
Ying Sun Term Paper – Retrieval and Application of Land Surface Temperature
 

1   

 

Retrieval and Application of Land Surface Temperature 

 
Ying Sun 

Department of Geological Sciences 
University of Texas at Austin, Austin, Texas 78712, USA 

Email: gisgter2008@gmail.com 
 

 

Abstract: Land surface temperature (LST) is a key variable in climatological and 

environmental studies. However, accurate measurements of LST over continents are not yet 

available for the whole globe. This paper first reviews the state of the science of land surface 

temperature (LST) estimates from remote sensing platforms, models, and in situ approaches. 

Considering the uncertainties, we review the current LST validation and evaluation method. 

Then the requirements for LST products are specified, from the different user communities. 

Finally we identify the gaps between state of the science and the user community 

requirements, and discuss solutions to bridge these gaps. 

 

 

1. Introduction 

 

Land Surface Temperature (LST) is an important climate variable, related to surface energy 

balance and the integrated thermal state of the atmosphere within the planetary boundary 

layer (Jin 1996). Traditionally, LST was referred to standard surface-air temperature 

measured by a sheltered thermometer 1.5–3.5 m above a flat grassy, well-ventilated surface. 

With satellite technology, another type of LST, satellite-based surface temperature called skin 

temperature, is becoming available globally (Dickinson 1994). Satellite LST products provide 

an estimate of the kinetic temperature of the earth’s surface skin (Norman & Becker, 1995), 

i.e., the aggregate surface medium viewed by the sensor to a depth of about 12 μm. Skin 

temperature is inferred from the thermal emission of the earth surface and is generally some 

average effective radiative temperature of various canopy and soil surfaces (Hall et al., 1992; 

Betts et al., 1996). 

 

LST is a key parameter in land surface processes, not only acting as a indicator of climate 

change, but also due to its control of the upward terrestrial radiation, and consequently, the 

control of the surface sensible and latent heat flux exchange with the atmosphere (Aires, 2001; 

Sun 2003). For example, energy exchanges at the land-surface boundary are largely 

controlled by the difference between the skin temperature and the surface air temperature, the 

air and the surface reacting with different time and space scales to external forcing while still 

being complexly interconnected. And the surface temperature responds more rapidly to 

changes of the local balance of energy than the air temperature. On the other hand, surface 

heat fluxes can induce local convection in the boundary layer, producing changes in air 

temperature, surface winds, cloudiness, and (potentially) precipitation (Aires, 2001). 
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Estimates of the surface temperature diurnal cycle can yield information about the soil 

moisture via an estimate of the thermal inertia (Aires, 2001). Matsui et al (Matsui, 2002) 

found that there is relationship between LST and rainfall variability in the North American 

Monsoon. The substantial variability of skin temperature may modulate the temperature 

gradient between land and ocean. In additional, skin temperature can be used for monitoring 

vegetation water stress, assessing surface energy balance, detecting land surface disturbance, 

and monitoring condition suitability for insect–vector disease proliferation, among other uses 

(Pinheiro, 2006). 

 

However, despite the recognized importance of land surface temperature, accurate 

measurements of LST over continents are not yet available for the whole globe, for clear and 

cloudy skies, with a time sampling adequate to resolve the diurnal cycle and to analyze 

synoptic, seasonal, and interannual variability. The National Research Council (NRC, 2000) 

and the Intergovernmental Panel on Climate Change (IPCC, Houghton et al, 2001) pointed 

out the urgent need for long-term remote sensing–based land surface skin temperature (LST) 

data in global warming studies to improve the limits of conventional 2-m World 

Meteorological Organization (WMO) surface air temperature observations. Currently, the 

long-term surface skin temperature dataset is only available over the ocean, i.e., sea surface 

temperature (SST). Over land, developing such a dataset has proved more difficult due to the 

land’s high surface heterogeneities, unknown surface emissivity and cloud contamination (Jin 

2004).  

 

The International Workshop on the Retrieval and Use of Land Surface Temperature: Bridging 

the Gaps (workshop, 2008) was held at NOAA’s National Climatic Data Center (NCDC), 

Ashevill, on April 2008. This workshop was designed to foster dialogue between the research 

and user communities on the retrieval and use of land surface temperature products. In this 

workshop, three different purposes for LST measurements were outlined: climate monitoring 

of temperature changes, study of land-atmosphere interactions as reflected in variability of 

temperatures on a range of time scales from diurnal to annual, and inference of properties of 

the land surface from the variations of temperature (and emissivity). It was also emphasized 

that, in analyses of a combination of different kinds of measurements, the differences should 

be retained as indicative of the land surface properties.  

 

In this report, LST product based on Remote Sensing, models are described in section 2 and 

section 3, respectively. In section 4, some validation research work is shown. The section 5 

focuses on the gaps between scientific research and community requirement using examples 

of the presentations and posters on international workshop. A summary is given in the final 

section. 

 

2. Remote Sensing of LST 

 

Satellite-based Land surface temperature can be determined from thermal emission at 

wavelengths in either infrared or microwave which is “atmospheric windows”. However, 

there are many uncertainties involved in the retrieval of LST from radiance which is directly 
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measured by sensors onboard. Thermal infrared (TIR)-based LST retrievals are less uncertain 

(1-2K) than microwave-based ones because of the smaller range of variation of surface 

emissivities in the TIR domain and the stronger dependence of the radiance on temperature 

(workshop, 2008). The range of surface emissivities in the microwave is much larger and the 

temperature dependence is essentially linear leading to LST uncertainties that can be as large 

as 10K. Infrared measurements are very much more sensitive to cloud contamination than are 

microwave measurements. Strict cloud detection can reduce the uncertainty of infrared 

temperature determinations to 2-3K (Rossow and Garder 1993, Prigent et al. 2003), whereas 

the remaining cloud effects on microwave determinations are similar though much less 

frequent. However, the need for a strict cloud detection severely limits the space-time 

sampling of infrared measurements; in fact, the “clear-sky” bias of infrared results is 

significant (of order 4K rms) and varies systematically with location, time of day and season. 

In fact, the correlation of temperature variations and cloudiness in weather events precludes 

an accurate determination of the synoptic variations as well. Microwave measurements are 

much less limited in this regard but are much more uncertain because of the complex and 

large variations of surface emissivity (including angle dependence).  

 

The most popular remote sensed data used to derive LST is Advanced Very High Resolution 

Radiometer AVHRR and Moderate Resolution Imaging Spectroradiometer MODIS. For the 

sensor AVHRR, onboard National Oceanic and Atmospheric Administration NOAA 

polar-orbiting satellite, is a cross-track scanning system with five spectral channels (Table 1). 

Each channel has a nominal spatial resolution of 1.1 km at nadir (Pinheiro, 2006). The NOAA 

polar-orbiting satellites have unique advantages for the LST dataset development because of a 

long observation period, global coverage, easy data access, an abundance of excellent 

research, and operational efforts to promote a retrieval process of the highest quality possible. 

NOAA’s AVHRR uses thermal infrared channels to measure the radiative emission of the 

surface. LST can be derived from AVHRR radiances after removing atmospheric and surface 

emissivity effects (Ulivieri et al. 1994; Wan and Dozier 1996; Becker and Li 1995). 

 

MODIS is an EOS instrument onboard Terra (EOS AM) and Aqua (EOS PM) that serves as 

the keystone for global studies of atmosphere, land, and ocean processes (Running, 1994; 

Wan, 1996). It scans ±55° from nadir in 36 bands, with bands 1-19 and band 26 in the visible 

and near infrared range, and the remaining bands in the thermal infrared from 3-15 µm. It will 

provide images of daylight reflection and emission of the Earth every 1-2 days, with 

continuous duty cycle. The thermal infrared bands have an IFOV (instantaneous field-of-view) 

of about 1km at nadir. MODIS will view cold space and a full-aperture blackbody before and 

after viewing the Earth scene in order to achieve calibration accuracy of better than 1% 

absolute for thermal infrared bands. MODIS is particularly useful because of its global 

coverage, radiometric resolution and dynamic ranges, and accurate calibration in multiple 

thermal infrared bands designed for retrievals of SST, LST and atmospheric properties. 

Specifically, bands 3-7, 13, and 16-19 will be used to classify land-cover to infer emissivities, 

band 26 will detect cirrus clouds, and thermal infrared bands 20, 22, 23, 29, 31, and 32 correct 

for atmospheric effects and retrieve surface emissivity and temperature. The atmospheric 

sounding channels of MODIS retrieve atmospheric temperature and water vapor profiles. 
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Multiple bands in the mid-infrared range will provide, for the first time, corrections for solar 

radiation in daytime LST estimations using mid-infrared data. Table 1 shows the wavelength 

ranges for AVHRR and MODIS. 

 

Table1 (Wan, 1996; Pinheiro, 2006) The wavelength ranges for AVHRR and MODIS bands. 

AVHRR band MODIS band 

Band No.  Band range (µm) Band No. Band range (µm) 

1 0.572-0.697 (Visible) 1 0.620-0.670 

2 0.716-0.986 (Near infrared) 2 0.841-0.876 

  3 0.459-0.479 

  4 0.545-0.565 

  5 1.230-1.250 

  6 1.628-1.652 

  7 2.105-2.155 

  8 0.405-0.420 

  9 0.438-0.448 

  10 0.483-0.493 

  11 0.526-0.536 

  12 0.546-0.556 

  13 0.662-0.672 

  14 0.673-0.683 

  15 0.743-0.753 

  16 0.862-0.877 

  17 0.890-0.920 

  18 0.931-0.941 

  19 0.915-0.965 

3 3.54-3.94 (Middle infrared) 20 3.660-3.840 

  21 3.929-3.989 

  22 3.929-3.989 

  23 4.020-4.080 

  24 4.433-4.498 

  25 4.482-4.549 

  26 1.360-1.390 

  27 6.535-6.895 

  28 7.715-7.475 

  29 8.400-8.700 

  30  

4 10.32-11.32 (Thermal 

infrared) 

31 10.780-11.280 

5 11.41-12.38 (Thermal 

infrared) 

32 11.770-12.270 

  33 13.185-13.485 
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  34 13.485-13.785 

  35 13.785-14.085 

  36 14.085-14.385 

 

2.1 Generalized Split- Window Algorithm for Retrieving LST (Wan, 1996)  

 

Wan proposes a generalized split-window method for retrieving land-surface temperature 

(LST) from AVHRR and MODIS data. Accurate radiative transfer simulations show that the 

coefficients of this LST algorithm depends on viewing angle, if we are to achieve a LST 

accuracy of about 1 K for the whole scan swath range and for the ranges of surface 

temperature and atmospheric conditions over land, which are much wider than those over 

oceans. They obtain these coefficients from regression analysis of radiative transfer 

simulations, and analyze sensitivity and error over wide ranges of surface temperature and 

emissivity and atmospheric water vapor abundance and temperature. Simulations show that 

when atmospheric column water vapor increases and viewing angle is larger than 45̊°, it is 

necessary to optimize the split-window method by separating the ranges of the atmospheric 

column water vapor, lower boundary temperature, and surface temperature into tractable 

subranges. The atmospheric lower boundary temperature and (vertical) column water vapor 

values retrieved from MODIS atmospheric sounding channels can be used to determine the 

range for the optimum coefficients of the split-window method. This viewing-angle 

dependent algorithm not only retrieves LST more accurately, but it is also less sensitive than 

viewing-angle independent LST algorithms to the uncertainty in the band emissivities of the 

land-surface in the split-window and to the instrument noise. The major difficulty in using 

this generalized split-window LST algorithm is how to assign appropriate band emissivities 

for each pixel in real processing. It is necessary to enhance the emissivity knowledge base of 

natural terrestrial materials and to develop new algorithms for simultaneously retrieving 

surface emissivities and temperature for land covers with variable emissivities. The 

methodology is shown below. 

 

A. View-Angle ( v ) Dependent LST Algorithm 
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Where C , 1A , 2A , 3A , 1B , 2B , 3B are coefficient, depended on View-angle v . In 

NOAA11 AVHRR, band 4 and band5 are used in the split-window LST algorithms, 

representing 1T and 2T ; while in MODIS band 31 and 32 are used in this algorithms. 

 

B. Using Column Water Vapor in the v  Dependent LST Algorithm  

Simulations also indicate that although the rms LST error is smaller than 1 K, the maximum 

LST error exceeds 2 and 3.5K at viewing angles 45°and 69°. They further improve the 

LST accuracy by separating the column water vapor range into 1 or 0.5 cm intervals. If the 
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LST algorithm for column water vapor intervals of 0.5 cm is used, the rms error does not 

exceed 0.5-1 K and the maximum error does not exceed 1.7 K, even at viewing angle 69°. In 

the viewing angle range up to 45°, the rms error does not exceed 0.27 K and the maximum 

error does not exceed 0.91 K. 

 

C. Using Atmospheric Lower Boundary Temperature in the v  Dependent LST Algorithm 

When column water vapor in a tropical atmosphere is greater than 4 cm, the atmospheric 

transmission functions in AVHRR bands 4 and 5 reduce to 0.22 and 0.12, respectively, and 

LST retrieval from satellite TIR data becomes difficult at large viewing angles. The maximum 

temperature deficit in AVHRR band 4 may be as large as 27 K. In order to get a quantitative 

assessment of the retrieved LST accuracy, they developed two sets of 8-dependent algorithms 

for two ranges of the atmospheric lower boundary temperature, one from 300-310 K, the 

other from 300-305 K. The rms and maximum errors of the LST algorithm for the wider Tair 

range may be larger than 1 K and 3.8 K, respectively. The maximum LST error can be 

reduced by 1-2 K if the 300-305 K LST algorithms is used. 

 

2.2 Comparison of split-window algorithm and day-night algorithm to analyze MODIS 

data (Workshop 2008) 

 

In the workshop, one study shows that for the MODIS data, there are two different LST 

retrieval algorithms being used to retrieve LST: the split-window algorithm, where the surface 

emissivity is specified (as a function of a land surface classification), and the physically based 

day-night algorithm, where the day-night contrast at each location is used to separate 

temperature and emissivity values. Results comparing these two approaches show that there is 

too much variation in the retrieved emissivities from the latter method. Although the 

coefficients for this type of algorithm are determined from radiative model simulations of 

atmospheric effects, ancillary atmospheric data are not used explicitly. Evaluation of these 

products, such as the new ones based on MODIS remains difficult because of the lack of in 

situ datasets covering a comprehensive range of regimes. A specific example of this difficulty 

was illustrated for Greenland ice sheet surface temperature. Evaluation of the satellite surface 

temperature was possible in this case but required determination of a good statistical 

relationship with near-surface air temperatures being measured at the surface. Uncertainty 

was associated not only with use of this relationship but with the comparison of point to area 

measurements.  

 

2.3 A daily long term record of NOAA-14 AVHRR LST over Africa (Pinheiro et al, 2006) 

 

Pinheiro et al sets up a methodology for developing a six-year daily (day and night) 

NOAA-14 AVHRR LST dataset over continental Africa for the period 1995 through 2000. In 

this study, they describe the processing methodology used to convert the Global Area 

Coverage Level-1b data into LST and collateral data layers, such as sun and view geometries, 

cloud mask, local time of observation, and latitude and longitude. This paper uses the 

Ulivieri’s (Ulivieri, C. et al, 1994) split window algorithm to determine LST values. The 
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processing chain is developed within the Global Inventory Modeling and Mapping System 

(GIMMS) at NASA's Goddard Space Flight Center (Fig.1). 

 

This algorithm requires as input values of surface emissivity in AVHRR channels 4 and 5. 

Thus, they develops continental maps of emissivity (Fig.2) using an ensemble approach that 

combines laboratory emissivity spectra, MODIS-derived maps of herbaceous and woody 

fractional cover, and the UNESCO FAO soil map.  

 

The AVHRR-derived LST map over Africa is shown in Fig. 3. A preliminary evaluation of the 

resulting LST product over savanna woodland in South Africa showed a bias of less than 0.3K 

and an uncertainty of less than 1.3 K for daytime retrievals (less than 2.5 K for night). More 

extensive validation is required before statistically significant uncertainties can be determined. 

Pinheiro concludes that the LST production chain described here could be adapted for any 

wide field of view sensor (e.g., MODIS, VIIRS), and the LST product may be suitable for 

monitoring spatial and temporal temperature trends, or as input to many process models (e.g., 

hydrological, ecosystem). 

 

 
Fig.1 Schematic representation of NOAA-14 AVHRR GIMMS LST data set processing system for the 

thermal infrared channels 
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Fig.2 (a) Ensemble emissivity maps for AVHRR channel 4 and (b) channel 5 

 

 
Fig.3 Composite AVHRR-derived land surface temperature for (a) July 1996 (overpass around 1:30 

PM) and (b) July 2000 (overpass around 4:00 PM). The compositing process (maximum temperature 

over the month was retained) removed most of the clouds. However, some clouds are visible (blue 

areas) near the equator in (b). We did not use information available in our product’s auxiliary 

cloudiness field for this demonstration.  

 

2.4 Analysis of Land Skin Temperature Using AVHRR Observations (Jin, 2003) 

 

Jin develops a long-term skin temperature diurnal cycle dataset (LSTD) from AVHRR 

observations. This dataset covers global snow-free land areas and spans from 1981 to 1998. 

This 18 year dataset can be used to estimate the changes of skin temperature, to study 

interactions in the land–biosphere–atmosphere system, and to evaluate model simulations. 

 

This study first identifies the main challenges in developing a LST from AVHRR. These 

include orbit drift, uncertainties in skin temperature retrieval (such as that induced by 

unknown surface emissivity), unknown cloud occurrence during a day other than at observing 
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time, lack of LST diurnal cycle measurement, and volcanic eruption. And Jin also proposes 

approaches to these problems. 

 

A. Orbit drift 

AVHRR skin temperature measurements can’t be directly used in climate change studies 

because of orbit drift in the NOAA satellites, particularly, NOAA-7, -9, -11, and -14 (Fig.4) 

over the course of these satellites’ lifetimes (Jin and Treadon 2003). This orbit drift effect 

results in a significant cooling effect on LST measurements. A physically-based “typical 

pattern technique” is applied to remove the orbit drift effect from LST. The GCM-generated 

typical patterns of the LST diurnal cycle are functions of vegetation type, season, and latitude, 

and are combined with satellite observations to remove the cooling effect. Applying this 

methodology to 18 year of AVHRR (1981–1998) LST observations evidently yields an 

improved skin temperature dataset suitable for climate change study (Jin and Dickinson 

2002). 

 

 
Fig.4 Schematic diagram of the equatorial crossing time for NOAA-9, -10, -11, -12, -14, -15, and 

-16. The y direction is local equatorial crossing time, and the x direction is time of year. NOAA-7 

is not shown here, but has a similar orbit drift as the afternoon satellites of NOAA-9, -11 and -14. 

 

B. Emissivity uncertainty in skin temperature retrieval 

In the retrieval of temperature, corrections for atmospheric effect are usually required even in 

the most transparent spectral windows for clear skies. The split-window technique mentioned 

before is the most widely used correction technique for AVHRR skin temperature retrieval. 

However, emissivity is one of the largest uncertainty sources in this technique. The currently 

used approach is to set two emissivities for channels 4 and channel 5, respectively, and 

assumes they do not vary over the globe, which is unrealistic and induce errors in LST 

retrieval. In this study, Jin utilized MODIS-based emissivity in the LSTD process which is 
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much more realistic than simply assuming two fixed spectral emissivities for AVHRR 

channels 4 and 5 over the globe, a treatment due to the lack of emissivity measurements. The 

MODIS LST product MOD11B1 provides emissivities in bands 20, 22, 23, 29, and 31–32, 

from which broadband emissivity can be inferred (Jin and Liang 2003). Fig.5 shows that 

emissivity has obvious variations over the globe, because it is a function of soil and 

vegetation conditions. 

 

 

Fig.5 Global distribution of MODIS-observed land surface emissivity. It is broadband emissivity 

converted from MODIS spectral emissivity using MODTRAN. Data for oceans, Antarctica, and some 

equatorial deserts that are lower than 0.8 are missing values. 

 

C. Cloud contamination 

Cloud contamination causes two problems in LSTD: an inability to directly measure LST 

when the surface is obscured by clouds, that is, the “cloudy pixel problem,” and the 

appearance of cloud formation during the day at times other than when the measurements 

were made. Jin and Dickinson (2000) designed a method to calculate LST for a satellite 

cloudy pixel. This treatment is a hybrid technique of “neighboring pixel” and “surface air 

temperature” techniques. The principle is based on the surface energy balance to infer a 

cloudy pixel’s LST from the neighboring clear pixel’s LST and overlying Tair. 

 

D. Lack of diurnal cycle 

In general, polar-orbiting satellites observe a given pixel twice per day, which means 

available LST observations for most land surfaces are twice per day. Jin and Dickinson (Jin & 

Dickinson, 1999) develope an approach to interpolate AVHRR twice-per-day LST into a 

diurnal cycle. In this approach, the climatological diurnal cycles of LST are derived from the 

most advance model, NCAR CCM3 BATS, which served as the information base for the most 

likely behavior of diurnal cycle. Typical LST patterns are functions of land cover, latitude, 

season, and soil moisture conditions, and are archived in lookup tables.  
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E. View angle 

View angle is another possible uncertainty source for LST retrieval. However, the view-angle 

effect may be ignored when the angle is less than 45° (Wan & Li 1997). Similarly, when 

averaged over several pixels, the view-angle effect is also reduced. Emissivity may also vary 

with the viewing angle (Rees & James, 1992). Currently, no acceptable method exists to 

accurately correct the view angle effect. Their quality control technique for comparing the 

change of 2-m Tair with that of LST can, to some degree, remove bad pixels severely affected 

by view-angle effect. 

 

Finally, a long-term skin temperature diurnal cycle dataset is developed which covers global 

snow-free land areas and spans from 1981 to 1998. Also, some validation process was done 

(Fig.6). As mentioned before, this 18 year dataset can be used to estimate the changes of skin 

temperature, to study interactions in the land–biosphere–atmosphere system, and to evaluate 

model simulations. 

       

Fig.6 Comparison of (a) TOVS skin temperature with (b) AVHRR-based LSTD 

diurnal-averaged LST. Both AVHRR and TOVS data are the monthly mean for Jul 1993. The 

resolution of AVHRR LSTD data is 0.5°*0.5° and TOVS data is 1°*1°. The ocean LST 

information is purposely kept to show the strength of TOVS data, that is, it covers high 

latitudes and ocean surface. 

 

2.5 Estimation of LST from a GOES-8 (Sun 2003) 

 

The temporal measurement frequency of the polar orbiting satellite systems NOAA-AVHRR 

is 2 times per day, inadequate for many applications. Therefore, Land Surface Temperature 

Diurnal Cycle (LSTD), the important element of the climate system and is not captured by the 

polar orbiting satellites. As mentioned before, Jin and Dickinson (Jin and Dickinson, 1999) 

propose a method to interpolate the derived surface temperatures from the AVHRR 

instruments into a diurnal cycle. However, the spatial resolution of CCM3/BATS is 2.8° 

(about 280 km), too low for many applications. However, geostationary satellites provide 

diurnal coverage, which makes them attractive for deriving information on LST. The 

geostationary satellite GOES observes the surface continuously at a nadir pixel resolution of 

about 4 km (Menzel & Purdom, 1994). 
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Two algorithms are developed and applied to observations from the Geostationary 

Operational Environmental Satellite (GOES) to enable frequent estimate of Land Surface 

Temperature (LST) representing the diurnal cycle. Both algorithms are based on radiative 

transfer theory: one is a new split window algorithm, while the other is a three-channel 

algorithm. The three-channel LST algorithm aims to improve atmospheric correction by 

utilizing the characteristics of the middle-infrared (MIR) band. Effects of both the atmosphere 

and the surface emissivity are accounted for. The simulations from the proposed algorithms 

are compared with previously developed generalized split window algorithm, and a split 

window algorithm with water vapor correction.  

 

 The advanced split-window algorithm (for day time LST retrieval) 

The developed split window LST algorithm, referred to as advanced split window, is one 

where a separate equation is established for each surface type by using 11.0 and 12.0 µm split 

window. Considering that when the satellite viewing angle increases, the optical path 

increases and the atmospheric attenuation increases, Sun added a zenith angle correction term 

(secθ-1) to LST retrieval equation. A second term of the brightness temperature difference 

(T11 - T12)
2 was added to further remove the atmospheric effect (eq.2). 

)1)(sec())(()()()()( 4
2

121131221110  kaTTkaTkaTkakakTs  (2) 

Where k is the index of the surface types and θ is the satellite viewing angle. 

 

 The three-channel LST algorithm (for night time LST retrieval) 

The three-channel algorithm developed may be applied to a combination of any three thermal 

infrared channels. The three-channel LST algorithm aims to improve atmospheric correction 

by utilizing the characteristics of the middle-infrared (MIR) band. Effects of both the 

atmosphere and the surface emissivity are accounted for. 
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The retrieval scheme for LST or LSTD from the GOES-8 observations is presented in Fig.7. 

 

The simulations from the proposed algorithms are compared with previously developed 

generalized split window algorithm, and a split window algorithm with water vapor correction. 

During daytime, the proposed new split window algorithm gives the best LST retrievals, 

while during night time, the proposed three-channel algorithm gives the best retrievals, both 

within a rms error of less than 1 K and without a significant bias. Evaluations against the 

Atmospheric Radiation Measurement (ARM) observations of radiometric surface 

temperatures and Surface Radiation Network (SURFRAD) observations of outgoing long 

wave (LW) radiation indicate that LST can be determined from the actual GOES-8 

observations within an rms accuracy of about 1–2 K, standard error of about 1 K, and bias of 

less than 1 K. When evaluated against the North Carolina Agricultural Research Service 

(NCARS) soil temperature as observed at depth of 8 in. and against air temperature 

observations, the amplitude of the retrieved LST is found to be significantly greater than that 
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of the observed soil temperature, lower than the nighttime air temperature, and higher than the 

daytime air temperature. When the soil observations are ‘‘corrected’’ to account for the depth 

difference, they are in good agreement with the LST retrieved from the satellite observations. 

This indicates that observations of soil temperature, which are more readily available than 

measurements of ‘‘skin’’ temperatures, can be useful in evaluating satellite-based estimates. 

The LST retrieved from both of the proposed algorithms and from a NOAA/NESDIS 

algorithm, are generally very close to the converted skin temperature from the SURFRAD 

surface outgoing LW radiation. In most cases, the newly proposed algorithm shows better 

agreement with ground observations. 

 

 

Fig.7 Schematic Flow of LST estimation 

 

3.  Modeling of LST 

 

The surface temperature in global and regional models is crucially important because of its 

relevance to the computations of the turbulent heat fluxes as well as the terrestrial radiation. 

Most models calculate this variable LST, e.g. the global climate model (GCM) land surface 

schemes, the NOAA National Centers for Environmental Prediction (NCEP) model, and the 

National Center for Atmospheric Research (NCAR) Community Land Model version 2 

(CLM2) (Jin 2005). It is important to understand that the LST calculation comes down to 

solving a budget or balance equation, and that a multitude of parameterizations ultimately 

affect the resulting values of temperature, including the surface and boundary layer 

parameterizations, vegetation and heterogeneity, quality of clouds (both in quantity and 

optical properties) and soil moisture through antecedent precipitation. Each model has its own 

parameterization and land specification data, and usually its own grid structures. While the 

land parameterizations affect the simulated data, equally important is the forcing. For example, 

there are wide variations in the amount and properties of clouds feedback into the near surface 

air temperature and boundary layer (or vice versa). Even relatively homogeneous regions, 

such as arid deserts and glacial surfaces, can show large differences compared with remotely 

sensed LST (workshop, 2008).  
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3.1 Improvement of Land Surface Emissivity Parameter for Land Surface Models (Jin, 

2006) 

Conventionally, land surface emissivity ε is simply set as a constant in most models due to 

many uncertainties involved, e.g. GCM land surface schemes, NCEP model, and NCAR 

CLM2. This is the so-called constant-emissivity assumption. To better simulate the land 

surface climate, accurate broadband emissivity data are required as model inputs. This study 

demonstrates that the constant-emissivity assumption induces errors in modeling the surface 

energy budgets; especially over large arid and semiarid areas where ε is far smaller than unity. 

One feasible solution to this problem is to apply the satellite-based broadband emissivity into 

land surface models. 

 

MODIS measures spectral emissivitiesε in six thermal infrared bands. The empirical 

regression equations have been developed in this study to convert the spectral emissivities to 

broadband emissivity required by land surface models. The linear relationship between 

broadband emissivity ε and MODIS spectral emissivities εi through regression analysis: 

323129148 5256.04606.00139.0    (4) 

Although MODIS has four bands in 8- 12μm (bands 29–32), not all of them are incorporated 

in the formula above because of their correlation and large uncertainties in estimating the 

spectral emissivity at band 30. The emissivity map is shown in Fig.8 

 

 
Fig. 8 (a) MODIS broadband emissivity for January 2003. The broadband emissivities are derived from 

the MODIS spectral band emissivities using a regression equation–based MODTRAN simulation. The 

resolution of original MODIS emissivity data is 1 km and here is averaged to the T42 resolution of the 

climate model. (b) Same as in (a), but for July 2001. 

 

The observed emissivity data show strong seasonality and land-cover dependence. 

Specifically, emissivity depends on surface-cover type, soil moisture content, soil organic 

composition, vegetation density, and structure. For example, broadband ε is usually around 

0.96–0.98 for densely vegetated areas (LAI > 2), but it can be lower than 0.90 for bare soils 

(e.g., desert). To examine the impact of variable surface broadband emissivity, sensitivity 

studies were conducted using offline CLM2 and coupled NCAR Community Atmosphere 

Models, CAM2–CLM2. These sensitivity studies illustrate that large impacts of surface ε 

occur over deserts, with changes up to 1°–2°K in ground temperature, surface skin 

temperature, and 2-m surface air temperature, as well as evident changes in sensible and 
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latent heat fluxes (Fig.9) 

 

Fig.9. Coupled CAM2–CLM2 simulated emissivity impact on surface temperature (K) for two random 

days in September. The difference is the control run minus the sensitivity run. The control run uses 

CLM default soil emissivity (ε= 0.96), and sensitivity run uses satellite-observed emissivity at T42 

resolution. 

 

3.2 Estimation of large-scale evaporation fields based on assimilation of remotely sensed 

LST (Sini, 2008) 

 

High quality observations provide a constraint on the model development. Data assimilation 

ultimately confronts the model with the observations. Assimilation is the process of finding 

the model representation which is most consistent with the observations (Lorenc, 1995). In 

essence, data assimilation merges a range of diverse data fields with a model prediction to 

provide that model with the best estimate of the current state of the natural environment so 

that it can then make more accurate predictions. 

 

In this paper, Sini proposes a model for surface energy fluxes estimation based on the 

assimilation of land surface temperature from satellite. The data assimilation scheme 

combines measurements and models to produce an optimal and dynamically consistent 

estimate of the evolving state of the system. The assimilation scheme takes advantage of the 

synergy of multisensor-multiplatform observations in order to obtain estimations of surface 

fluxes, flux partitioning, and surface characteristics. The model is based on the surface energy 

balance and bulk transfer formulation. A simplified soil wetness model, which is a filter of 

antecedent precipitation, is introduced in order to develop a more robust estimation scheme.  
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Fig10 . Land Surface Data Assimilation Process 

 

 

This approach is implemented and tested over the Southern Great Plain field experiment 

domain. Comparisons with observed surface energy fluxes and soil moisture maps have 

shown that this assimilation system can estimate, when compared with the ground truth 

observations, the surface energy balance and the partitioning among turbulent heat fluxes. The 

introduction of the simplified soil wetness model forced by precipitation data improved 

evaporative fraction estimation. Further research is still required to analyze the reliability of 

retrieved fluxes in periods where radiation is the limiting factor for latent heat flux. 

 

 

3.3 Assimilation satellite data over land for NWP applications (Bart, 2002) 

 

Land surface parameterizations in Numerical Weather Prediction (NWP) describe the 

exchange of energy and water at the land-atmosphere interface. NWP models need 

observations for initialization, adjustment of the forecast, and parameter calibration. Remotely 

sensed land surface temperature data are considered to contain valuable information on the 

presence and nature of vegetation, heat fluxes, and the moisture availability. This paper 

describes a case study in which data from the Along Track Scanning Radiometer (ATSR) 

instrument on board the ERS-2 satellite are used to estimate component vegetation and soil 

temperature, and subsequently to update prognostic variables and roughness fields in a limited 

area NWP. 

 



Ying Sun Term Paper – Retrieval and Application of Land Surface Temperature
 

17   

 

In a variational assimilation scheme, the NWP model is forced to match the observed 

component temperatures by changing both the soil moisture content and the aerodynamic 

roughness for the heat exchange of the bare ground component. It appeared that the optimal 

solution differed significantly for the two regions. For The Netherlands, changing the 

aerodynamic roughness did not affect the correspondence to observations, and soil moisture 

had to be changed to increase the overall model performance. For the Spanish case, in 

contrast, aerodynamic roughness had to be changed significantly. The Spain case  study was 

extended by analyzing a time series of ATSR-1 and ATSR-2 data. The evaluation of results 

focuses on the temporal variability of aerodynamic roughness for heat transport. 

 

3.4 Limitations in implementing LST assimilation (workshop 2008) 

 

While surface temperature assimilation has been studied for many years, there still exist 

numerous limitations in implementing LST assimilation to the best possible capability. Data 

assimilation assumes that the differences between the model and observation are not biased. 

However, systematic uncertainties exist among LST remote sensing products (due to variable 

observation angles, cloud clearing and retrieval algorithms). Models tend to project 

temperature vertically, while the satellite observations are angle dependent. Satellites observe 

real surfaces while heterogeneity is parameterized in models (if at all). These inconsistencies 

add uncertainty to the comparison of model and remotely sensed LST for data assimilation 

purposes. While some inconsistencies are likely not to be eliminated completely, data 

assimilation must account for them as a matter of practice. Furthermore, biases of LST may 

have diurnal components, so that assimilation of LST requires observations that resolve the 

diurnal cycle, in order to function properly. In addition, many LST data sets are for cloud-free 

conditions only. While clear-sky data are useful, the strong effects of clouds on the surface 

temperature are not linear and all-sky conditions need to be considered for unambiguous 

results.   

 

 

4.  Validation and Evaluation of LST 

 

4.1 Validation approaches overview 

 

The main validation and evaluation approaches for LST products are (1) Using in situ data 

from radiometers; (2) Using in situ proxy data and (3) Using airborne data. Proxy data are 

similar data to Land Surface Temperature (LST) such as air temperature and bulk temperature 

which are directly measured by the satellite but under some conditions they are a proxy for 

what the satellite measures. Evaluation approaches include comparisons between LST 

datasets derived from different instruments as well as comparisons between LST datasets and 

modeled LST. The comparisons between datasets from different instruments included ASTER, 

ATSR, MODIS and AIRS as well as differences between versions for a given instrument.  

 

4.2 Validating MODIS land surface temperature products using long-term nighttime 

ground measurements (Wang, 2007) 
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As mentioned before, MODIS onboard Terra provides multiple LST products on a daily basis 

(table 2). However, these products have not been adequately validated. This paper evaluates 

two MODIS LST products, MOD11_L2 (version 4) and MOD07_L2 (version 4), using two 

sources of long-term ground measurements over eight vegetated sites. The first source of data 

is the FLUXNET Project, a global network of micrometeorological tower sites that measure 

the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystems and 

the atmosphere. Another data source is the Carbon Europe Integrated Project 

(CarboEurope-IP, 2006), a program that aims to understand and quantify the present 

terrestrial carbon balance of Europe and the associated uncertainties at the local, regional and 

continental scale. 

 

Table2 Summary of Terra MODIS daily LST products 

Product short  

name 

Product full name Stated 

accuracy 

(°C) 

Spatial 

resolution 

(km) 

Algorithm principle 

MOD11_L2 Land surface temperature/ 

emissivity daily 5-min L2 swath 

1 km 

1 1 Generalized 

split-window algorithm; 

statistical-based 

MOD11A1 Land surface temperature/ 

emissivity daily L3 global 1km 

SIN grid 

1 1 Reprojected from 

MODIS_L2 to a 

sinusoidal mapping grid 

MOD11B1 Land surface temperature/ 

emissivity daily L3 global 1km 

SIN grid 

1 5 Day / night algorithm; 

physics-based 

MOD07_L2 Temperature and water vapor 

profiles 5-min L2 swath 5 km 

N/A 5 Statistical regression 

 

Since ground measured LST were only available over one fixed point in each validation site, 

the study is carefully designed to mitigate the scale mismatch issue by using nighttime ground 

measurements concurrent to more than 1800 MODIS Terra overpasses. In addition, 

ground-measured surface temperatures from FLUXNET and CarboEurope-IP sites are 

brightness temperatures in nature, requiring a correction for emissivity effect. Moreover, most 

ground instruments are affected by water vapor. Three assumptions were made in correcting 

ground measured surface brightness temperatures: (1) All validation sites are Lambertian 

surfaces. (2) 3–14 μm broadband emissivities are assumed to be equal to the emissivity in the 

entire longwave range. (3) Emissivity is assumed constant over time. 

 

The results show that MOD11_L2 LST has smaller absolute biases and rms errors than those 

of MOD07_L2 LST in most cases. The match of MOD11_L2 LST with ground measurements 

in the Brookings, Audubon, Canaan Valley, and Black Hills sites is good, yielding absolute 

biases less than 0.8 °C and RMSEs less than 1.7 °C. In the Fort Peck, Hainich, Tharandt, and 

Bondville sites, MOD11_L2 LST is underestimated by 2–3 °C. Biases in MOD11_L2 LSTs 

correlate to those in MOD07_L2 LSTs. Since the MOD07_L2 LST product is one of the input 
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parameters to the MOD11_L2 LST algorithm, biases in MOD11_L2 LSTs may be influenced 

by biases in MOD07_L2 LSTs. The errors in both products depend weakly on sensor view 

zenith angle but are independent of surface air temperature, humidity, wind speed, and soil 

moisture. 

 

4.3 An assessment of remotely sensed land surface temperature (Isabel, 2008) 

 

In this paper, LST is estimated from the spinning enhanced visible and infrared imager 

(SEVIRI) onboard Meteosat, making use of a generalized split-windows algorithm. Then 

SEVIRI LST is compared with retrievals from MODIS, collocated in space and time, for three 

10°* 10° areas (Iberian Peninsula, Central Africa, and the Kalahari), and for six 7-day periods 

between July 2005 and May 2006.  

 

The result shows that the overall SEVIRI LSTs are warmer than MODIS values, with 

maximum discrepancies generally observed for daytime. The mismatches between the two 

satellite retrievals are then analyzed in terms of (1) satellite viewing angle differences, (2) 

surface topography, and (3) surface type. Daytime discrepancies are strongly impacted by 

differential heating rates of elements within a pixel (e.g., vegetation types, bare ground), 

leading to a relatively wide range of MODIS-SEVIRI LST differences, with strong 

dependency on the MODIS view zenith angle. In contrast, average nighttime discrepancies 

are generally below 2°C.  

 

 

Fig.11 Land SAF LST (°C) obtained for 14 September 2005 for (a) 0 UTC, (b) 6 UTC, (c) 12 UTC, 

and (d) 18 UTC. The Land SAF LST is retrieved for four areas within the Meteosat disk (Europe, 

Northern Africa, Southern Africa, and South America). Missing values (white areas) correspond to 

land pixels beyond the maximum viewing angle admitted for the LST algorithm (57.5°) or covered by 

clouds. 
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Fig.12. LST corresponding to MODIS daytime (left) and nighttime (right) passage over Iberia retrieved 

for 14 September 2005 from (a, b) SEVIRI, (c, d) MODIS, and (e, f) the respective difference (SEVIRI 

minus MODIS LST). 

 

The intercomparison between MODIS and SEVIRI LST is complemented with in situ 

observations taken at Evora ground station (southwestern part of the Iberian Peninsula). The 

differences between ground and satellite-derived values show high variability for daytime for 

both sensors, with a systematic overestimation of in situ values by SEVIRI LST. In the case of 

nighttime observations, both sensors tend to underestimate local measurements, with 

estimated bias over all events under study of -1.7°C and -2.6°C for SEVIRI and MODIS LST, 

respectively. 

 

4.4 Comparison of LST and Emissivity from AIRS and MODIS (Workshop, 2008) 

 

This study compares LST and Emissivity from AIRS and MODIS on the EOS AQUA 

platform. It is shown that AIRS retrievals (water vapor) are dependent on surface emissivity 

and also that the radiance at sensor measured by both sensors (AIRS and MODIS) are in good 

agreement. The remainder of the presentation concerns the large differences in the LST 

product between MODIS collection 004 and MODIS collection 005. MODIS Clear-sky 

Day/Night algorithm collection 004 and AIRS (version 5) cloud-cleared multi-channel 

regression retrieval temperatures were in good agreement, within 0.5 K at night, and between 
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0 and -1.5K during the Day, excluding snow/ice covered land. MODIS collection 005 Clear 

Land Classification algorithm is found to be 0.5 to 3 K colder than collection 004 (and colder 

than AIRS v5). This change is due to a stronger dependence of the day/night algorithm on the 

split-window algorithm. This demonstrates that estimating surface emissivity from land cover 

classification in the split-window algorithm may lead to large systematic biases in barren 

areas. For example, differences of up to 8 degrees are observed in the collection 005 MODIS 

LST product and the AIRS product over barren areas. This comparison may be complicated 

by different footprints, uncertainties in the AIRS cloud fraction and the MODIS saturation in 

bands 20 and 22. 

 

5. Community Requirements for LST (workshop, 2008) 

 

5.1 The requirement for LST product 

 

The workshop identifies that the requirements for LST for the different user communities are 

very different and have to be analyzed and considered separately. A compilation of the most 

common uses of LST is provided in the NASA White Paper on LST and Emissivity Needs. 

This document describes the state of the science of remote sensing of LST (from thermal 

infrared sensors) and identifies the user communities for LST and their requirements for the 

product. Specific application areas identified by that document included: (1) hazard prediction 

and mitigation (including wild fire risk assessment, detection and monitoring of onset and 

progression of volcanic activity, etc); (2) water management (assessment of agricultural/urban 

water consumption assessment of water losses from riparian areas and reservoirs, etc); (3) 

Crop management (drought/crop stress detection, irrigating scheduling, crop yield mapping / 

forecasting); (4) non-renewable resource management (geothermal resource exploration, 

differentiation of rock-lithologies).  

 

Table3: LST and emissivity product requirements (source: NASA White Paper for LST&E) 

 

Land Surface Temperature and Emissivity Earth System Data Record (LSTE-ESDR) 

Subproduct Spatial 

Resolution 

Temporal 

Resolution 

Accuracy  Precision Current 

Data 

Sources 

Future 

Data 

Source 

Global 10-20 km Hourly 0.5K 0.1-0.3K AIRS 

GOES 

MSG 

CrIS 

GOES 

MSG 

Regional 1-5 km 2-4 times 

daily 

0.5-1.0 K 0.1-0.3K MODIS 

AVHRR 

ATSR 

VIIRS 

AVHRR 

ATSR 

Local 30-100 m Once 

every 8-16 

days 

0.5-1.0K 0.1-0.3K ASTER 

Landsat 

 

Emissivity 1% or better (in 8-12.5µm) and 3% or better (in 3.6-4.2µm) all resolutions 
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The white paper table concentrates on current and future (planned) capabilities, while the 

specific application requirements for spatial and temporal resolution of TIR imagery are listed 

in Table 4. Naturally, for many of the applications, current and future satellite platforms will 

not meet the requirements. However, this table is provided to emphasize the need for 

administrators in regulatory, natural resources and research agencies, and government 

officials and policy makers to seriously consider the benefits of having the necessary LST 

capabilities to address many of the environmental and resources problems faced in the U.S. 

and worldwide. 

 

Table 4 Applications and Associated LST Target Pixel and Temporal Resolution 

Application Resolution 

(m) 

Temporal 

Sampling 

Specific Requirements 

National Drought Assessment 1000 1 hr Co-located veg cover info 

Regional Drought Monitoring 50 1-7 day Co-located veg cover info 

Agriculture Yield and Water 

Use 

50 1-7 day Co-located veg cover info 

Weather NWP 1000 1-3 hr  

Soil Moisture and Runoff 50 0.5-7 day One obs near peak or diurnal range 

Climate Science 5000 1-3 hr Sensors overlap 

Watersheds and Ecological 

Services 

50 1-7 day  

Landuse and Urban Heat Island  50 0.5-30 Diurnal range useful 

Fire 50  0.5-7 day Height temperatures sensitivity 

Lithology and Geological 

Hazards 

50 0.5-7 day Diurnal range useful; High temperatures 

sensitivity 

Cryosphere 100 0.5-7 day  

 

 

5.2 Examples of LST application  

 

LST products have been extensively used as inputs into assimilation routines to help improve 

the estimate of model state and prognostic variables. These are in turn used to improve the 

understanding and quantifications of surface fluxes, water availability, to aid resources 

management and improve weather forecasts. Through improved estimates of soil moisture 

and evapotranspiration, LST products are also outside of assimilation schemes to monitor 

drought at continental and regional scales. Following are some examples. 

 

The first example demonstrates the use of satellite-derived observations of land surface 

temperature (LST), from the SEVRI sensor, as inputs in a data assimilation scheme, aims at 

retrieving parameters that describe the energy balance at the land surface .The approach uses 

a parsimonious 1-D multiscale variational assimilation procedure. This assimilation scheme 

has been coupled with the non-hydrostatic limited area atmospheric model RAMS, in order to 

improve the quality of the energy budget at the surface in RAMS by replacing the lower 
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boundary condition of the atmospheric domain.  

 

Another example demonstrates the use of thermal infrared (TIR) data (GOES) as a valuable 

remote indicator of both evapotranpiration (ET) and the surface moisture status.  

 

Ensemble filters and LST assimilation in basin-scale hydrological models for flood 

forecasting: This study evaluates the fundamental differences (threshold process, preferential 

trajectories for convection and diffusion, low observability of the main state variables and 

high parametric uncertainty) between distributed hydrologic models and other 

geo-fluid-dynamics models, and explores them through some numerical experiments on a 

continuous hydrologic model, MOBIDIC.  

 

The research on operational regional-scale soil moisture with assimilation of satellite LST 

describes the operational implementation over the Italian territory of an experimental 

operational system of soil moisture monitoring, based on the assimilation of LST and other 

satellite-derived products. The assimilation scheme is based on the surface energy balance.  

 

The study Vegetation monitoring through retrieval of NDVI and LST time series from 

NOAA-AVHRR historical databases simultaneously analyzes the annual evolutions of NDVI 

and LST, with the purpose of a better mapping of the vegetation than when only NDVI 

parameter is used.  

 

5.3 The main challenges associated with the use of LST products for applications 

 

The workshop specifies the challenges that hinder the widely application of LST products, as 

listed below. 

1) Limited number of products available 

2) Difficult to ascertain exactly what is available 

3) No comprehensive “catalog” of all products  

 

In addition, for those products available: 

4) Not many are operational (systematic; long-term continuation assured) 

5) The majority is insufficiently validated (stratification approaches required: land 

cover types, climate regimes, day vs. night)  

6) Show discontinuous in space and time (cloud, orbital characteristics) 

7) Insufficiently long term records 

8) Inadequate latency 

9) Spatial resolution/ temporal resolution dichotomy 

10) May be sensor – or algorithm-specific 

 

Specifically, when the application involves the use of models, additional challenges 

are: 

11) Remote Sensing products and model state variables are inherently inconstant 

(vertical scale): satellite sees “skin” temperature in thin layer, whereas model 



Ying Sun Term Paper – Retrieval and Application of Land Surface Temperature
 

24   

 

“surface” temperature is typically a mixture of temperatures of thicker layers. 

12) Satellite skin temperature and model surface temperature may be inherently 

inconsistent (horizontal scale): Satellite “sees” a great variety of spatial 

heterogeneity, whereas a model is limited in the spatial variability it can 

represent. 

13) Tskin is different from Taerodynamic (needed for energy balance calculations). 

 

5.4 Main concerns regarding the LST products that will and will not become available 

in the future  

 

1) Lack of longevity and consistency of products 

2) Lack of adequate cover of diurnal cycle 

3) Lack of inter-calibrated data from data from satellite to satellite to get uniform 

long term global data 

4) Inadequate spatial resolution (high resolution required) 

5) Limited availability of products 

6) Existence of systematic biases in products 

7) Lack of consistency of instrument or spectral channels across platforms 

8) Inadequate accuracy to meet user needs 

9) Most products are clear-sky biased 

10) Inadequate cloud mask 

11) Combination of polar orbiters and geostationary provides real opportunities. 

12) Feasibility of multi-sensor multi-platform LST products. 

 

5.5 Solutions to bridge the gap between science and community 

1) Expand Table 4 to include the other criteria/requirements/issues and reach a final 

agreement on what are the acceptable requirements 

2) Determine the feasibility of generating satellite LST products for all-sky 

conditions. 

3) Demonstrate the usefulness of LST versus air temperature for operational systems. 

Identify what additional information is provided by LST compared with Tair. 

4) How can we reliably accommodate differences between LST (Tskin) and the 

aerodynamic temperature (Taerodynamic) for energy balance calculations and to 

compare with land surface model simulations. 

5) Evaluate the relationship between air temperature and surface temperature for 

different land surface types: their diurnal cycle, the diurnal range, the monthly 

and annual averages, etc. 

 

6. Summary 

 

Remote sensing based LST are determined from thermal emission at wavelengths in either 

infrared or microwave. The most popular method to retrieve LST is split window algorithm. 

However, there are too many uncertainties involved, e.g. view angle effect, cloud 

contamination, emissivity determination and so on. Most researches focus on reduction of 
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uncertainties and to improve the retrieval accuracy. Some researches constructed the LSTD to 

represent the diurnal variation of LST.  

 

There has been tremendous progress in the development of instruments, calibration and high 

level data products. Yet, an essentially interdisciplinary collaboration between those 

developing the models and observation data sets could yield significant improvement in both 

fields. From the models, output diagnostics, more closely representing the data recorded from 

remote sensing could be derived. Since model data exists through clear and microwave LST 

observations.  

 

Validation approaches included comparisons between LST datasets derived from different 

instruments as well as comparisons between LST datasets, modeled LST and in situ LST. The 

comparisons between datasets from different instruments included ASTER, ATSR, MODIS 

and AIRS as well as differences between versions for a given instrument.  

 

There are still some challenges associated with the use of LST products for applications. In 

addition, some uncertainties make it impossible for the future accurate LST product. Some 

suggestions have been proposed to solve these problems and bridge the gap between 

application community and research society. 
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