5 |^X& 2 ^XOBS&|/{ (s(^X&) 1 s(^XOBS&))};1
2

(2)

2) Scaled error in interannual variability, ERRV
(X, XOBS), given by

ERRV 5 |s(X ) 2 s(XOBS)|/{ [s(X ) 1 s(XOBS)]};1
2

and (3)

3) Correlation between the time series of interannual
variations, COR(XDOWN, XOBS), given by

COR 5 ^DXDOWNDXOBS&/{s(XDOWN)s(XOBS)}. (4)

Equations (2) and (3) are used to assess downscaling
estimates derived from the simulated value of X at the
nearest land point in either model, denoted by XGCM and
XRCM. In Eq. (2) s(^X&) and s(^XOBS&) refer to the standard
deviations of ^X& and ^XOBS& over all stations, thus the
simulation error is expressed as a fraction of the mean

spatial variability of the predictor and predictand. This
scaling allows a fair comparison between downscaling
estimates obtained from variables based on different de-
grees of spatial smoothing.

Equation (4) is applied to XGCM and XRCM, and also
to various statistical estimates XSTAT. The statistical es-
timates are based on atmospheric predictor variables
obtained from the GCM output. The predictors consid-
ered are listed in Table 1 alongside the station variable(s)
they are used to estimate. CIRC is derived from the
PMSL field; WSPD, UWND, VWND, and VORT are
all obtained from the 10-m wind field; and T850 and
Q850 are temperature and specific humidity at 850 mb.
KIND is the K-index, a stability index known to be
related to convective precipitation (Peppler and Lamb
1989). It is defined as

KIND 5 (T850 2 T500) 1 TD850

2 (T700 2 TD700), (5)
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FIG. 6. Spatial distributions of the interannual standard deviation of monthly precipitation in mm day21 for Jan [(a)–(c)] and Jul [(d)–(f )].
OBS is observed station value, (a) and (d); GCM 2 OBS is difference from OBS of value simulated at nearest land point in global model,
(b) and (e); RCM 2 OBS is difference from OBS of value simulated at nearest land point in regional model, (c) and (f ). Simulated precipitation
values have been scaled to remove the space- and time-averaged bias as in Fig. 5b. Distributions gridded for plotting as in Fig. 3.

where T700 and T500 are the temperatures at 700 and
500 mb, and TD850 and TD700 are the dew points at
850 and 700 mb.

For present purposes values of the predictors are in-
terpreted as observations even though they are actually
values output from an assimilation integration of the
GCM. The CIRC and T850 predictors are obtained from
fields assimilated directly from analyses (see section 2c)
and are essentially unaffected by systematic biases of
the GCM. Near-surface winds were not assimilated di-
rectly in the GCM integration; however, the values are
strongly constrained by the assimilation of the PMSL
field so the interannual anomalies of WSPD, UWND,
VWND, and VORT considered here are unlikely to be
seriously degraded by model biases. The Q850 and
KIND predictors are more likely to be biased because
they rely on moisture variables that are (a) not assim-
ilated directly and (b) not necessarily strongly con-
strained by the assimilation of pressures, winds, and
temperatures due to the influence of subgrid-scale moist
processes in the GCM physics. Hence the anomalies of
Q850 and KIND derived from the GCM are only esti-
mates of the observed values of Q850 and KIND.

Apart from CIRC all the predictors in Table 1 are
intended to capture regional relationships and consist

simply of the value of the relevant quantity at the GCM
land point nearest to the target station. CIRC is included
to capture relationships between local temperature or
precipitation and the large-scale flow. Principal com-
ponent (PC) analysis of the PMSL field is used to cap-
ture the variability of the flow in a few key modes [see,
e.g., Hewitson and Crane (1992), Zorita et al. (1992),
and Corte-Real et al. (1995)], following which the spec-
ified anomalies DCIRC are formed from linear combi-
nations of the leading five PCs, that is,

5

DCIRC 5 a PC , (6)O k k
k51

where the ak are regression coefficients. See section 3c
for more details.

The skill of each of the individual predictors listed
in Table 1 is assessed in section 3d. In addition, the
skill of various linear combinations of the predictors is
also assessed. In general,

DX 5 aDX orSTAT 1

DX 5 aDX 1 bDX 1 gDX 1 . . . , (7)STAT 1 2 3

where DX1, DX2, DX3, etc., are predictors from Table
1 and a, b, g, etc., are regression coefficients. The cal-
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FIG. 7. As in Fig. 6 for surface air temperature (8C).

TABLE 1. Predictors used for statistical downscaling.

Predictor Predictand Description

CIRC T, P Linear combination of projections onto
large-scale flow patterns

WSPD T, P Regional value of near-surface wind
speed

UWND T, P Regional value of near-surface westerly
wind

VWND T, P Regional value of near-surface souther-
ly wind

VORT P Regional value of near-surface vorticity
T850 T Regional value of temperature at 850

mb
Q850 P Regional value of specific humidity at

850 mb
KIND P Regional value of stability index

culation of the regression coefficients employed in Eqs.
(6) and (7) is described in the following section.

c. Calibration and verification

When validating downscaling techniques based on
regression relationships such as Eqs. (6) or (7) it is
normal to split the data time series into independent
calibration and verification samples in order to avoid
overestimating the skill of the method (e.g., Wigley et
al. 1990). Unfortunately, our time series are not long
enough to allow this; however, independent verification

can still be performed by the following procedure. For
a given target month (say, December 1983) calibration
is done using data from all the Novembers, Decembers,
and Januarys in the dataset apart from December 1983.
The calibrated equations are then used to estimate DXOBS

in December 1983. The process is then repeated for each
December in turn to perform the downscaling for each
year. Following this the correlation between the down-
scaled and observed anomalies, hereafter denoted by
CORIND, is obtained by applying Eq. (4). CORIND can
be compared against CORCAL, the average of the cor-
relations between the time series of downscaled and
observed anomalies found in each calibration sample.
Verification results are produced for each month of the
year by this method. In each case the months adjacent
to the target month are included in the calibration sam-
ples, the size of which varies from 29 to 32 monthly
observations. (Increasing the calibration sample by in-
cluding five months instead of three yielded inferior
results in independent verification.)

In order to calibrate Eq. (6) the dataset of (29–32)
PMSL anomaly fields is expressed in terms of its q
(528–31) empirical orthogonal functions (EOFs). The
spatially orthogonal and normalized EOFs are the ei-
genvectors of the covariance matrix of the dataset. Each
EOF possesses an associated time-varying PC repre-
senting the loading on the relevant pattern, for example,
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FIG. 8. (a) Scaled error in climatological mean, ERRM, averaged over all 976 stations for
predictions of monthly mean precipitation. OBS 2 OBS are predictions based on nearest observing
station to predictand station; RCM 2 OBS are predictions based on nearest regional model land
point to predictand station; GCM 2 OBS are predictions based on nearest global model land
point to predictand station. Simulated precipitation values have been scaled to remove the space-
and time-averaged bias relative to OBS. (b) As in (a) for the scaled error in interannual variability,
ERRV.

q

DPMSL(x, y, t) 5 PC (t)EOF (x, y). (8)O k k
k51

The PCs are ordered in terms of explained variance (1
5 highest). The required regression coefficients are ob-
tained by applying Eq. (6) to the calibration data with
DXCIRC replaced by DXOBS. Since the PCs are temporally
uncorrelated, each ak is determined via an independent
univariate least squares regression, hence

ak 5 [s(XOBS)/s(PCk)]COR(PCk,XOBS). (9)

In general up to q PCs can be retained in the down-
scaling equation; however, the best results in indepen-
dent verification were obtained with five retained (suf-
ficient to explain 84%–96% of the variance). The down-
scaling estimates are generated by applying Eqs. (6) and
(1) to the target month. The values of s(XCIRC) and
s(XOBS) required in Eq. (1) are determined from the
calibration dataset.

Calibration of the specification equations [Eq. (7)]
requires the determination of regression coefficients a,
b, etc. This is achieved by applying Eq. (7) to the cal-
ibration data with DXSTAT replaced by DXOBS. In cases
involving the combination of two or more predictors
(e.g., DX1 [ DXCIRC, and DX2 [ DXWSPD) it cannot be
assumed that the predictors are independent so the mul-
tiple linear regression problem does not reduce to a

superposition of independent univariate regressions [cf.
Eq. (6)]. The downscaling estimates are then generated
by applying Eqs. (7) and (1) to the target month.

For downscaling based on XGCM and XRCM no regres-
sion relationships are needed. The purpose of calibration
is simply to calculate the means and variances of the
observed and simulated values of X required to generate
downscaling estimates via Eq. (1).

Values of ERRM, ERRV, and CORIND were calculated
for each station in each month. Results are presented in
the following section.

d. Downscaling results

1) SPECIFICATION OF CLIMATOLOGICAL MEANS AND

INTERANNUAL VARIABILITY

Figures 8a,b show seasonal cycles of ERRM and
ERRV for precipitation, averaged over all stations.
Scores are plotted for simulated values at the nearest
land point in each model and also for the nearest ob-
serving station to the predictand station. The latter val-
ues (labelled OBS-OBS) give a simple estimate of the
maximum skill likely to be achievable by improving the
models in the future. The simulated precipitation values
have been scaled to remove the spatially averaged bias
(see discussion in section 3a). For ERRM the average
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FIG. 9. Values of ERRM for predictions of monthly mean precipitation obtained from the regional
model fields, repeated from Fig. 8a. These are compared against corresponding predictions obtained
from the large-scale component of the fields (RCMls). The large-scale component is defined as
the component resolved on the global model grid.

RCM scores are consistently better than those of the
GCM from October to April. From May to September
the scores for the two models are similar. The OBS 2
OBS scores are always better than those for either mod-
el. This indicates the presence of systematic biases
throughout the annual cycle, although the gap between
the OBS 2 OBS and RCM 2 OBS scores is encour-
agingly small in winter. In summer, however, the gap is
larger. This is consistent with the results of Noguer et
al. (1998), who found that the influence on precipitation
of (imperfectly represented) regional physical processes
relative to the influence of the (perfect) large-scale forc-
ing supplied from the lateral boundaries was greater in
summer than in winter.

In order to intepret the results of Fig. 8a the monthly
precipitation distributions in the RCM are decomposed
into large-scale and mesoscale components. The me-
soscale component represents the signal on scales too
fine to be resolved by the GCM grid. Following Noguer
et al. (1998) the decomposition is performed as follows,
using values at land points only: 1) interpolate the RCM
fields to a regular 0.58 3 0.58 grid; 2) average all the
0.58 3 0.58 grid points lying within each GCM grid
square (see Fig. 1) to obtain the large-scale component,
hereafter RCMls; and 3) subtract the large-scale com-
ponent from the value at each 0.58 3 0.58 grid point to
obtain the mesoscale component. Figure 9 compares
values of ERRM for RCMls against those for the un-
filtered RCM output, copied from Fig. 8a. Addition of
the mesoscale component improves the RCM score be-
tween October and April, and has little effect between
May and September. The results of Noguer et al. (1998)
suggest two reasons for this: first, the mesoscale signal
is more skillful in winter; second, the signal is more
strongly correlated with orographic height in summer.
The second factor will reduce the impact of the me-
soscale signal on ERRM due to the underrepresentation
of high-elevation sites in our station dataset. Between
October and April the scores for RCMls are superior to
those for the GCM, indicating that the influence of the

mesoscale orographic forcing on precipitation in the
RCM projects onto the large-scale component as well
as the mesoscale component. This does not occur in
summer, when the orographic forcing occurs mainly
through convection driven by surface heating from the
mountaintops, rather than through interactions with the
large-scale flow.

For ERRV (Fig. 8b), the RCM consistently outper-
forms the GCM from May to August, while the scores
for the two models are similar from September to April,
apart from in January when the GCM is better. The
model scores are significantly worse than the OBS 2
OBS scores, demonstrating that there is considerable
scope for improving the simulation of interannual var-
iability for precipitation. The inferior performance of
the GCM in summer is due to the general reduction in
variability relative to the RCM (Fig. 5b), which occurs
because GCM grid points represent larger areas than do
RCM grid points (see also section 4). Note, however,
that the ERRV scores in Fig. 8b are influenced by the
patterns of variability (e.g., Fig. 6) as well as the spa-
tially averaged values; thus the RCM scores in winter
are not better than the GCM scores even though the
spatially averaged variances are still more realistic in
the RCM (Fig. 5b).

Values of ERRM and ERRV for elevation-corrected
temperature are given in Figs. 10a,b. The scores are
consistently better than the corresponding values for
precipitation (cf. Fig. 8). Nevertheless, the model values
are always significantly worse than the OBS 2 OBS
scores. For ERRM the RCM consistently shows better
skill than the GCM. For ERRV the relative performance
of the RCM and GCM closely follows that for the spa-
tially averaged value of s (cf. Figs. 5c and 10b). This
result, which is not obvious, probably occurs because
monthly temperature anomaly patterns are dominated
by regional/continental scales rather than by mesoscale
detail. This is supported by the OBS 2 OBS results,
which show that highly skillful estimates of temperature
variability can be made using the nearest observing sta-
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FIG. 10. As in Fig. 8 for surface air temperature. Following Fig. 4, the predictor temperatures
have been corrected to allow for the difference in elevation between the predictor grid point (or
station) and the predictand station using spatially averaged lapse rates that vary with the season.

tion, even though the mean distance between neigh-
boring stations is 74 km. In order to reduce the RCM
errors in summer it will be necessary to cure the ex-
cessive drying of the soil referred to in section 3a.

The elevation corrections applied in Fig. 10a are
based on domain-averaged lapse rates that vary only
with season. If local lapse rates depart significantly from
the domain-averaged value, the elevation corrections
will not be reliable. Unreliable elevation corrections
would tend to reduce the skill of the GCM relative to
the RCM because higher resolution leads to smaller dif-
ferences in elevation between the nearest model grid
point and the predictand station. In order to assess the
elevation corrections the following procedure was used.

1) For a given month the distribution of climatological
mean land temperature simulated by the GCM was
interpolated to RCM grid points with elevation ad-
justments calculated using the same lapse rate em-
ployed in Fig. 10a. Note that these elevation ‘‘ad-
justments’’ are applied to allow for differences in
elevation between GCM and RCM grid points,
whereas the elevation ‘‘corrections’’ in Fig. 10a al-
lowed for differences in elevation between model
grid points (either RCM or GCM) and observing
stations.

2) The mesoscale component from the elevation-ad-
justed GCM distribution was calculated and com-
pared against the (unadjusted) mesoscale component
of the climatological distribution simulated by the
RCM.

The results for January are shown in Fig. 11. The
RCM mesoscale signal is closely related to orographic
height [cf. Figs. 11a and 11c; see also Noguer et al.
(1998)]; however, the empirically created GCM signal
(Fig. 11b) successfully reproduces the maxima and min-
ima associated with local variations in elevation: the
correlation between the distributions in Figs. 11a and
11b is 0.88. Similar results are obtained in other months,
suggesting that elevation adjustments based on a spa-
tially averaged lapse rate are sufficiently reliable to al-
low the orographic mesoscale component simulated by
the RCM to be generated empirically from the GCM
output. This implies that the corrections applied in going
from model grid point to station elevations in Fig. 10a
are probably also reliable, in which case alternative ex-
planations are required for the superior ERRM scores
for the RCM.

One possibility is that the additional skill arises from
better resolution of land–sea contrast in coastal regions:
roughly half of the 976 observing stations lie within 30
km of the coast (Fig. 1). For these stations, the mean
magnitude of the difference between the simulated and
observed temperatures is 1.58C in January and 1.38C in
July for the RCM, compared with values of 2.38 and
1.98C for the GCM. Thus the RCM does indeed perform
better in coastal regions. However, it also performs bet-
ter in inland regions; the mean error magnitudes for the
RCM are 1.48C in January and 0.98C in July, compared
to 2.88 and 1.48C for the GCM. Thus the improved skill
in the RCM is a widespread feature arising, to a sig-
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FIG. 11. (a) The mesoscale component (in 8C) of the distribution of climatological mean surface air temperature simulated by the RCM
in Jan. The mesoscale component is the component that cannot be resolved on the GCM grid. (b) A mesoscale component obtained from
the corresponding GCM distribution after interpolating to the RCM grid with adjustments to allow for differences in elevation between the
RCM and GCM grid points. The adjustments use the same spatially invariant lapse rate used for Jan in Figs. 4 and 10. (c) The mesoscale
component of orographic height (km) in the RCM.

TABLE 2. CORIND for winter and summer half-years averaged over
all stations.

Predictor T: Oct–Mar T: Apr–Sep P: Oct–Mar P: Apr–Sep

CIRC
WSPD
UWND
VWND
VORT
T850
Q850
KIND

0.60
0.37
0.38
0.46
n/a

0.77
n/a
n/a

0.48
0.31
0.31
0.29
n/a

0.82
n/a
n/a

0.47
0.33
0.29
0.27
0.36
n/a

0.30
0.45

0.30
0.22
0.21
0.22
0.32
n/a

0.14
0.34

nificant degree, from the large-scale component of the
simulated distributions. Differences between the large-
scale distributions of the two models are associated with
the consequences of enhanced horizontal resolution [see
section 3a and Noguer et al. (1998)]. These include
stronger surface winds, more efficient heat transfer
through the boundary layer, reduced cloud cover, stron-
ger surface solar heating, and lower soil moisture in
summer. Although the impact of these differences on
surface temperature is generally beneficial, this is some-
times achieved at the expense of larger errors in other
aspects of the simulation (i.e., cloud cover, solar radi-
ation, and soil moisture). On the other hand, biases in
both the mean and variance of July temperature are
larger in the RCM over parts of central and eastern
Europe because increasing the resolution upsets an error
balance operating in the GCM [i.e., excessive solar heat-
ing tends to deplete soil moisture, but this is opposed
reduced drainage from the root zone caused by an un-
derestimate of intense rainfall events (Noguer et al.
1998)]. Clearly, therefore, simultaneous optimization of
the performance of RCMs and their driving GCMs will
require careful study of the effects of varying the hor-
izontal resolution and the implications for the formu-
lation of subgrid-scale physical parameterization
schemes.

In summary, the RCM yields improvements relative

to the GCM in downscaling the mean and variance of
monthly station temperatures and precipitation amounts.
For precipitation the improvements stem directly from
enhanced horizontal resolution, which allows the RCM
to capture some of the mesoscale detail in observed
climatological mean distributions and also reduces the
underestimation of interannual variability because the
gridpoint variables represent a smaller area than in the
GCM. For surface temperature the improvements stem
indirectly from enhanced resolution, through the effect
of changes in the dynamics and the hydrological cycle
on the large-scale component of the simulated distri-
butions. The RCM is never less skillful than the GCM,
apart from in the simulation of temperature variability
in summer.

2) SPECIFICATION OF MONTHLY ANOMALIES

In this section we identify optimum statistical down-
scaling estimates from the range of possible predictors
listed in Table 1 and then compare them against esti-
mates based directly on model output.

Table 2 shows the average skill of each of the indi-
vidual statistical predictors for winter and summer half-
years (hereafter ‘‘extended winter’’ and ‘‘extended sum-
mer’’). Skill is measured by CORIND, the correlation
between estimated and observed monthly mean anom-
alies. For estimates of temperature, T850 explains 60%
or more of the variance in either half-year and com-
fortably exceeds the mean score of any other predictor.
This is consistent with results published recently by Kid-
son and Thompson (1998) who found that 1000–500-
mb thickness was usually the leading predictor for
screen temperature at stations in New Zealand. How-
ever, the skill varies substantially with location. In Jan-
uary, for example, CORIND exceeds 0.9 (.80% of var-
iance explained) over most of central and northern Eu-
rope but falls to 0.7 or less over western and eastern
Europe. In these areas the large-scale circulation (CIRC)
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FIG. 12. Spatial distributions of the correlation CORIND between estimated and observed anomalies of monthly mean surface air temperature
in independent verification in Jan [(a)–(c)] and Jul [(d)–(f )]. Scores are given for certain statistical predictors selected from the list available
in Table 1.

is often a better predictor (cf. Figs. 12a and 12b), par-
ticularly over western Europe where strong land–sea
contrasts and high variability in the synoptic circulation
enhance the importance of advection in determining lo-
cal temperature. On average the skill of CIRC is higher
than that of any of the regional wind predictors UWND,
VWND, or WSPD (Table 2); however, over particular
regions one of these predictors sometimes matches or
exceeds the CIRC score. For example, WSPD is a highly
skillful predictor over northern Europe in January (Fig.
12c), probably because the presence of a strong cli-
matological temperature inversion creates favorable
conditions for wind-speed-dependent variations in tur-
bulent heat transport. In July the circulation generally
explains less of the variation of temperature than in
January (cf. Figs. 12d and 12a), although UWND is a
skillful predictor at midlatitudes (Fig. 12f) due to the
influence of variations in the strength of the climato-
logical westerlies (stronger westerlies lead to lower tem-
peratures by advecting cooler, cloudier air from sea to
land).

For estimates of precipitation there is no single pre-
ferred predictor in terms of the average scores (Table
2). In both extended seasons the predictors with the
highest scores are CIRC, VORT, and KIND. Each of

these represents different atmospheric properties, all of
which have been found to be related to precipitation in
previous regional studies. For example, large-scale flow
anomalies (represented here by CIRC) explain much of
the variance of Iberian precipitation in winter (Zorita et
al. 1992; Corte-Real et al. 1995); links between regional
vorticity (VORT) and precipitation have been identified
at sites in Europe and the United States (e.g., Wilby
1997; Wilby et al. 1998); regional stability (KIND),
which is a plausible surrogate for either convective or
synoptic-scale ascent, is known to be a useful indicator
of convective precipitation over the United States in
summer (Peppler and Lamb 1989). Here the distribu-
tions of CORIND show wide variations in skill between
these predictors (Fig. 13). In January CIRC often gives
higher scores than VORT or KIND over western Europe,
whereas VORT and KIND both explain more variance
than CIRC over northern Russia and much of Turkey
and the Balkan region. In July the skill is generally
lower. This probably reflects the seasonal shift from
stratiform to convective precipitation, the latter being a
mesoscale phenomenon influenced by local forcings not
represented in our set of predictors. Nevertheless, CIRC,
KIND, and VORT all achieve correlations exceeding
0.6 at some locations in the northern half of the domain,
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FIG. 13. As in Fig. 12 for estimates of precipitation.

TABLE 3. Annual average frequency of selection (%) for statistical
predictor sets.

Temperature

Predictor set
Fre-

quency

Precipitation

Predictor
set

Fre-
quency

CIRC*
UWND
CIRC-UWND*
VWND
CIRC-VWND*
WSPD
CIRC-WSPD*
T850
CIRC-T850*
UWND-T850*
VWND-T850*
WSPD-T850*
CIRC-WSPD-T850*
CIRC-UWND-VWND-

T850*

0.0
0.1
0.0
0.6
0.0
0.1
0.0

52.1
6.7
2.2
1.1
2.5
9.4

25.2

CIRC
UWND
CIRC-UWND
VWND
CIRC-VWND
WSPD
CIRC-WSPD
Q850
CIRC-Q850
VORT
CIRC-VORT
KIND
CIRC-KIND
KIND-VORT
KIND-WSPD
CIRC-KIND-VORT

1.2
6.6
1.7
4.4
2.7
8.9
2.7
2.1
0.9

23.9
10.2
23.4

5.3
0.1
1.2
6.1

* Methods involving linear combinations of two or more variables.

although the scores rarely exceed 0.4 in the southern
half. Of the remaining predictors, those based on re-
gional winds explain less variance than CIRC or VORT
on average (Table 2), although at individual stations

UWND, VWND, or WSPD is sometimes the leading
predictor. In general moisture (Q850) shows limited skill
in extended winter but very little in extended summer.
This is disappointing from the standpoint of climate
change applications, since increases in atmospheric wa-
ter vapor are expected to be an important factor in de-
termining the response of precipitation to changes in
greenhouse gases (Manabe and Wetherald 1975). The
skill of Q850 in predicting present climate anomalies
could probably be improved by using a moisture vari-
able free from the influence of GCM biases (see section
3b); nevertheless, the present result illustrates the dif-
ficulties associated with using historical data to calibrate
relationships intended for application in future climates.

For each station in each month the best predictor set
was selected from the alternatives listed in Table 3 by
identifying the method giving the highest skill in cali-
bration (CORCAL). For predictor sets consisting of a sin-
gle variable, CORCAL is an unbiased estimator of CORIND,
because the correlation between the estimated and ob-
served anomalies is not influenced by errors in the value
of the regression coefficient. However, this is not the
case for predictor sets based on more than one variable
(i.e., those marked with an asterisk in Table 3), hence
CORCAL generally exceeds CORIND. This is a well-
known result (e.g., Wigley et al. 1990) that occurs be-
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FIG. 14. Values for (a) monthly mean precipitation and (b) monthly mean surface air temperature
of CORIND, averaged over all 976 stations. OBS 2 OBS are estimates based on nearest observing
station to predictand station; GCM 2 OBS are estimates based on nearest global model land point
to predictand station; STAT 2 OBS are estimates based on atmospheric observations.

cause the regression coefficients are influenced by noise
(i.e., variability arising from physical processes whose
effects are not represented in the equations) due to the
limited size of the calibration sample. It is therefore
necessary to adjust the values of CORCAL for multiple
variable predictor sets in order to make an unbiased
comparison with values for single variable predictor
sets. This was done by reducing the value of 2CORCAL

at each station by an amount equal to the average over
all stations of the difference between and2CORCAL

in the relevant month.22CORIND

The annual average frequency of selection for each
predictor set is shown in Table 3. For estimates of tem-
perature T850 is selected on about half of all occasions.
A quadrilinear combination of T850 with CIRC,
UWND, and VWND accounts for 25% of selections
while the remaining 25% of selections is dominated by
various combinations of T850 with the wind-related pre-
dictors. The frequency of selection of predictor sets ex-
cluding T850 is only 0.8%, reflecting the clear margin
by which T850 exceeds the skill of other individual
predictors (see Table 2). The dominance of T850 as the
leading choice is most marked in summer when advec-

2 The use of CORIND in the selection procedure is allowed because
our values of CORIND are estimates of the skill in independent ver-
ification from the calibration sample, rather than values obtained from
a true independent sample. This information would therefore be avail-
able a priori in a practical downscaling application involving pre-
dictions of future climates.

tion is generally at its weakest: between June and Sep-
tember, T850 is selected on 75% of occasions on av-
erage. For estimates of precipitation the selections are
distributed more evenly among the predictor sets. An
individual predictor is selected on 70% of occasions,
with KIND and VORT accounting for almost 50% of
all selections. CIRC appears in 31% of the selected pre-
dictor sets; however, it is rarely selected on its own,
even though its average skill is comparable to that of
KIND and VORT. This is because a combination of
CIRC with one or more regional predictors can usually
be found that explains more variance than CIRC alone,
even in areas where CIRC is the leading individual pre-
dictor. In such areas it may be concluded that large-
scale and regional variability in the atmosphere con-
tribute (to some extent) independently to the observed
variability in precipitation.

Figure 14 shows CORIND averaged over all stations
for statistical downscaling (STAT 2 OBS), where the
estimate at a given station is obtained from the best
predictor set determined as described above. The scores
are compared against scores obtained by using the value
of the predictand simulated at the nearest GCM land
point (GCM 2 OBS), and the value observed at the
nearest station (OBS 2 OBS). As before the OBS 2
OBS values are included to estimate the scope for im-
proving skill by refining the downscaling methods in
future. For precipitation (Fig. 14a) skill is highest in
winter and lowest in summer when the influence of
regional processes on precipitation is strongest. During
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FIG. 15. Spatial distributions of CORIND in Jan for precipitation [(a)–(c)] and surface air temperature [(d)–(f )]. OBS 2 OBS are estimates
based on nearest observing station to predictand station, (a) and (d); GCM 2 OBS are estimates based on nearest global model land point
to predictand station, (b) and (e); STAT 2 OBS are statistical estimates based on atmospheric observations.

extended winter the average GCM score is consistently
a little higher than that for STAT, the difference typically
amounting to ;5% of the predictand variance. From
May to August STAT is slightly more skillful than the
GCM. In January the spatial variations in CORIND are
broadly similar: both GCM and STAT explain more than
half the variance over much of western, central, and
northern Europe (Figs. 15b,c). On the other hand, skill
is lower over the drier regions to the south and east,
where the monthly precipitation totals are generally ac-
cumulated from a small number of individual events
(see section 4). In July skill again tends to be higher
over western and central Europe than elsewhere (Figs.
16b,c); however, the explained variance exceeds 50%
only in a few isolated areas. Skill is low over most of
eastern and southern Europe and north Africa, although
the statistical estimates perform somewhat better than
the GCM over eastern Europe at midlatitudes.

The mean scores for temperature are better than for
precipitation in each month (cf. Figs. 14b and 14a).
During extended winter STAT and GCM achieve similar
levels of average skill; however, from April to Septem-
ber the STAT score consistently exceeds that of the
GCM. The largest differences occur between June and
August, where STAT explains 65% of the variance on
average, compared to 50% for the GCM. In January

CORIND exceeds 0.8 in most areas for both methods
(Figs. 15e,f). The areas where skill falls below this level
in the GCM are usually areas where STAT also shows
reduced skill, indicating that the forcing of surface con-
ditions by atmospheric winds and temperatures is weak-
er than average. In such areas the key to achieving better
dynamical downscaling probably lies in improving the
simulation of other factors influencing surface temper-
ature, such as soil moisture, snow cover, cloud cover,
surface fluxes, etc. In July the superiority of the STAT
estimate is widespread. Over most of the eastern half
of the domain the inferior performance of the GCM
appears to be due to an inability to reproduce the
strength of the observed link between surface and lower-
tropospheric temperature; that is, the correlations be-
tween the GCM surface temperature anomalies and
T850 (not shown) are considerably lower than those
shown in Fig. 12e.

The mean OBS 2 OBS score is always greater than
that for either GCM 2 OBS or STAT 2 OBS (Fig. 14).
This supports the evidence from Figs. 8 and 10 that the
model scores can be improved by reducing systematic
simulation errors, while the statistical estimates could
be improved in regions where longer time series are
available for calibration (e.g., Corte-Real et al. 1995).
For precipitation the large-scale spatial variations in the
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FIG. 16. As in Fig. 15 for Jul.

OBS 2 OBS score are similar to those for GCM 2 OBS
and STAT 2 OBS (Figs. 15a–c, 16a–c). In January the
GCM and STAT scores may be quite close to the the-
oretical maximum skill in some areas, notably over
much of northwestern Europe, although this is not the
case over central parts of the domain. In July the gap
between OBS 2 OBS and the GCM 2 OBS and STAT
2 OBS scores is generally larger. The OBS 2 OBS
scores suggest that the maximum theoretical skill over
much of the eastern half of the domain is quite small,
particularly in summer. Note, however, that the OBS 2
OBS scores might be somewhat higher in these areas if
the observational network was less sparse (Osborn and
Hulme 1997).

For temperature the OBS 2 OBS score exceeds 0.8
over the vast majority of stations (Figs. 15d, 16d) and
shows less spatial variation than the scores for the GCM
and STAT. The results suggest that there is considerable
scope for improving the GCM score in those areas where
it is currently low.

CORIND scores for the RCM are not shown in Figs.
14–16. This is because the time series of circulation
anomalies in the RCM does not follow the GCM, and
hence observations, exactly (section 2c). For example
in January and July CORPMSL (RCM 2 GCM), the av-
erage correlation between time series of daily PMSL
anomalies in the two models, is 0.91 and 0.70, respec-
tively. It is therefore unfair to compare the RCM 2

OBS scores directly against those for GCM 2 OBS and
STAT 2 OBS, since the latter are generated using meth-
odologies that guarantee that the results are not degraded
by circulation errors. However, for any given month the
mean score that the RCM would achieve with a perfect
circulation, say, CORIND(RCMperfect 2 OBS), can be es-
timated by assuming that CORIND(RCM 2 OBS) ø
CORIND(RCMperfect 2 OBS) 3 CORPMSL(RCM 2 GCM),
where CORIND(RCM 2 OBS) is the mean score
achieved in practice. Values of CORIND(RCMperfect 2
OBS) deduced from this formula are found to be very
close to those for the GCM shown in Fig. 14. This is
not too surprising, given that the phase variations in
typical monthly anomaly patterns tend to be determined
by large-scale features rather than by mesoscale signals,
especially for temperature. Thus ERRM and ERRV are
more effective than CORIND in distinguishing between
the performance of the RCM and the GCM.

In summary, both dynamical and statistical down-
scaling generally achieve a high level of skill in repro-
ducing observed interannual variations of surface tem-
perature. For precipitation, skill is generally lower, es-
pecially in summer; however, both downscaling meth-
ods explain 20% or more of the predictand variance at
most locations in winter, and at about 50% of locations
in summer. During extended winter dynamical down-
scaling performs slightly better than statistical down-
scaling for precipitation and at a similar level for tem-
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FIG. 17. (a) Frequency of daily accumulations of precipitation in various ranges, averaged over
976 observing stations and 11 Januarys, for OBS and values simulated at the nearest RCM and
GCM land point to each station. Simulated precipitation values have been scaled to remove the
space- and time-averaged bias relative to OBS. (b) Contribution of each bin to total precitation.

perature. During extended summer statistical down-
scaling performs significantly better for temperature and
marginally better for precipitation. Overall, the dynam-
ical and statistical methods show comparable skill, in
agreement with the results of Kidson and Thompson
(1998). The skill is usually below the level obtained by
using observations from the nearest neighbor station,
suggesting that there is scope to increase skill by im-
proving the model physics or by using longer calibration
time series (where available) in the case of the statistical
estimates.

4. Downscaling daily data

This section describes estimates of daily distributions
of station temperature and precipitation made using the
values simulated at the nearest land point by the RCM
and the GCM. For the sake of brevity only January and
July are considered.

a. Precipitation

Figures 17 and 18 show histograms of simulated and
observed daily precipitation amounts for January and
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FIG. 18. As in Fig. 17 for Jul.

July, based on frequencies averaged over all 976 sta-
tions. Both models significantly underestimate the fre-
quency of dry days; however, the errors are much larger
in the GCM. The models also underestimate the fre-
quency of heavy precipitation events. For example,
events in excess of 20 mm contribute 17% of total pre-
cipitation in January (Fig. 17b), and 30% in July (Fig.
18b). The contribution from such events is much smaller
in the RCM, especially in July, and is negligible in the
GCM. The errors identified above are found in almost
all parts of the domain. In July, for example, the wet
day probability pw is much too large everywhere apart
from North Africa (Figs. 19a–c), whereas the probability
of accumulations in excess of 10 mm is too small (Figs.

19d–f), apart from in a few places where time-averaged
precipitation is much too high (cf. Figs. 3d–f). Results
of a similar nature are found in January. Previous work
(Mearns et al. 1995; Gregory and Mitchell 1995) sug-
gests that the model errors reflect the effect of spatial
averaging: the observations are from point locations,
whereas the grid-box variables represent areas of 2.5 3
103 km2 (RCM) and ;8 3 104 km2 (GCM), and are
thus equivalent to means over a number of stations. This
is confirmed by Osborn and Hulme (1997), who show
that the dry day probability and standard deviation of
observed daily precipitation are both strongly reduced
when station distributions are aggregated to form areal
means representative of a model grid box.
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FIG. 19. Jul distributions of wet day probability (threshold 0.1 mm) [(a)–(c)] and probability of a daily precipitation total exceeding 10
mm [(d)–(f )]. OBS are station observations, (a) and (d); RCM are simulated values at the nearest regional model land point to each station,
(b) and (e); GCM are simulated values at the nearest global model land point to each station, (c) and (f ). Simulated precipitation values
have been scaled to remove the space- and time-averaged bias relative to OBS.

These results do not preclude the use GCM or RCM
gridpoint values in impact studies requiring knowledge
of local precipitation statistics; however, they do imply
the need to make significant empirical adjustments to
the simulated distributions. These will be sensitive to
the scale of individual precipitation events (Osborn
1997), so adjustments calculated for present climate
could become invalid if, for example, the balance be-
tween convective and large-scale precipitation alters in
future. However, the fact that the adjustments are small-
er for the higher-resolution model encourages the hope
that further increases in resolution could eventually re-
move the need for such adjustments and thus circumvent
this problem.

b. Surface air temperature

In January both models overestimate the mean fre-
quency of large daily temperature anomalies (Fig. 20a);
however, the errors are larger in the GCM. In the ob-
servations the probability of large daily anomalies in-
creases with latitude (Fig. 21a), as for the monthly
means discussed earlier (Fig. 7a). The models capture
the general pattern correctly (Figs. 21b,c), but overes-
timate the variability in most regions. The inferior per-
formance of the GCM relative to the RCM arises mainly

from northern, central, and eastern parts of the domain.
A number of factors appear to contribute to this, in-
cluding (a) an enhanced frequency of low surface wind
speeds in the GCM, which increases the probability of
anomalously low nighttime minimum temperatures, es-
pecially over northern Europe; (b) lower time-averaged
temperatures than in the RCM (see section 3a), reducing
evaporative damping of temperature anomalies; and (c)
slightly greater variability in cloud cover, which exerts
a strong influence on the surface radiative fluxes. An-
other factor increasing variability in the GCM is poor
resolution of the modifying influence of coastal land on
maritime airstreams; note the lack in Fig. 21c of the
fringes of reduced variability near coastlines apparent
in Fig. 21a and, to a lesser extent, Fig. 21b.

In July both models again overestimate the average
level of observed variability (Fig. 20b), the magnitudes
of the errors in the GCM and the RCM being similar.
The distributions of large anomaly frequencies (where
‘‘large’’ is defined as 678C; cf. 6108C for January)
show that both models possess too much variability in
areas to the north of the Black and Caspian Seas (Figs.
21d–f). In the RCM the area of excessive variability
also extends westward into central Europe. These errors
in daily variability correspond quite closely to those in
the variance of monthly means (Figs. 7e,f) and are prob-
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FIG. 20. Frequency of daily surface air temperature anomalies in (a) Jan and (b) Jul, averaged
over 976 stations and 11 years for OBS and values simulated at the nearest RCM and GCM land
point to each station.

ably explained by the same mechanism, that is, insuf-
ficient evaporative damping of temperature anomalies
in areas where the soil has become excessively dry.

5. Summary and concluding remarks

Statistical downscaling estimates of local surface air
temperature and precipitation derived from atmospheric

observations have been compared with dynamical
downscaling estimates involving the use of temperature
or precipitation simulated by two climate models at the
nearest grid point to the target location. The models
considered are a global general circulation model
(GCM) of horizontal resolution ;300 km and a high-
resolution regional model (RCM) of resolution 50 km
nested inside the GCM. Downscaling estimates for 976
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FIG. 21. Distributions of the probability (%) of large daily surface air temperature anomalies in Jan [(a)–(c)] and Jul [(d)–(f )]. A ‘‘large’’
anomaly is defined as one exceeding 6108C in Jan, and 678C in Jul. OBS are station observations; RCM are values simulated at nearest
regional model land point to each station; GCM are values simulated at nearest global model land point to each station.

European stations from June 1983 to February 1994 are
assessed. The statistical method involves choosing op-
timum predictor sets for each station from a range of
candidates comprising eigenvectors of the mean sea lev-
el pressure field plus regional values of various quan-
tities, including lower-tropospheric temperature and
moisture, vertical stability, and properties of the near-
surface wind field. In order to make a fair comparison
of the statistical and dynamical approaches, the GCM
estimates are derived from an integration constrained to
reproduce the observed circulation over the relevant pe-
riod. The nested RCM simulation cannot be constrained
in the same way; however, the domain used is small
enough to ensure that differences from the GCM (and
hence observed) circulation are quite small except in
summer, when the influence of the lateral boundary forc-
ing is less dominant than in other seasons.

Overall, the dynamical and statistical methods per-
form with similar skill in downscaling observed month-
ly mean anomalies (see also Kidson and Thompson
1998). For the GCM the average anomaly correlation
with observations in a given month varies from 0.67 to
0.89 for temperature and from 0.39 to 0.68 for precip-
itation, with the highest values occurring in winter. Sim-
ilar values are found for the RCM once the effect of
circulation errors is accounted for. For precipitation the

average scores for the statistical method are slightly
lower in winter and slightly higher in summer; for tem-
perature they are similar in winter and higher in summer
(minimum average value 0.78 cf. 0.67). In the latter
case the inferior performance of the models is explained
by a failure to reproduce the strength of the observed
relationship between surface and lower tropospheric
temperature over much of the continental interior. For
precipitation, skill is generally highest over western and
northern Europe but is low over eastern and southern
Europe and North Africa, particularly in summer when
precipitation arises mainly from infrequent localised
convective events. For temperature both dynamical and
statistical downscaling explain well over half of the pre-
dictand variance at most locations in the northern half
of the domain; the lowest skill occurs around the Med-
iterranean fringes, particularly for dynamical down-
scaling in summer.

Downscaling estimates of monthly means from the
two models are compared by quantifying the magnitude
of corrections required to reproduce the mean and var-
iance of the predictand time series. Small corrections
suggest that the simulations successfully account for the
physics controlling the observed climatological distri-
butions, whereas large corrections imply missing or in-
adequately represented processes, in which case the



AUGUST 1999 2281M U R P H Y

model predictions cannot be assumed to be reliable un-
der conditions of climate change.

For precipitation the RCM shows improvements in
skill relative to the GCM for both the climatological
mean and interannual variability. These improvements,
which occur in the winter half of the year for the cli-
matological mean and in summer for interannual vari-
ability, stem directly from the impact of enhanced hor-
izontal resolution. First, the RCM is able to capture
some of the observed mesoscale structure in climato-
logical mean spatial distributions, which cannot be re-
solved by the GCM. Second, although both models un-
derestimate the variance of observed distributions due
to the spatial smoothing implicit in the use of grid-box
variables, the errors are smaller in the RCM, especially
in summer when precipitation is mainly convective in
origin.

For climatological mean temperature the RCM sim-
ulates a realistic orographic signal on scales too fine to
be resolved by the GCM. The lack of this signal does
not impair the skill of the GCM predictions, however,
since simple empirical corrections are effective in re-
moving biases arising from differences in elevation be-
tween model grid points and observing stations. Nev-
ertheless, throughout the year the RCM estimates of the
climatological mean are more skillful than those of the
GCM at most locations. This arises partly from better
resolution of local physiographical features such as
coastlines, islands, and lakes, and partly from the influ-
ence of higher resolution on the large-scale component
of the simulated distributions, which occurs via changes
in the dynamics and the hydrological cycle relative to
the GCM. Both models tend to overestimate the inter-
annual variability of temperature. The RCM performs
better than the GCM in the winter half-year, especially
in coastal regions. The GCM is better in summer due
to excessive drying of the soil in the RCM, although
the superior performance of the GCM arises from a
compensation of errors (the effect of underestimating
the mean intensity of rainfall events offsets that of ex-
cessive solar heating).

The ability of the models to predict daily distributions
of precipitation and temperature is also assessed. Errors
in daily variability generally show similar patterns to
errors in the variability of monthly means. Both models
underestimate the frequency of dry days and intense
precipitation events due to the use of grid-box variables
representing areas of 2.5 3 103 km2 (RCM) and ;8 3
104 km2 (GCM) to estimate distributions at point lo-
cations. However, the errors are much smaller in the
RCM and could be reduced in the future by refining its
resolution, thus providing the prospect of reliable pre-
dictions of greenhouse-gas-driven changes in the daily
distributions. For temperature, the models overestimate
the frequency of large anomalies. In winter the errors
are smaller in the RCM, due to changes in the dynamics
associated with finer resolution and also to better res-
olution of local physiography, especially coastlines; in

summer the largest overestimates occur in areas where
the soil is too dry.

In summary, the RCM offers potential benefits rel-
ative to the GCM in downscaling local climate. In order
to realize these benefits, systematic errors in variables
influencing surface temperature, precipitation, and other
elements of surface climate must be reduced. In the
present models, for example, excessive moisture con-
tents in the atmosphere contribute to overestimates of
domain-averaged precipitation, which were corrected
empirically prior to the assessment of local downscaling
errors discussed above. In order to optimize the physics
for both the RCM and the GCM it may be necessary
to introduce explicit scale dependences in some areas
(Noguer et al. 1998). In the case of the RCM there is
also the prospect of improvements in skill from future
increases in resolution. For precipitation, in particular,
finer resolution should allow more accurate reproduc-
tion of the mesoscale signal in climatological mean
fields and better simulations of both daily and inter-
annual variability.

The potential for improving both the statistical and
dynamical downscaling methods is assessed by com-
paring the scores for estimates of monthly means against
those obtained by using observations from the nearest
station to the predictand station. The spatially averaged
downscaling scores are always lower than those based
on nearest-neighbor observations. In the case of dynam-
ical downscaling, closing the gap in skill will require
action to reduce systematic simulation errors (see
above), while the statistical methods could be improved
by using longer calibration time series or a wider range
of predictors, assuming that the necessary observed data
are available. Note, however, that achieving skillful
downscaling under present climate conditions does not
guarantee that the methods will perform equally well
when used to predict future conditions. For example,
statistical relationships between the predictand and the
predictors are not necessarily invariant in time (Wilby
1997), while a demonstration that a model can suc-
cessfully capture natural interannual variations does not
guarantee that it will successfully simulate the feedbacks
that occur in response to (say) changes in greenhouse
forcing.

Although this study has presented statistical and dy-
namical downscaling as distinct alternatives, in practice
dynamical downscaling requires a statistical element be-
cause even the horizontal resolution of an RCM is not
fine enough to capture local forcings on scales of a few
kilometers. In the present study statistical processing of
the simulated gridpoint values took the form of simple
empirical adjustments; however, it is likely that more
sophisticated diagnostic techniques based on physical
principles (e.g., Sinclair 1994) will provide a better
method of accounting for unresolved local effects.
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APPENDIX A

Recent Improvements Included in the
GCM and the RCM

This appendix lists improvements incorporated in the
GCM and the RCM since the previous study of R. G.
Jones et al. (1995, 1997).

1) The parameterization of gravity wave drag has been
modified to include the effects of anisotropic orog-
raphy, trapped lee waves, and and a better represen-
tation of high drag states in which flow blocking and
hydraulic jumps occur. Also, roughness lengths for
momentum have been changed to include the effect
of orographic form drag (see Milton and Wilson
1996).

2) The temperature range for partitioning mixed phase
clouds into ice and water has been changed from 08
to 2158 to 08 to 298C, based on observational ev-
idence (Gregory and Morris 1996).

3) The effective radius for cloud water droplets (re) now
varies with cloud water content instead of taking a
fixed value of 7 mm. The parameterization is as de-
scribed by A. Jones et al. (1995) except that the
number concentration of activated droplets is pre-
scribed as 6 3 108 m23 over land and 1.5 3 108

m23 over the sea. For deep convective clouds (.500
m thick) re is now prescribed as 9.5 mm over land
points and 13 mm over sea points.

4) The calculation of surface soil moisture is now based
on a four-layer soil hydrology scheme instead of a
single moist layer. This allows the models to rep-
resent recharge of the root zone from below during
dry periods.

5) Horizontal diffusion has been reduced in the GCM;
this improves the simulated cloud and precipitation
fields and reduces the moist bias in the extratropical
troposphere (Hall and Stratton 1994). Second, dif-
fusion is now switched off (in both the GCM and
RCM) where the model coordinate surfaces are
steep, in order to prevent excessive precipitation over
mountains.

6) Negative humidities caused by finite differencing er-
rors in regions of sharp gradient are now corrected
by taking moisture from neighboring points only,
rather than from all points in the relevant layer. Also,
the vertical advection of moisture is now calculated

using a weighted finite difference scheme instead of
the simple centered scheme used previously. These
changes improve the simulation of stratospheric
moisture.

7) The calculation of large-scale cloud and precipitation
has been altered to allow precipitating ice to fall
through more than one model layer in a timestep,
dependent on fall speed. Also, the timestep for this
calculation in the GCM has been shortened from 30
to 5 min to be consistent with the corresponding
calculation in the RCM. These changes reduce an
implicit timestep dependence that previously caused
differences in cloud cover between the RCM and
GCM (R. G. Jones et al. 1995).

APPENDIX B

Quality Control of Station Observations

a. Precipitation

Two statistical tests were applied to determine wheth-
er the pattern of missing precipitation reports was such
as to bias the time-average precipitation and the dry day
probability. This was done by using estimated precip-
itation (EP) values. The EP was set equal to reported
precipitation (RP) when a reported value was available;
otherwise it was derived by assigning precipitation
amounts to past and present weather codes with ad-
justments dependent on latitude, season, and geograph-
ical location (Thomas and Patterson 1983). For each
season the time-averaged values ^RP& and ^EP& were
compared using a t-test, forming the required sample
variances from all the constituent daily values (assumed
to be statistically independent from one another). If the
means were different at the 1% level in at least three
of the four seasons ^RP& was deemed to be significantly
different from ^EP&. However, this alone was not suf-
ficient to justify rejecting a station since ^EP& may itself
be biased by the use of imperfect estimation algorithms.
A second test was therefore applied to the dry day prob-
ability, on the assumption that this was less likely to be
biased by the use of estimated values. A chi-square test
with 2 degrees of freedom was performed on the 2 3
2 contingency table whose categories were EP present/
absent and RP present/absent. Expected frequencies
were based on the null hypothesis that the dry day prob-
ability does not depend whether or not a reported pre-
cipitation value was available. The chi-square test was
failed if the null hypothesis was rejected at the 0.001%
level. The station was rejected if it failed both the t-test
and the chi-square test. Fifty-four stations were rejected
by applying this criterion.

b. Temperature

Following May et al. (1992) a test for unreliable data
was performed on diurnally averaged temperature, taken
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here as the average of the daily maximum and minimum
values. For each day of the year the interannual variance
was calculated. If the variance was based on fewer than
four observations it was interpolated from the values on
adjacent dates. A smoothed annual cycle of variance
was then created using Fourier analysis. Six harmonics
were retained, with harmonics 4–6 given weights of
5⁄6, 1⁄2, and 1⁄6 the weight of harmonics 1–3. On a particular
day of the year an outlier will considerably increase the
unsmoothed variance but will have much less effect on
the smoothed value. Outliers were detected using a chi-
square test with N 2 1 degrees of freedom, where N is
the number of observations from which the unsmoothed
variance was calculated. A station was rejected as un-
reliable if it failed the test at the 0.01% level on two or
more days of the year. Otherwise, the station was passed;
however, if the test was failed at the 0.0001% level on
one day of the year a subjective search was made for a
rogue observation, which was set to missing data if
found. In the event, 15 stations were rejected, and 13
erroneous observations were identified and removed in
passed stations.
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