Critical Events in the History of Life

Pleistocene-Recent (1.6 Ma-Present)	 Melting of L. Pleist. ice caps (15,000-9,000 yrs. ago) Big extinction of mammals and birds (40,000-0 yrs. ago) Spread of advanced humans to all parts of world and rise to dominance (40,000 yrs. ago to present) Start of Pleistocene glaciation, N. Hemisphere (~1.6 Ma)
	 North and South America collide at edge allowing animal migrations N and S (Pliocene, ~2.5 Ma) Appearance of homonids and humans in Africa (~5 Ma) India collides with S. Asia raising Himalayas (~30 Ma) Climatic cooling into Icehouse glaciation (40 Ma-Present) Big radiation in mammals and birds, continued radiation in angiosperms and insects
	 Big extinction (dinosaurs, pterosaurs, most marine reptiles, ammonoids, rudistids) at end of Cretaceous First appearance and big radiation of angiosperms (flowering plants), radiation in pollinating insects, E. Cret. Highest sea levels since Early Paleozoic, rapid spreading
	 First birds (L. Jur), first mammals? (Jurassic) moderate extinction in marine and terrestrial environment (end of Triassic) Breakup of Pangaea (L. TriasJur.), increased spreading Dinosaurs first appear and become dominant (L. Trias.) First flying reptiles (pterosaurs, L. Trias.) Recovery from P-Tr extinction in marine metazoans
	 Biggest marine extinction (>50% of families) in Phanero- zoic fossil record at end of Permian, big sea-level drop Formation of Pangaea (3rd supercontinent, PennPerm.) Big glaciation (M. PennE. Perm.), mostly in S. Hemis. Coal swamps and forests (PennPerm.) in Tropics First reptiles with amniote egg (lay on land), Penn.
	 Moderate marine extinction (last three stages of L. Dev.) First vertebrates on land (tetrapod amphibians, L. Dev.) Land plants become common, first seeds, trees (E. Dev.) First invertebrates on rapidly spreading continents (Sil.)
	 Brief glaciation in middle of Greenhouse interval at end of Ordovician + large but short-lived marine extinction All-time peak in marine metazoan class diversity Stromatolites rare after E. Ord., only in marginal areas Many classes of marine metazoans appear, along with first fish and first land plants near end of Ordovician
	 Beginning of good fossil record, few members of many marine phyla appear suddenly, first metazoan skeletons, trilobite dominance, first metazoan reefs, first vertebrates Oceans at 97% of present volume?, rising sea levels Remnants of Rodinia breakup collide to form Gondwana

Latest Proterozoic (700-540 Ma)	 First metazoans in fossil record (soft-bodied Ediacara Fauna) & first metazoan trace fossils, ~600-550 Ma Big drop in stromatolite diversity and abundance World-wide? glaciation ("Snowball Earth") ~600 Ma Breakup of Rodinia supercontinent, rapid plate spreading, ~700 Ma
Mid-Late Proterozoic (~1,000 Ma)	 Projected time for origin of metazoans (multicellular animals), but little or no fossil evidence this far back Peak in stromatolite diversity and abundance Rodinia forms from most continents, 2nd supercontinent? Fully oxidizing atmosphere (20% O2 & ozone layer like today?), red beds common Oceans at 95% of present volume? Columbia forms from early continental blocks ~1,500 Ma, 1st supercontinent??, breaks up soon after, ~1,300 Ma
Early Proterozoic (~2,000 Ma)	 First eucaryotic cells (symbiotic combination of procaryotes?), unicellular protistans and photosynthetic algae Steep rise in O2 in atmosphere - beginning of oxidizing atmosphere and red beds Oceans near 90% of present volume? Earliest evidence of glaciation (tillites - ~2,200 Ma) Plate tectonics in operation?, earliest continental cores grow in size and collide (~3,000 Ma) Deposition of siliceous banded iron formations (BIF) mostly from 3,000-2,000 Ma, major iron ores today
Early Archean (~3,500 Ma)	 First stromatolites (domal, layered structures built by photosynthetic blue-green algae), O2 released as waste product, but most oxidizes Fe & little gets to atmosphere First evidence of life (single celled procaryotes, bacteria), depletion of oceanic organic matter Oceans near 50% of present volume? Oldest surviving oceanic crust (komatiites) & continental crust (small areas of greenstones, tonalites), ~3,800 Ma Oldest surviving mineral grains (zircons) ~4,100 Ma
Origin of Earth (~4,600 Ma)	 Buildup of organic matter from meteorites and chemosynthesis in early shallow oceans Beginning of photodissociation (O2 from H2O) in upper atmosphere and slow accumulation there Light gasses in atmosphere (H2, He) lost to space Outgassing produces slowly growing oceans (H2O) and primitive reducing atmosphere Formation of earliest cool, thin, oceanic crust Heavy meteorite bombardment for first 500-600 mill. yrs. Differentiation of core and mantle (first 30-60 mill. yrs.)

- Formation of Earth along with Sun & rest of solar system