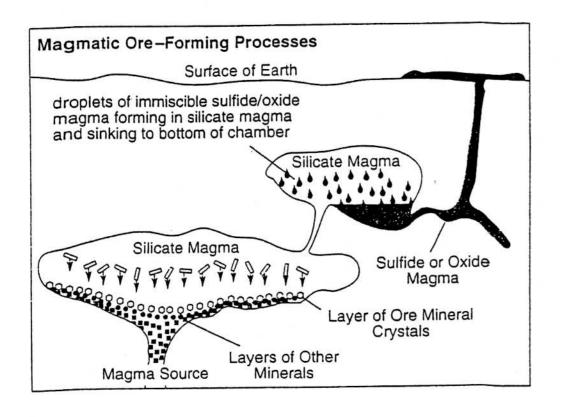
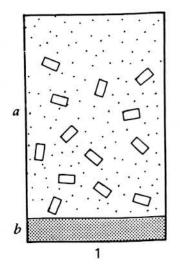
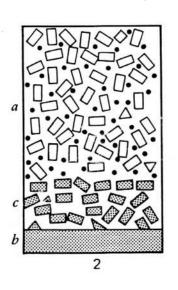
TEXTBOOKS ON RESERVE IN THE GEOLOGY LIBRARY FOR ECONOMIC ORE PETROLOGY

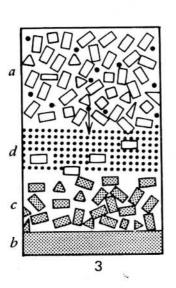
Jensen, M.L., and A.M. Bateman, Economic Mineral Deposits

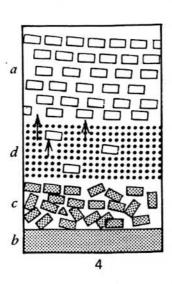
Below is the list of background readings for the lecture on economic ore petrology. Readings are listed as specific page numbers from the above textbook, which is on reserve in the Geology Library.


Lecture Title	Jensen/Bateman
Ore generation	81-92, 95-104, 312-322


Table 3-3 List of the Common Ore Minerals


Metal	Ore Mineral	Composition	Percent Metal	
Gold	Native gold	Au	100	
	Calaverite	AuTe ₂	39	
	Sylvanite	(Au, Ag)Te ₂	_	
Silver	Native silver	Ag	100	
	Argentite	Ag₂S	87	
	Cerargyrite	AgCl	75	
Iron	Magnetite	FeO·Fe ₂ O ₃	72	
	Hematite	Fe ₂ O ₃	70	
	"Limonite"	Fe ₂ O ₃ ·H ₂ O	60	
	Siderite	FeCO ₃	48	
Copper	Native copper	Cu	100	
Copper	Bornite	Cu₅FeS₄	63	
	Brochantite	CuSO₄·3Cu(OH)₂	62	
	"Chalcocite"		80	
		Cu ₂ S	34	
	Chalcopyrite	CuFeS ₂		
	Covellite	CuS	66	
	Cuprite	Cu₂O	89	
	Digenite	Cu ₉ S₅	78	
	Enargite	3Cu ₂ S·As ₂ S ₅	48	
	Malachite	CuCO ₃ ·Cu(OH) ₂	57	
	Azurite	2CuCO ₃ ·Cu(OH) ₂	55	
	Chrysocolla	CuSiO₃-2H₂O	36	
Lead	Galena	PbS	86	
	Cerussite	PbCO ₃	77	
	Anglesite	PbSO ₄	68	
Zinc	Sphalerite	ZnS	67	
	Smithsonite	ZnCO ₃	52	
	Hemimorphite	H₂ZnSiO₅	54	
	Zincite	ZnO	80	
Tin	Cassiterite	SnO ₂	78	
	Stannite	Cu ₂ S·FeS·SnS ₂	27	
Nickel	Pentlandite	(Fe,Ni)S	22	
	Garnierite	H ₂ (Ni,Mg)SiO ₃ ·H ₂ O		
Chromium	Chromite	FeO·Cr ₂ O ₃	68	
Manganese	Pyrolusite	MnO ₂	63	
gaoo	Psilomelane	Mn ₂ O ₃ ·xH ₂ O	45	
	Braunite	3Mn ₂ O ₃ ·MnSiO ₃	69	
	Manganite	Mn ₂ O ₃ ·H ₂ O	32	
Aluminum	Bauxite	Al ₂ O ₃ ·2H ₂ O	39	
Antimony	Stibnite	Sb ₂ S ₃	71	
Bismuth	Bismuthinite		81	
	Smaltite	Bi ₂ S ₃	28	
Cobalt		CoAs ₂		
	Cobaltite	CoAsS	35	
Mercury	Cinnabar	HgS	86	
Molybdenum	Molybdenite	MoS ₂	60	
_	Wulfenite	PbMoO₄	39	
Tungsten	Wolframite	(Fe,Mn)WO₄	76	
	Huebnerite	MnWO₄	76	
	Scheelite	CaWO₄	80	
Uranium	Uraninite	Combined UO ₂	50-85	
	Pitchblend	and UO₃		
	Coffinite	USiO ₄	75	
	Carnotite	K2O-2U2O3-V2O5-nH2O	60 U ₃ O	


Table 3-2 Crustal Abundance of Economically Important Elements


Name	Chemical Symbol	Atomic Number	Crustal Abundance (Percent by weight)
Aluminum	AI	13	8.00
Iron	Fe	26	5.8
Magnesium	Mg	12	2.77
Potassium	K	19	1.68
Titanium	Ti	22	0.86
Hydrogen	Н	1	0.14
Phosphorus	Р	15	0.101
Manganese	Mn	25	0.100
Fluorine	F	9	0.0460
Sulfur	S	16	0.030
Chlorine	CI	17	0.019
Vanadium	V	23	0.017
Chromium	Cr	24	0.0096
Zinc	Zn	30	0.0082
Nickel	Ni	28	0.0072
Copper	Cu	29	0.0058
Cobalt	Co	27	0.0028
Lead	Pb	82	0.00010
Boron	В	5	0.0007
Beryllium	Be	4	0.00020
Arsenic	As	33	0.00020
Γin	Sn	50	0.00015
Molybdenum	Mb	42	0.00012
Jranium	U	92	0.00016
Tungsten	W	74	0.00010
Silver	Ag	47	0.000008
Mercury	Hg	80	0.000002
Platinum	Pt	78	0.0000005
Gold	Au	79	0.0000002

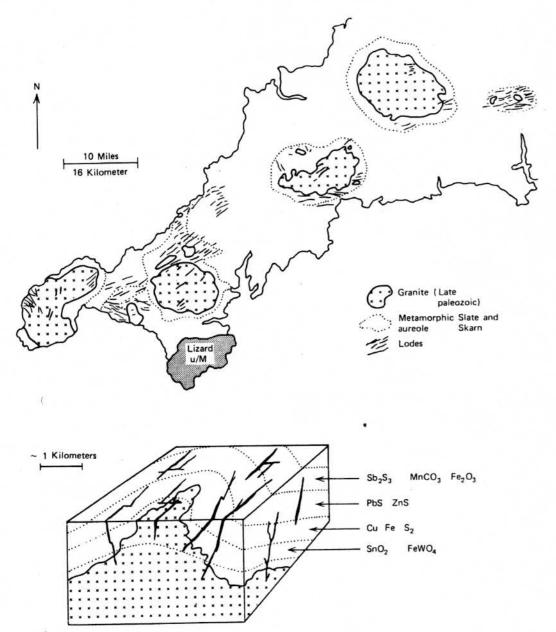


Figure 7-1 Block diagram showing ore zones relation to granite-stock contacts, Cornwall, England. (From K. Hosking)