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1.Introduction

The atmospheric science community includes a
large and energetic group of researchers who devise
and carry out measurements in the atmosphere. This
work involves instrument development, algorithm
development, data collection, data reduction, and data
analysis. The data by themselves are just numbers. To
make physical sense of the data, some sort of model
is needed. This might be a qualitative conceptual
model, or it might be an analytical theory, or it might
take the form of a computer program.

Accordingly, a community of modelers is hard at
work developing models, performing calculations, and
analyzing the results by comparison with data. The
models by themselves are just “stories” about the at-
mosphere. In making up these stories, however, mod-
elers must strive to satisfy a very special and rather
daunting requirement: the stories must be true, as far

as we can tell; in other words, the models must be
consistent with all of the relevant measurements.

This essay deals with the relationships between
models and measurements in the atmospheric sci-
ences. In view of our own backgrounds and interests,
we emphasize cloud and dynamical processes. The
tone of the essay is playful, and we make no attempt
to be rigorous or comprehensive, but the subject is
important and is not often explicitly discussed.

2.Measurements

It is useful to distinguish two kinds of measurements.

a. Measurements of universal functions
Sometimes we measure a number or function that

is believed, on theoretical grounds, to be universal, so
that in principle it should only have to be measured
once. The surface-layer similarity functions of Monin
and Obukhov (e.g., Monin and Yaglom 1971) are
among the few good examples of this type of mea-
surement in atmospheric science. Note that these func-
tions describe certain statistics of the turbulent surface
layer rather than the outcomes of measurements made
at single points in space or single instants in time.
Additional examples of universal functions and/or
constants, which are of interest to a community that
encompasses but goes far beyond atmospheric sci-
ence, include the physical properties of water and air
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(such as the saturation vapor pressure of water vapor
as a function of temperature) and the optical proper-
ties of water vapor, carbon dioxide, and ozone.

b. Case studies
Most of the time, we make measurements in a case-

study mode, accumulating data on particular se-
quences of atmospheric events, which can be
compared in detail with simulations of the same
cases. Operational weather forecasting makes use of
this type of measurement, and most atmospheric mea-
surement programs such as the First ISCCP (Interna-
tional Satellite Cloud Climatology Project) Regional
Experiment (FIRE), the Atmospheric Radiation Mea-
surements Program (ARM), and the Tropical Ocean–
Global Atmosphere Coupled Ocean–Atmosphere
Experiment (TOGA COARE) also fit into this cat-
egory. The simplest application of case-study mea-
surements is to quantitatively document and/or
describe what nature is doing. This is particularly in-
teresting when the measurements deal with physical
situations or physical variables that lie outside the
range of previous measurements. For example, over
the past several decades satellites have provided data
on the global distribution of cloudiness (e.g., Schiffer
and Rossow 1983) and the effects of clouds on the
earth’s radiation budget (e.g., Ramanathan et al.
1989). Of course, efforts are being made to under-
stand, model, and interpret these data, but the first or-
der of business has been simply to piece together a
quantitative description of the geographical, seasonal,
and interannual variations of cloudiness and the ef-
fects of clouds on the longwave and shortwave radia-
tion at the top of the atmosphere.

Occasionally, data that have been collected in a
case-study mode can definitively show whether an im-
portant idea is right or wrong. This rarely happens in
the atmospheric sciences, but once in a while it does oc-
cur. For example, Matsuno (1966) theoretically predicted
the existence in the atmosphere of mixed Rossby grav-
ity waves and Kelvin waves. A short time later, both
types of waves were discovered in the data (Yanai and
Maruyama 1966; Wallace and Kousky 1968).

3.Models

A model essentially embodies a theory; this is true
even for numerical models. A model (or a theory) pro-
vides a basis for making predictions about the out-
comes of measurements. Atmospheric models can be

conceptually grouped in various ways; one such clas-
sification follows.

a. Elementary models
The disciplines of fluid dynamics, radiative trans-

fer, atmospheric chemistry, and cloud microphysics
all make use of models that are essentially direct ap-
plications of basic physical principles to phenomena
that occur in the atmosphere. Many of these “elemen-
tary” models were developed under the banners of
physics and chemistry, but some are products of the
atmospheric science community. Elementary models
tend to deal with microscale phenomena (e.g., the
evolution of individual cloud droplets suspended in
or falling through the air, or the optical properties of
ice crystals), so that their direct application to practi-
cal atmospheric problems is usually thwarted by the
sheer size and complexity of the atmosphere. Because
of their generality, elementary models often predict
the existence of universal constants or functions.

b. Forecast models
A model that predicts the deterministic evolution

of the atmosphere or some macroscopic portion of it
can be called a “forecast model.” A forecast model
could be, as the name suggests, a model that is used
to conduct weather prediction, but there are other
possibilities; for example, it could be used to predict
the deterministic evolution of an individual turbulent
eddy. Forecast models can be tested against real data,
documenting, for example, the observed development
of a synoptic-scale system or the observed growth of
an individual convective cloud, assuming of course
that the requisite data can be collected.

We are often interested in computing the statistics
of some atmospheric phenomenon, for example, the
statistics of the general circulation. It is now widely
known that there are fundamental limits on the deter-
ministic predictability of the atmosphere due to sen-
sitive dependence on initial conditions (e.g., Lorenz
1969). For the global-scale circulation of the atmo-
sphere, the limit of predictability is thought to be on
the order of a few weeks, but for a cumulus-scale cir-
culation it is on the order of a few minutes. For
timescales longer than the deterministic limit of pre-
dictability for the system in question, only the statis-
tics of the system can be predicted. These statistics
can be generated by brute-force simulation, using a
forecast model but pushing the forecast beyond the
deterministic limit and then computing statistics from
the results. The obvious and most familiar example
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is simulation of the atmospheric general circulation
(e.g., Smagorinski 1963). Additional examples are
large-eddy simulations of atmospheric turbulence
(e.g., Moeng 1984) and simulations of the evolution
of an ensemble of clouds using time and space do-
mains much larger than the time and space scales of
individual clouds (e.g., Krueger 1988). Monte Carlo
simulations of radiative transfer (e.g., McKee and Cox
1974) can be said to “forecast” the paths of individual
photons, and statistics are computed from a large num-
ber of such paths; we classify these Monte Carlo ra-
diative transfer models as “forecast models” for
purposes of the present discussion.

The statistics predicted by these various models can
be compared with statistics based on atmospheric mea-
surements, most commonly with measurements col-
lected in the case-study mode. For example, statistics
computed from the global meteorological observing
network can be used to compute general circulation sta-
tistics, and these can then be compared with statistics
computed from simulations of the general circulation.

As a second example, statistics computed from air-
craft data can be compared with the results of large-
eddy simulation models. These models are being used
to predict universal functions that arise in connection
with atmospheric turbulence (e.g., Moeng and
Wyngaard 1986, 1989). Through such applications,
the large-eddy models are reaching or at least aiming
for a stature comparable to that of elementary mod-
els. Analogous applications of general circulation
models can be imagined but few have been reported
up to this time.

Forecast models are now also being used to make
predictions of the time evolution of the statistics of
the weather, far beyond the limit of deterministic pre-
dictability for individual weather systems. Examples
are seasonal weather forecasts, which deal with the
statistics of the weather rather than day-to-day varia-
tions of the weather and are now being produced by
several operational centers, and climate change fore-
casts, which deal with the evolution of the climate over
the coming decades and longer. In the case of seasonal
forecasting, the predictability of the statistics of the
atmospheric circulation beyond the two-week deter-
ministic limit arises primarily from the predictability
of the sea surface temperature, which has a much
longer memory of its initial conditions than does the
atmosphere. In the case of climate change predictions,
the time evolution of the statistics of the climate sys-
tem are predictable to the extent that they are driven
by predictable changes in some external forcing. For

example, projected increases in greenhouse gas con-
centrations represent a time-varying external forcing
whose effects on the time evolution of the statistics
of the climate system may be predictable. Over the
next several decades measurements will make it very
clear to what extent these predictions are right or
wrong, and many readers of this paper will live long
enough to learn the results of these interesting mea-
surements. A more mundane example is the seasonal
cycle of the atmospheric circulation, which represents
the response of the statistics of the atmospheric gen-
eral circulation to the movement of the earth in its
orbit; because the seasonal forcing is predictable many
years in advance,1 the seasonal cycle of the statistics
of the atmospheric circulation is also highly predict-
able, far beyond the two-week limit of deterministic
predictability for individual weather systems.

Over the past decade, an interesting development
has occurred: Statistics are being computed from the
archived forecasts of numerical weather prediction
models. This represents an important new way in
which the models can be used to learn about the at-
mosphere. Because the archived forecasts are initial-
ized with real data and fall within the range of
deterministic predictability, they are by no means pure
simulations or “model products,” but at the same time
they do contain errors that arise in part from weak-
nesses in the formulation of the model and/or the data-
analysis scheme. Archived forecasts thus represent a
middle ground between pure analyses of data and pure
simulations of general circulation statistics. For ex-
ample, general circulation statistics can be computed
from an ensemble of n-day forecasts, and compared
with observed (or “zero-day forecast”) general circu-
lation statistics. Archived forecast datasets are being
applied to studies of atmospheric predictability, to in-
vestigate the systematic errors of forecast models (e.g.,
Lorenz 1982; Heckley 1985; Arpé and Klinker 1986).

c. Models that simulate statistics directly
Most radiative transfer models describe the statis-

tical behavior of extremely large numbers of photons.
“Higher-order closure models” have been developed
to simulate directly the statistics of small-scale atmo-
spheric turbulence (e.g., Mellor and Yamada 1974).
Analogous models for direct simulation of the statis-
tics of the large-scale circulation of the atmosphere
may be possible (e.g., Green 1970). These are ex-

1We can say without exaggeration that it is “known.”
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amples of models that predict statistics directly; the
dependent variables are the statistics themselves, and
there is no need to average the model results to gen-
erate statistics after the fact. The predictions of such
models can be compared with statistics computed
from measurements made in case-study mode. Models
that predict statistics directly can, in principle, predict
the forms of universal functions.

Conventional wisdom holds that the results of
models that predict statistics directly are less reliable
than statistics computed indirectly from forecast
model results, so that, for example, large-eddy simu-
lation results are generally considered more reliable
than the results of higher-order closure models. The
reason is that higher-order closure models generally
contain more empirical parameters than large-eddy
models. The role of such empirical parameters is dis-
cussed later.

d. Toy models
We also build highly idealized models that are not

intended to provide quantitatively accurate or physi-
cally complete descriptions of natural phenomena, but
rather to encapsulate our physical understanding of a
complex phenomenon in the simplest and most com-
pact possible form, as a kind of modeler’s haiku. For
example, North (1975) discusses the application of
this approach to climate modeling. Toy models are
intended primarily as educational tools; the results that
they produce can be compared with measurements
only in qualitative or semiquantitative ways.

A hypothesis is a prediction, based on a model or
theory, of the outcome of a measurement. As dis-
cussed in the next section, modelers need measure-
ments first and foremost to test hypotheses. Of course,
modelers also need measurements to suggest ideas
about what is important and interesting, and what sorts
of model output to look at.

4.Hypotheses

Consider the following two statements.

1) Such and such happens always under the follow-
ing specific conditions.

2) Such and such happens sometimes under condi-
tions something like these.

It is an unfortunate fact that, in atmospheric science,
“hypotheses” often take the form of statement num-

ber 2. Usually this represents a watered-down version
of an earlier hypothesis with the much more accept-
able form of statement number 1.

As mentioned above, a hypothesis is supposed to
predict the outcome of a measurement. Statement
number 1 is a genuine hypothesis in this sense. It can
be proven wrong or “falsified.” It can never be proven
right, because there is always the possibility that some
future measurement will be inconsistent with the hy-
pothesis (Popper 1959). Statement number 2 does not
firmly predict the outcome of a measurement, so it is
not really a hypothesis at all.

As an example, it was suggested by Randall (1980)
that when a specific criterion is satisfied the process
of cloud-top entrainment instability (CTEI) leads to
rapid entrainment and a decrease in stratiform cloud
amount. Based on this idea, a “CTEI hypothesis” was
formulated, namely, that CTEI occurs on the equa-
torward sides of the subtropical marine stratocumu-
lus sheets and that as a result of CTEI the stratiform
cloud gives way to broken cumuli. Although some
laboratory experiments have apparently produced a
physical process analogous to CTEI (Siems et al.
1990), and although some numerical models have ap-
parently simulated CTEI (e.g., Moeng et al. 1995),
atmospheric measurements have yet to document a
bona fide case of it. As a result, the rapidly dwindling
number of scientists who are still willing to entertain
the CTEI hypothesis at all are now reduced to hypoth-
esizing that CTEI happens sometimes, under condi-
tions that are perhaps not very clearly defined.

As a hypothesis, this fallback position, which has
the form of statement number 2 above, is not very
satisfactory because it does not predict the outcome
of a specific measurement, and so it is not falsifiable.
A better hypothesis, and one that is becoming increas-
ingly popular, is that CTEI never happens. This could
be falsified by a single set of measurements.2

A hypothesis can take the form of a prediction of
the observed statistics of a system. For example, we
might hypothesize that when a coin is flipped, “heads”
will come up half the time in a sufficiently large
sample of measurements.3 Hypotheses about the sta-
tistics of the atmosphere are quite common in many
branches of atmospheric science.

Is a model a hypothesis? When a model is used to

2Don’t hold your breath.
3If this hypothesis proves to be false, then we may formulate a
new hypothesis about the nature of the coin.
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perform a calculation, it yields a prediction about the
behavior of the atmosphere. To phrase this in terms
of hypotheses, we can say that “we hypothesize that
the prediction produced through calculations with the
model is true.” Atmospheric measurements can (or
should) be able to falsify this hypothesis. If a predic-
tion produced by a model is shown to be in conflict
with measurements, then the model itself can be said
to have been falsified.

Figure 1 summarizes the preceding discussion of
the relationships among measurements, models, and
hypotheses. The white boxes in the figure represent
measurements or statistics computed from measure-
ments. The gray boxes represent models or products
generated by models. The thick lines represent hy-
potheses, which bring together models and measure-
ments to allow scientifically useful conclusions to be
drawn.

5.Tuning

When modelers discuss their needs for data, they
rarely speak in terms of falsification. Instead, they
often invoke certain buzzwords of the field.

• “Validation.” Modelers say that they need data to
“validate” their models. Taken literally, this means
that they need data to prove that their models are
“right.” As discussed above, it is both possible and
useful to falsify a model, but it is impossible to prove
that a model is right. An interesting discussion of this
and related points is given by Oreskes et al. (1994).

• “Tuning.” Tuning consists of adjusting coefficients
in a model to improve the agreement between the
model results and measurements. Modelers some-
times say that they need data so that they can tune
their models. A more detailed discussion of tuning
is given below.

• “Calibration.” Modelers sometimes say that they
need data to “calibrate” their models. Model cali-
bration is the same as tuning, except that for rea-
sons to be explained in the next section, the word
tuning has certain negative connotations, while
calibration has positive connotations. We all appre-
ciate that instrument calibration is a good thing.
Surely, then, model calibration is also a good thing,
unlike, for example, tuning.4

All physical parameterizations have some empiri-
cal components. “Good empiricism” is

• Directly based on observations. Parameterizations
are sometimes described as “empirical,” even though
no data have been used to generate them. In such a
case, the parameterization is one that its creator in-
tuitively feels is reasonable but does not know how
to justify otherwise. An important point is that some
parameterizations contain what may be called em-
pirical quantities that are not directly measurable
even in principle. The values of such parameters
can only be set by tuning, as discussed below.

• Universally applicable. Ideally, the empirical con-
tent of a model should not be case dependent; it
should apply universally. Although this goal can
be difficult to meet, there are a few well-known
examples of universal empirical formulas in the at-
mospheric science literature. Among the best ex-
amples are the Monin–Obukhov similarity func-
tions, which were mentioned earlier. Dimensional
analysis tells us that the Monin–Obukhov similar-
ity functions depend only on certain dimensionless
combinations. The functions can be and have been
determined empirically, and there is good reason
to believe that they are the same on Mars as they
are in Kansas.

FIG. 1. Diagram illustrating the relations between measurements
and models. The white boxes represent measurements or statis-
tics computed from measurements. The gray boxes represent
models or products generated by models. The thick lines repre-
sent hypotheses, which bring together models and measurements.

4This is called spin control.
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• Applied before the model is run. The empirical pa-
rameters of a model should be measured and then
set, on the basis of these measurements, before the
model is used to make a prediction. The parameters
should not be adjusted a posteriori to improve the
agreement between the model predictions and other
data.

Tuning consists of not following the last precept
above, that is, it involves adjusting parameters after a
model is run to improve the agreement between the
model results and data. Tuning is bad empiricism.
Calibration is bad empiricism with a bag over its head.

The problem with tuning is that it artificially pre-
vents a model from producing a bad result. As dis-
cussed above, the most scientifically valuable thing
that can come out of a comparison of measurements
with model results is to show that the model has failed.

It might be argued that tuning is justified in the
service of numerical weather prediction, because a
good forecast is an end in itself, regardless of how it
has been obtained. The trouble with this “end justi-
fies the means” argument is that in the long run bet-
ter scientific understanding is the key to making better
forecasts. As mentioned earlier, the forecast archives
of the operational numerical weather prediction cen-
ters represent an enormously valuable resource for
scientific research and, in particular, for evaluating
the parameterizations that are used in the forecast
models. The most valuable cases are the bad forecasts
in which a parameterization has failed to perform in
agreement with the observations. Tuning the
parameterizations of a forecast model interferes with
research progress to the extent that it eliminates or
obscures such cases.

Figure 2 summarizes the role of tuning in various
situations that arise in the difficult life of a typical
modeler. Suppose that a particular process has been
included in a model through a parameterization that
has some empirical content. The horizontal axis rep-
resents a measure of the importance of the process,
and the vertical axis represents a measure of how well
the process is understood.

If an important process is well understood, there
certainly is no problem, and tuning is not needed. Even
if such a process is not very well understood, there is
no need to include it by tuning, since it is not very
important anyway. These are the entries on the left-
side of the diagram.

In contrast, if a process is very important but poorly
understood, then there may be no choice but to tune

the model. For example, when the first general cir-
culation models (GCMs) were built in the 1960s, it
was recognized that the surface fluxes of sensible
heat, moisture, and momentum are crucially impor-
tant for a successful simulation of the general circu-
lation of the atmosphere, but very little was known
about how these fluxes could be parameterized. There
was no choice but to tune the boundary-layer param-
eterizations of the early GCMs. As a second example,
many GCMs now include simple parameterizations
of stratiform cloud microphysics because of a grow-
ing appreciation of the great importance of micro-
physical processes for climate. Unfortunately,
however, our understanding of these processes, par-
ticularly as they operate on large scales, is very inad-
equate. As a result, there is at present no choice but
to tune the parameters of the cloud microphysics
parameterizations. For example, Fowler and Randall
(1996) discuss the need to tune the autocorrelation
threshold of a bulk microphysics parameterization
used in a GCM. As our understanding of cloud mi-
crophysics improves over time, we will gradually
move from the lower right-hand corner of the tuning
diagram toward the upper right-hand corner. If we
eventually arrive at a good understanding of how to
parameterize cloud microphysics for GCMs, then
there will be no excuse for continued tuning. Such a
migration should be a key goal of both modelers and
observationalists.

Many real parameterizations fall somewhere in the
middle of the tuning diagram, so that decisions about
whether or not to tune are less straightforward than
in the extreme limiting cases discussed above.

FIG. 2. A diagram illustrating the role of tuning in a model,
according to the importance of the process and the degree to which
it is understood.
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One implication of the above discussion is that al-
though empiricism will always be a necessary part of
parameterization, tuning is not necessary, at least in
principle. Genuinely empirical parameters, that is,
those that can be measured and are universally appli-
cable, can be set once and for all before a model is
run.

We often hear it said in seminars or informal con-
versations that “such and such a model has been
tuned” or “so and so must have tuned the model in
order to get such good agreement.” These accusations
are cheap shots; they are very easy to make and very
difficult to refute. The fact is that there are many
models that contain little or no tuning in the sense
defined above. To actually demonstrate that a particu-
lar model has not been tuned, however, requires a
detailed and exhaustive examination of the model’s
formulation. Carrying through such an examination
requires patience and expertise; accusing a modeler
of tuning requires neither.

6.Modeler-friendly data

Emerging new classes of numerical models, includ-
ing single-column models (SCMs) and cloud en-
semble models (CEMs), are well suited to testing
cloud parameterizations against field data (Randall
et al. 1996). These measurements provide a basis for
case studies.

There are certain minimum requirements for
datasets suitable for use with SCMs and CEMs. These
include such difficult-to-measure quantities as large-
scale vertical motion and advective tendencies of tem-
perature and moisture. The planning of field programs
typically involves discussions of how these quantities
can be determined from the data collected. Recent
technological advances such as wind profilers have
improved the situation considerably, but problems
remain. Operational analysis–assimilation products
can be used, but caution is needed because such “data”
are influenced by the parameterizations of the fore-
cast model used.

Many kinds of data can be used with SCMs and
CEMs, but first the data must be suitably reduced. It
is not realistic to expect modelers to deal with raw
radar data or raw satellite data or raw aircraft data;
with few exceptions, modelers lack the expertise to
perform such tasks and, in any case, most modelers
would rather spend their time modeling than reduc-
ing and quality controlling someone else’s dataset.

These are facts of life. It follows that modelers rely
on observationalists to manipulate measurements into
a “ready-to-eat” form that the modelers can easily use.
It is also a fact of life, however, that most observation-
alists would much prefer to spend their time collecting
more data, devising better measurement techniques,
etc., rather than preparing reduced products for the
convenience of modelers.

This situation may improve if we can develop a
somewhat standardized format for data reduction.
Data arranged in such a format would be readily us-
able by modelers using SCMs or CEMs in a case-
study mode. The adoption of such a standardized
format for the minimum data requirements of SCMs
and CEMs would provide guidance to observation-
alists as to “what modelers really want” and would
make the goal of providing what modelers want ap-
pear more achievable. If a number of such standardized
datasets can be built up over time, they can become
benchmarks that modelers routinely use to evaluate
their models. We think that the atmospheric science
community can and should move in this direction.

In addition, there is a trend in the modeling com-
munity to produce model-output “diagnostics” that are
designed to be directly comparable to data. For ex-
ample, current satellite remote-sensing algorithms can
only detect the uppermost cloud layer, so that an ap-
propriate model diagnostic is the highest simulated
cloud top, or suitable statistics thereof.

7.Summary

Scientifically useful comparison of atmospheric
data with model results is a very challenging task. We
have outlined a classification scheme in which there
are two kinds of measurements. The type that is en-
countered most often lends itself to case studies.
Models are conceptual constructs that can be used to
make predictions about the outcomes of measure-
ments. Hypotheses can be expressed in terms of model
results. The most fundamental use of measurements
is to falsify such hypotheses, and thereby to falsify
models, not to validate them.

Tuning is the practice of adjusting parameters af-
ter a model is run, to improve the agreement between
the model results and data. Although parameteriza-
tions will always have some empirical content, it is
both possible and desirable to avoid tuning, except
when our understanding of some important process
is weak.
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Single-column models and cloud ensemble mod-
els offer new opportunities for rapid progress in the
development and testing of parameterizations for
large-scale models, by providing new ways in which
to combine models and measurements. The minimum
data requirements of such models could be standard-
ized. In addition, model diagnostics can be tailored
for comparison with observables. These developments
would allow more fruitful interactions between mod-
elers and observationalists.
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