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ABSTRACT

The Cupido and Coahuila platforms of
northeastern Mexico are part of the extensive
carbonate platform system that rimmed the
ancestral Gulf of Mexico during Barremian to
Albian time. Exposures of Cupido and
Coahuila lithofacies in several mountain ranges
spanning an ~80000 krharea reveal informa-
tion about platform morphology and composi-
tion, paleoenvironmental relations, and the
chronology of platform evolution. New biostra-
tigraphic data, integrated with carbon and
strontium isotope stratigraphy, significantly
improve chronostratigraphic relations across
the region. These data substantially change

is a discontinuous rudist-coral reef. A broad
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tributing to the determination of global versus

shelf lagoon developed in the lee of the Cupido regional controls on carbonate platform evolu-

margin, where as much as 660 m of cyclic per-
itidal deposits accumulated. During middle to
late Aptian time, a major phase of flooding
forced a retrograde backstep of the Cupido
platform, shifting the locus of shallow-marine
sedimentation northwestward toward the
Coahuila block. This diachronous flooding
event records both the demise of the Cupido
shelf and the consequent initiation of the
Coahuila ramp.

The backstepped Coahuila ramp (Aptian-
Albian) consisted of a shallow shoal margin
separating an interior evaporitic lagoon from a
low-energy, muddy deep ramp. More than

previous age assignments of several formations 500 m of cydic carbonates and evaporites ac-

and force a revision of the longstanding stratig-
raphy in the region. The revised stratigraphy
and enhanced time control, combined with re-
gional facies associations, allow the construc-

tion of cross sections, isopach maps, and time-

slice paleogeographic maps that collectively
document platform morphology and evolution.
The orientation of the Cupido (Barremian-
Aptian) shelf margin was controlled by the
emergent Coahuila basement block to the

cumulated in the evaporitic lagoon during
early to middle Albian time. Restriction of the
platform interior dissipated by middle to late
Albian time with the deposition of peloidal, mil-
iolid-rich packstones and grainstones of the Au-
rora Formation. The Coahuila platform was
drowned during latest Albian to early Ceno-
manian time, and the deep-water laminites of
the Cuesta del Cura Formation were deposited.
This study fills in a substantial gap in the

tion during middle Cretaceous time.
INTRODUCTION

Lower Cretaceous epicontinental carbonates
provide reservoirs for enormous volumes of hy-
drocarbons along the Gulf of Mexico coast and
in the Middle East. Some of the largest carbon-
ate platforms developed in northeastern Mexico
and Texas, specifically during Barremian to Al-
bian time, when carbonate platforms reached
their maximum extent around the Gulf of Mex-
ico coast (Scott, 1990; Wilson and Ward, 1993).
For this reason, Cretaceous carbonate platforms
of Texas and eastern Mexico have been the focus
of numerous regional studies (e.g., Coogan et al.,
1972; Enos, 1974; Wilson, 1975; Bebout and
Loucks, 1974; Scott, 1990; Minero, 1991; Enos
and Stephens, 1993). Recent research on the Cu-
pido and Coahuila platforms has focused on
spectacular outcrops in the Sierra Madre Orien-
tal near Monterrey and Saltillo (Wilson and Pialli,
1977; Conklin and Moore, 1977; Goldhammer
et al., 1991; Wilson and Ward, 1993). These im-
portant studies have documented the composi-

northwest. The south-facing margin is a high- Cretaceous paleogeography of the eastern Gulf tion and orientation of the Cupido reefal plat-

energy grainstone shoal, whereas the margin
facing the ancestral Gulf of Mexico to the east
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of Mexico coast, improving regional correla-
tions with adjacent hydrocarbon-rich plat-
forms. The enhanced temporal relations and
chronology of events recorded in the Cupido
nd Coahuila platforms significantly improve
global correlations with coeval, economically
important platforms worldwide, perhaps con-
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form margin and have established the character
of the peritidal facies belt immediately behind
the margin. However, critical questions remain
about the vast interior of the Cupido platform
and its paleogeographic and genetic relationship
with the younger Coahuila platform. Further-
more, the current stratigraphic framework in the
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study area is marked by equivocal age assigand on the south by the left-lateral TorreonFormations (Smith and Bloxsom, 1974; Loucks,
ments, and thus there may be miscorrelationsonterrey lineament (parallel with the trend ofLl977; Tinker, 1985; Goldhammer et al., 1991).
To attain a more complete regional underthe Sonora-Mojave megashear) (Anderson and The second major episode of carbonate plat-
standing of these two platforms, we focused o8chmidt, 1983). The Sonora-Mojave megashe&rm evolution in the region, the Coahuila
remote and relatively uninvestigated exposures is inferred to have extended to the east, bisectimdatform (Acatita-Aurora Formations; Fig. 2), de-
the west and northwest in the Sierra de Parras afi@ Tamaulipas block and the Picachos blockeloped on top of the Coahuila basement block
above the Coahuila basement block. The obje@ilson, 1990). Left-lateral shear zones are inteduring Aptian through Albian time. The Coahuila
tives of this study were to (1) document paleopreted to have been major intracontinental tranptatform margin manifests a significant backstep
geographic and large-scale facies relationshifierm faults that were active during Late Triassic térom the preceding Cupido margin, a result of
across northeastern Mexico for Barremian to AIMiddle Jurassic time, but were likely inactive durdong-term sea-level rise through Early Cretaceous
bian strata, (2) obtain new biostratigraphic anéhg carbonate deposition in Barremian througkime that culminated during Cenomanian time
chemostratigraphic information to refine chronoAlbian time (Wilson, 1990; Goldhammer and(Haq et al., 1988). Deeper water carbonates of the
stratigraphic relationships, and (3) use these daféilson, 1991). Upper Tamaulipas Formation were deposited on
to interpret the evolutionary development of During Late Jurassic time, sea-floor spreadinthe more rapidly subsiding portions of the plat-
these Lower Cretaceous platforms. started in the Gulf of Mexico (Buffler and form surrounding the Coahuila block. The
The results of this study have important imSawyer, 1985; Winker and Buffler, 1988), andCoahuila platform was ultimately drowned during
plications for our understanding of the Earlynearshore siliciclastic and carbonate deposits (latest Albian—earliest Cenomanian time, as
Cretaceous evolution of the Gulf of MexicoGloria and Zuloaga Formations) accumulatedecorded by diachronous deposition of thinly in-
coast region. First, the new biostratigraphimear basement highs, passing into offshore caerbedded cherty lime mudstones and argillaceous
data, integrated with carbon and strontium isdonate shoals and outer-ramp muds (Zuloaghythmites of the Sombreretillo and Cuesta del
tope stratigraphy, dictate a substantial revisioRormation; Meyer and Ward, 1984; JohnsonCura Formations (Fig. 2; Bishop, 1972; Ice, 1981,
of the longstanding stratigraphic framework inl991). Evaporites and mudstones of the Olvidbongoria and Monreal, 1991). Deposition of
the study area. In addition, this study fills in &ormation were deposited conformably on theelagic mudstones, shales, and coarser siliciclas-
substantial hole in the data for the Cretaceou&iloaga Formation during continuous floodingtic strata of younger Cretaceous formations indi-
paleogeography of the eastern Gulf of Mexicd hese initial marine carbonate deposits wereates the transition to foreland basin sedimenta-
coast, improving regional correlations with adterminated with deposition of siliciclastics andion and the beginning of Laramide orogenesis.
jacent hydrocarbon-rich platforms to the soutlime mudstones of the La Casita Formation dur-
in eastern Mexico (Valles—Golden Lane) and ting Late Jurassic and earliest Cretaceous timETHODS AND DATABASE
the north in Texas (Sligo-Comanche). Perhag&ortunato and Ward, 1982).
most important, the high-resolution chronology The rift phase of the Gulf of Mexico was com- There were 37 sections totaling 17000 m
of the evolution of the Cupido and Coahuilgleted by the beginning of Cretaceous time, arldgged on a decimeter scale throughout the
platforms can be compared to coeval platformihe region underwent cooling and continuous80 000 ks study area (Fig. 3). Most sections
worldwide to search for connections and dissubsidence throughout Early Cretaceous timgere measured on the Coahuila block (9 sections)
tinctions, contributing to an enhanced under(Goldhammer et al., 1991). During this time,and in the northern part of the Sierra de Parras (14
standing of global versus regional controls omore than 2000 m of shelfal carbonates were dsections), where Lower Cretaceous restricted

carbonate platform development. posited around the ancestral Gulf of Mexico. Irevaporite interior, shallow shelf-lagoon, and high-
northeastern Mexico, the Barremian to Aptiarenergy shoal-margin deposits are exposed. There

PALEOTECTONIC EVOLUTION AND Cupido platform accumulated between thevere 14 sections of deep-platform facies measured

GEOLOGIC SETTING Coahuila basement block and a coral-rudist reefel the southern part of the Sierra de Parras, in the

margin (Figs. 1 and 2; Conklin and Moore, 1977Sierra Madre Oriental near Saltillo and Monterrey,

The distribution of Lower Cretaceous carbonWilson and Pialli, 1977; Selvius and Wilson,and in isolated mountain ranges east of the Sierra
ate platforms in northeastern Mexico (Fig. 1) i4985; Goldhammer et al., 1991). The Cupidale Paila. Hand samples for petrographic study of
closely linked to the opening of the Gulf of Mex-margin rimmed the Gulf of Mexico coast fromindividual lithofacies were collected at 10-20 m
ico (Anderson and Schmidt, 1983; Winker andouthern Louisiana through Texas (Sligo Formantervals at selected platform-margin and plat-
Buffler, 1988; Wilson, 1990). Late Triassic totion) and southward beyond Monterrey into théorm-interior sections and at 5-10 m intervals at
Middle Jurassic extensional rifting and strike-slifSierra Madre Oriental, where it abruptly bendselected deep-platform sections.
faulting produced a mosaic of fault blocks (Wilsonywestward (Fig. 1) along the northern front of the Biostratigraphic zonation for the Barremian-
1990; Coahuila, Picachos, Tamaulipas) and inteBierra de Parras (the western Sierra Madre Orieftbian of northeastern Mexico (Fig. 4) was estab-
vening grabens in which lacustrine and alluvialtal; Fig. 3) (Wilson, 1990; Wilson and Ward, lished on the basis of planktonic foraminifers (e.g.,
fan redbeds, evaporites, and clastic strata accuniif93). Based on paleogeographic relations, thengoria and Gamper, 1977; Ice and McNulty,
lated (Ovianki, 1974; Padilla y Sanchez, 1982Coahuila basement block apparently controlle@!980; Ross and McNulty, 1981; Longoria, 1984),
Salvador, 1987; Wilson, 1990; Michalzik, 1991;the orientation of the Cupido reef trend. Peritidahannoconids and colomiellids (Bonet, 1956; Trejo,
Michalzik and Schumann, 1994). The Coahuilaediments accumulated in a shallow shelf lagod960, 1975), ammonites (Bose and Cavins, 1927
basement block (Fig. 1) is composed of granitie the lee of the Cupido rudist platform margin)mlay, 1944a, 1944b; Young, 1974, 1977, 1978;
and granodiorite of Permian-Triassic age intrudedhile hemipelagic lime mudstones (LowerStinnesbeck, 1991), and rudists (Coogan, 1977,
into Permian orogenic sediments and appears Tamaulipas Formation) were deposited on th¥oung, 1984). Additional biostratigraphic data
have been a peninsular extension of the earsyrrounding deeper water shelf (Fig. 2). The Cuwwere collected in this study from the Sierra Madre
Mesozoic craton (Wilson et al., 1984; Wilson pido-Sligo platform was drowned during deposiOriental near Monterrey and Saltillo, the Sierra de
1990). The block is bounded on the north by thgon of argillaceous carbonates and shales of tiiarras, and ranges to the north overlying the
left-lateral San Marcos fault (McKee et al., 1990)middle to upper Aptian La Pefia and Pearsaoahuila basement block.
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Figure 1. Tectonic map of northeastern Mexico and south Texas showing distribution of Barremian-Aptian and Aptian-Albian carbaite plat-
forms (modified after Wilson and Ward, 1993, and Lehmann et al., 1998). Shaded areas show the Albian platforms only. Solid thirelivithin
Coahuila platform is interpreted edge of Permian-Triassic granodioritic basement (Coahuila block). Rectangle outlines the stualga. M—Mon-
terrey, PR—Poza Rica, S—Saltillo, SA—San Antonio, T—Torreon.

Thin sections of select samples from thre290% of all cements, and (3) syndepositionatleaned, thick sections (50n thick) or polished
stratigraphic sections were screened petrograplielomites that predate compaction, preserve fabillets using a binocular microscope, a hand-held
cally using transmitted light and cathodoluminesric, and exhibit minimal petrographic evidence fodental drill, and 250-500 pm faceted bits.
cence to identify: (1) least-altered rudists, (2) limeecrystallization. Microsamples (1-5 mg) of these Two splits of microsamples were used for stable
grainstones in which marine cements compogkree components were drilled from ultrasonicallysotope and Sr isotope analyses. Oxygen and car-
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Figure 2. (A) Correlation chart for the Lower Cretaceous of Mexico and Texas (modified from Wilson and Ward, 1993). Units disaesl in this
study are in bold. (B) Patterns used in all associated figures for facies associations and corresponding paleoenvironmentaigeand formations.
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Figure 3. Location map of measured sections and mountain ranges with Lower Cretaceous exposures (modified from Lehmann et298)L
Sections are indicated by filled circles. Ranges comprising the Coahuila block include the Sierra Acatita, Sierra Los AlamitosgeSierra de
Paila. AC—Agua Chico, CAT—Cafion Taraises, CAV—Cafion Viobora, CC—Cafion del Chorro, CCO—Casa Colorado, CCT—Cafion Cora-
zon del Toro, CDC—Cafion de Cobra, CDP— Carion de los Perdidos, CH—Cafion de Huasteca, CJP—Cafion de Juan Perez, CP—Cerro Pri-
eto, CT—Cerro de Tunal, CV—Chile Verde, ER—EI Roya, GA—Garambullo, LAC—La Casita, LC—La Concordia, LM—Las Margaritas,
PC—Potrero Chico, PG—Potrero Garcia, RA—Rayones, SA—west side Sierra Acatita, SAB—Sabinilla, SC—west side Sierra Cabrera,
SE—Sierra Escondida, SF—Sierra La Fragua, SG—Sierra de La Gavia, SLA—north side Sierra Los Alamitos, SLP—Sierra de la Pefia,
SO—Sombreretillo, SOM—Sombrero, SPE—Sierra de Parras, east side, SSM—Sierra San Marcos y Pinos, SR—Cafion de Santa Rosa,
SV—Sierra Venado, TN—Tanque Nuevo, TNN—Tanque Nuevo, north.

bon isotope analyses were conducted at the Uiisntamination by radiogerfiéSr from associated of 0.710203 + 24 (&r; n = 3) by data acquisition in
versity of Texas, Austin, and the University of Calnoncarbonate phases during sample dissolutiostatic multicollection mode during the early part of
ifornia, Davis, following procedures outlined in all samples were pretreated three times for 30 mihis study, and 0.710259 + 8¢1n = 10) by data
Gao et al. (1995) and Bemis et al. (199Bxter- in 0.2 M ultrapure ammonium acetate buffered tacquisition in dynamic multicollection mode dur-
nal precision (&) was better than +0.08%. anda pH of 8 to remove exchangeable Sr from nonng the later part of this study. To facilitate com-
+0.05%o ford80 andd'3C, respectively. Stron- carbonate phases prior to dissolution in 4% (caparison of’SrB8Sr results with recently published
tium isotope analyses were conducted at the Urgites) or 8% (dolomites) ultrapure acetic acid (cicomposite-seawater Sr isotope curves for Early to
versity of Texas following procedures outlined inMontafiez et al., 1996). Procedural blanks for Smiddle Cretaceous time, all data presented and
Banner and Kaufman (1994). In order to avoiéhcluding the pretreatment and column chemistrgliscussed in this paper have been renormalized to
—_— ranged from 5 to 26 pg, and were negligible for tha8’SrP%Sr value of 0.710250 for NBS-SRM 987.
IGSA Data Repository item 9956, data table, isamples analyzed. TR&SIF®Sr data are corrected Subsamples from different marine components
available on the Web at http:/ WWW'geOSOC'Ety[or fractionation t$7SrA8Sr = 0.1194 using an ex- within each of two thick sections yield&$rBssr
.org/pubs/ftpyrs.htm. Requests may also be sent 10 . . - . - o
Documents Secretary, GSA, P.O. Box 9140, BouldePonential relationship. Repeated analyses of NBSalues with similar variability as the repeated
CO 80301; e-mail: editing@geosociety.org. SRM 987 standard yielded a mé&arfSSr value  analysis of the SRM standard.
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Figure 5. (A) Evaporitic, peritidal, and shal-
low-subtidal facies on Coahuila block, Sierra
Acatita. Light colored strata are primarily
evaporitic rocks of the Acatita Formation.
Cb—Coahuila granodioritic basement; LU—
Las Uvas Formation; Ac—Acatita Formation;
Au—Aurora Formation. (B) Peritidal facies of
the Cupido Formation, Tanque Nuevo.
Lighter, thicker bedded strata are primarily
subtidal facies and darker, thinner bedded
strata are primarily tidal-flat facies. (C) Shal-

low to deep subtidal facies, Sierra de la Gavia.

Ct—"Cupidito” facies of Cupido Formation;
LP—La Pefia Formation; UT—Upper
Tamaulipas Formation.
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FACIES ASSOCIATIONS tive of these Cretaceous examples are caprintlde Cupidito unit indicate a gradual upward deep-
and requienid rudists an@hondrodontabi-  ening that continues through the La Pefia shales;
Barremian to Albian platform carbonates andalves; otherwise these peritidal cycles are essethe Cupidito unit is interpreted to record a ret-
evaporites of the study area form genetic associgally identical to most others throughout therogradational backstep of the Cupido platform.
tions of lithofacies that define five paleoenvironstratigraphic record. Similar meter-scale Creta- The Las Uvas carbonate-rich sandstone
mental settings: restricted evaporite interior, pereeous cycles have been described from the C{8—15 m) unconformably overlies remnants of
tidal to shallow subtidal shelf lagoon, shallowpido platform in the Sierra Madre Oriental neaPermian flysch on the eastern side of the Sierra
subtidal restricted to open-marine platform, highMonterrey (Goldhammer et al., 1991), the Valleg\catita or onlaps granodioritic basement on the
energy shoal margin that changes along strike tqéatform of east-central Mexico (Minero, 1988,western side (Fig. 5A). The coarse fossiliferous
rudist-reef margin, and deep subtidal, low-energ¥991), and the Gavrovo platform of northwestersandstone is cross-bedded in places and con-

platform (Fig. 2B). Greece (Grétsch, 1996). tains clasts of the underlying granodioritic base-
Two brecciated intervals occur within the perment and Permian flysch, as well as carbonate
Restricted Evaporite Interior Facies itidal shelf-lagoon lithofacies of the Sierra danterbeds with bivalve and brachiopod frag-

Parras and are best developed at Tanque Nuavents. The Las Uvas sandstone is interpreted to

Restricted evaporite interior facies (Acatitavhere they are exposed along ~2 km of continulpe a transgressive shoreline deposit formed dur-
Formation) are located above the Coahuila bloabus outcrop (Fig. 3). Intraclast breccias are coniRg initial flooding of the Coahuila basement
in the Sierra de Paila, Sierra Los Alamitos, angosed of subangular clasts of mudstone and tidélock (Humphrey and Diaz, 1956).
Sierra Acatita (Fig. 3). The Acatita Formationflat laminites ranging from 0.1 to 0.5 m in Peloidal, skeletal packstones and grainstones of
(Humphrey and Diaz, 1956) reaches a thicknesameter, floating in a grainy dolomitized matrix.the basal part of the Acatita Formation (60—130 m
of more than 500 m and consists of cyclic, inThe thickness of the brecciated horizons varighick) were deposited either directly on top of
terbedded carbonates and evaporites. along the outcrop from 0.5 to 10 m. At Tanqué&oahuila basement or above the Las Uvas sand-

Gypsiferous dolomudstone with intercalatedNuevo, the clast size and thickness of the breccione (Fig. 5A). The packstones and grainstones
massive gypsum beds forms the dominant lithoncrease to the north toward the shelf interioexhibit low-angle cross-bedding and contain mil-

facies within the restricted evaporite interior iolids, orbitolinids, shell fragments, corals, and
(Fig. 5A). These lithofacies are interbedded@hallow Subtidal Restricted to Open-Marine  caprinid and requienid rudists. Thick-bedded to
with bioturbated dolowackestone that typicallyPlatform massive, bioturbated wackestones and packstones
coarsens upward to peloid-miliolid-orbitolinid are commonly interbedded within the coarser,

dolopackstone and grainstone that may exhibit Shallow subtidal platform facies crop out inskeletal-rich lithofacies. The basal Acatita Forma-
low-angle cross-lamination. Traction-depositednountain ranges centered on top of the Coahuil@n is interpreted to have formed in shallow sub-
mechanical laminites and cryptalgal laminitedlock (best exposed in the Sierra Acatita) and setielal, generally open-marine conditions during the
may overlie the packstone-grainstone lithofaeral localities in the Sierra de Parras and othéritial stages of flooding of the Coahuila block.
cies. Cyclic arrangements of these lithofaciesanges of the Sierra Madre Oriental. Genetically The Aurora Formation (to 260 m thick) con-
are interpreted to shallow upward from evaporrelated lithofacies in this association indicate degsists dominantly of massive, cross-bedded,
ites to carbonates (Lehmann et al., 1998). Evapsition in a spectrum of shallow subtidal environpeloid-miliolid packstone and grainstone (Fig.
oritic lithofacies are interpreted to have been denents from the shoreline to near fair-weatheésA). Throughout the Aurora succession, thin in-
posited in a restricted, hypersaline lagoomvave base. The presence or absence of certéémbeds of bioturbated wackestone containing
rimmed by an elevated high-energy shoal maskeletal components suggests variable restricteelquienid rudists and ostracodes form subtle
gin that episodically migrated over the lagoonto open-marine conditions. Shallow-subtidal platrthythmic alternations with the peloid-miliolid
Exposures of platform-margin facies coevaform facies compose the Las Uvas Formation, theackstones and grainstones. Tidal-flat lithofacies
with the Acatita evaporitic facies are limited tolower portion of the Acatita Formation, the Au-rarely form cycle caps. The Aurora Formation is
two sections (Casa Colorado, Cafion de los Pepra Formation, and the upper portion of the Cunterpreted to record restricted, shallow-subtidal
didos); remaining evidence of the margin is pregido Formation throughout the study area (Cupicenvironments centered above the Coahuila block.
sumed to be buried beneath Upper Cretaceoits of Wilson and Pialli, 1977; unit F of Conklin
strata of the Parras basin. and Moore, 1977). High-Energy Shoal Margin to Rudist-Reef
The Cupidito unit was introduced by WilsonMargin
Peritidal to Shallow Subtidal Shelf-Lagoon and Pialli (1977) as an informal transgressive unit
Facies below the La Pefia shales in the Sierra de Fraile.The Aptian (Cupido) shelf margin is variable
Near Monterrey, the Cupidito unit varies signifi-along strike. From the Sierra de Jimulco through

Peritidal shelf-lagoon facies are exposed in theantly in thickness from 100 m to a few meter¢he northern part of the Sierra de Parras and con-
northern Sierra de Parras and in mountain rangéSoldhammer et al., 1991). The thickness of thénuing eastward into the Sierra Madre Oriental
and potreros near Monterrey. These facies for@upidito unit in the Sierra de Parras ranges béFigs. 1 and 3), the south-facing shelf margin is
the bulk of the Cupido Formation and have beetwveen 190 and 300 m, and consists of subtidatomposed of a narrow fringe of high-energy
studied in detail around Monterrey (Conklin andlominated peritidal cycles (Fig. 5C). Peloid-grainstone shoal deposits. This south-facing mar-
Moore, 1977; Wilson and Pialli, 1977; Selviusmiliolid-ooid grainstones to wackestones withgin makes an abrupt bend northward and changes
and Wilson, 1985; Goldhammer et al., 1991)caprinid and requienid rudists are the dominarito reefal rudist-coralline facies along the
Peritidal deposits of the Cupido reach a thickneshallow-subtidal lithofacies within these cyclesgulfward side of the platform (Wilson, 1975;
of as much as 660 m and are systematicall@ryptalgal laminites and fenestral mudstone€onklin and Moore, 1977; Wilson and Pialli,
arranged into upward-fining cycles similar torarely cap cycles, in contrast to the dominance d077; Wilson et al., 1984; Goldhammer et al.,
those that characterize many shallow carbonaperitidal cycles in underlying facies of the Cupidd 991; this study).
platforms (Fig. 5B). Components that are distind~ormation. The dominantly subtidal lithofacies of The grainstone shoal margin in the northern
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Sierra de Parras is composed dominantly afalciturbidites. The mudstone and wackestoneith isotope chemostratigraphy provides im-
peloids and ooids, but contains subordinate lagre commonly bioturbated and contain plankproved stratigraphic resolution for key localities
ers (1-5 m thick) of caprinid and requienid rudtonic foraminifers, nannofossils, calcispheres, osn the Sierra de Parras and mountain ranges to the
ists. Shoal architecture consists of large-scal&acodes, colomiellids, echinoid fragments, andorth overlying the Coahuila basement block.
progradational, sigmoidal clinoforms dipping ageloids. In the Sierra Madre Oriental near MonThese new data require a significant refinement
much as 25° to the south-southwest. The thickerrey, regularly spaced dolomitic firmgroundsof the previously established stratigraphic frame-
ness of the grainstone shoal deposits varies sigad hardgrounds are common sedimentary feaork that has been entrenched in the literature for
nificantly over relatively short distances (15 km)tures in the Upper Tamaulipas Formation. Thenore than 60 yr (Imlay, 1936, 1937; Humphrey
from ~60 m at La Casita to ~400 m at Childaminated calciturbidite facies of the Upperand Diaz, 1956; Wilson and Ward, 1993). Our ar-
Verde (Fig. 3). Tamaulipas Formation are confined to sections igument for these revisions is spelled out in the
The rudist-reef margin with intercalated lensethe southern part of the Sierra de Parras, consistlowing two sections.
of grainstones extending north through Monterregntirely of well-sorted micropeloids, and exhibit
was extensively investigated; workers identifiedC and D units of Bouma sequences. Intercalat&ierra de Parras
massive rudist and coral-dominated packstonesith the calciturbidites are intraclast breccias and
grainstones, and boundstones with stromat@onvolute-bedded mudstones. Breccias are mudLower Cretaceous shallow-water carbonates
poroids and abundant marine cements (biostromslipported and are composed of subangular itothe Sierra de Parras have been historically re-
shelf-margin unit C of Conklin and Moore, 1977).subrounded intraclasts of foraminiferal mudstongarded as the Aurora Formation of Albian age
The reef margin attains its maximum thicknesand wackestone floating in a mudstone matrixFig. 6; Imlay 1936, 1937; Humphrey and Diaz,
(250 m) at Potrero Chico. The contiguous sho&yndepositionally deformed mudstones exhibit Z956; Wilson and Ward, 1993). The Aurora
and reef margins of the Cupido platform formed &olds that indicate a south-dipping paleoslopdrormation was first defined in northern Chi-
physical barrier separating a peritidal shelf-lagoowhich, together with the breccias and microturhuahua (Burrows, 1909) and described as mas-
to the north and west from a deep-water, low-erbidites, suggests a local steepening of the desjve rudist limestones correlative to the Glen
ergy shelf to the south and east (Lower Tamaulipa$elf in the southern Sierra de Parras during URose, Fredericksburg, and Washita “divisions”
Formation). per Tamaulipas Formation deposition. of Texas (King and Adkins, 1946). Bose and
Cavins (1927, p. 86) described Lower Creta-
Deep Subtidal, Low-Energy Platform Facies PREVIOUS WORK, AGE CONTROL, AND ceous rocks in the mountain ranges north of
REVISED STRATIGRAPHY Monterrey and recognized “Albian” reef facies
Facies of the deep subtidal, low-energy shelf “practically all over northern Mexico containing
are exposed everywhere throughout the study Initial regional studies in northeastern Mexicaeverywhere Caprinidae and Rudistidae.” They
area except over the Coahuila block. Geneticallyere performed by Burrows (1909), Haarmanmeported that this rudist-bearing facies extended
related lithofacies in this association indicaté1913), and Bose (1921). Bose (1923) recognizdtbm the Sierra Madre Oriental around Monter-
deposition of periplatform and pelagic sedimentthat Permian strata on top of the Coahuila gramey westward through the Sierra de Parras to the
below storm wave base on a low-energy muddydioritic basement block are overlain by what h&ierra de Jimulco (Fig. 3). Imlay (1936, 1937)
shelf. These facies compose the Taraises, lraported as Aptian deposits and concluded thasabsequently described and mapped rudist-
Pefia, and Lower and Upper Tamaulipas Form&ndmass existed during early Mesozoic timeédearing limestones and overlying shales and
tions (Fig. 2). Subsequent work by Kellum et al. (1936) andime mudstones in the Sierra de Parras as the
The Taraises Formation consists of dark graielly (1936) confirmed Bése's observations andAlbian” Aurora Formation (Fig. 6). Underlying
mudstone and wackestone, shale, and interclee name “Coahuila peninsula” was establisheshales and lime mudstones were designated by
lated skeletal, foraminiferal wackestone andor this ancient landmass. Further investigationsnlay as the Aptian La Pefia Formation. Mas-
packstone. Wackestones contain planktonic arathd mapping established the stratigraphisive lime mudstones below the La Pefia shales
benthonic foraminifers, calcispheres, nannofosaiomenclature of the study area (Imlay, 1936n the Sierra de Parras were regarded as deep-
sils, echinoid fragments, and subordinate rudist937, 1938, 1944a, 1944b; Kellum et al., 1936yater facies of the Cupido Formation, coeval
and brachiopod fragments. Kelly, 1936; Humphrey, 1949; Humphrey andwith shallow subtidal and peritidal deposits in
The La Pefia Formation ranges in thicknedsiaz, 1956). Subsequent studies that were carridite Sierra Madre Oriental near Monterrey (Im-
from 10 to 30 m in the Sierra de Parras to asut in the Sierra Madre Oriental and in mountaifay, 1937). Since then this stratigraphy has been
much as 200 m seaward of the Cupido shelf maranges to the north built upon the earlier stratapplied in the Sierra de Parras by many other
gin (Fig. 5C; Conklin and Moore, 1977; Wilsongraphic framework (e.g., de Cserna, 1956yorkers (e.g., de Cserna 1956; Humphrey and
and Pialli, 1977; Tinker, 1985). It consists ofBishop, 1966, 1970, 1972; Krutak, 1967; GarzaDiaz, 1956; Wilson and Ward, 1993).
dark gray, organic-rich shale and silty, laminated973; Smith and Bloxsom, 1974; Charleston, Our investigations in the Sierra de Parras docu-
foraminiferal mudstone. The shales contain midt974; Ekdale et al., 1976; Conklin and Moorement a shaly interval from 10 to 30 m thick sepa-
dle to late Aptian ammonite®(frenoyiasp.) 1977; Longoria and Gamper, 1977; Wilson andating shallow-water carbonates (middle “Aurora”
and rounded phosphorite clasts to 0.5 cm in dRialli, 1977; Elliot, 1979; Ross, 1979, 1981;of previous workers) from hemipelagic lime mud-
ameter. Intercalated thin beds of lime mudstorieongoria, 1984; Wilson et al., 1984; Cantustones (upper “Aurora”) (Figs. 3 and 6; Cafion
contain continuous chert layers and small, rechapa et al., 1985; Tinker, 1985; GoldhammefFaraises, west-side Sierra Cabrera, Tanque Nuevo,
crystallized foraminifera, calcispheres, nannoet al., 1991; Longoria and Monreal, 1991; anierra Escondida). These shales contain the plank-
fossils, and radiolarians. Wilson and Ward, 1993). tonic foraminiferGlobigerinelloides algerianys
The Lower and Upper Tamaulipas Formations This study corroborates and expands upowhich defines a narrow total range zone in middle
are separated by the La Pefia Formation and canany of the stratigraphic observations of théptian time (Fig. 4; Sliter, 1989), along with
sist of homogeneous, foraminiferal mudston&ierra Madre Oriental made by these worker®ufrenoyiasp, a diagnostic ammonite for middle
and wackestone and laminated, micropeloiddiowever, integration of new biostratigraphic datéo upper Aptian time (Young, 1977; Ross and
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PREVIOUS STRATIGRAPHIC GENERALIZED REVISED STRATIGRAPHIC
|N'|'_ERPRETAT|ON LITHOSTRATIGRAPHY INTERPRETATION
(Sierra de Parras SIERRA DE PARRAS (Sierra de Parras)
Imlay 1936, 1937)
_ CENOMANIAN Y Cuesta del Cura Deep water laminites Cuesta del Cura _CENOMANIAN |
] Upper Tamaulipas
Lime mudstones (deep-water ALBIAN
Aurora equivalent)
Shales N_"New" La Pefia
Shallow subtidal to APTIAN
ALBIAN peritidal carbonates
Aurora — Cupido
(‘rudist-bearing  } (1 L _______
limestone") —
Dolomitized grainstones
Lime mudstones and intercalated BARREMIAN
wackestones/packstones
La Pefia Shales and lime mudstones | | ______4
APTIAN Taraises
________ ; Lime mudstones HAUTERIVIAN
BARREMIAN Cupido

Figure 6. Generalized lithostratigraphy in the Sierra de Parras with previous stratigraphic interpretation by Imlay (1936, 1937ontrasted
with the revised stratigraphic interpretation of this study. See Figure 2B for symbols.

McNulty, 1981; Tinker, 1985)G. algerianusand late Aptian to early Albian age assignment focolomiellidsColomiella rectaandC. mexicana
Dufrenoyiasp are also found in the shales of thenudstones and shales below the newly definethd ostracodes such ldgcrocalamoides diver-
La Pefia Formation to the east in the Sierra Mad@upido Formation in the Sierra de Parras is furtheus suggesting a late Aptian to Albian age. The
Oriental near Saltillo and Monterrey. This newlycorroborated by th&Srf8Sr values of diageneti- lower to middle Albian planktonic foraminifer
identified shale in the Sierra de Parras (“new” Laally least-altered limestones (Sierra EscondidEcinella primulais found close to the contact
Pefia; Fig. 6) is apparently correlative with the Laection in Fig. 7). Th&Srf8Sr values of micrites with the overlying Cuesta del Cura Formation
Pefia Formation in the Sierra Madre Oriental neéitom this interval (average of 0.70751; range ofLongoria and Gamper, 1977). Therefore, the
Saltillo and Monterrey and indicates that the urd.70742—-0.70760) are similar to or slightly highemudstones overlying the redefined La Pefia shale
derlying shallow-water carbonates must correhan published late Barremian to earliest Aptiam the Sierra de Parras span late Aptian to middle
spond to the Cupido Formation rather than to treeawate’SrPéSr values of 0.70743-0.70751Albian time and are correlative with the deep-wa-
Albian “Aurora” as previously accepted. More-(Jones et al., 1994; values renormalized tter Upper Tamaulipas Formation (Fig. 6).
over, below the newly redefined Cupido Formag’Srf8Sr value of 0.710250 for NBS-SRM 987; These new biostratigraphic and isotopic data
tion in the Sierra de Parras, the occurrence oflenkyns et al., 1995; Bralower et al., 1997). Theadically change the accepted stratigraphic
Barremian ammoniteEpdesmocerasp.; Keith  87Srf8Sr values for the Sierra Escondida sampldsamework of the Sierra de Parras. The revised
Young, 1997, personal commun., Tanque Neuv@re more widely spread than the range of valuasratigraphy hinges on the recognition of Aptian
and late Barremian to early Aptian benthonithat defines the Cretaceous seawater Sr isotopa Pefia shales higher in the stratigraphic section
foraminifers, includingNeotrocholinasp. and curve. This difference is interpreted to reflect théhan previously mapped. The results of this study
primitive forms ofVercorsellasp. (La Concordia effects of mixing of small to moderate amounts ohdicate that the Aurora Formation is restricted to
and Sierra de Parras, east side), indicates that tliagenetic cements with marine cement duringlbian shallow-water carbonates overlying the
lime mudstones and shales formerly included imicrosampling. Coahuila block to the northwest, significantly re-
the Aptian La Pefia and Cupido Formations should Lime mudstones overlying the redefined Lalucing the paleogeographic extent of the Aurora
be included with the Taraises Formation, a diPefia shale in the Sierra de Parras (Fig. 6) contgDoahuila) platform. A similar interpretation that
achronous, shaly, deep-water unit (Fig. 6). the foraminifergavusella scitulaF. washitensis the Coahuila platform margin is buried in the Par-
A late Barremian to early Aptian rather than adedbergella trocoidesandHedbergellasp., the ras basin was made by Garza (1973).
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PREVIOUS STRATIGRAPHIC
INTERPRETATION GENERALIZED REVISED STRATIGRAPHIC
(Sierra Acatita) LITHOSTRATIGRAPHY INTERPRETATION
(Sierra Acatita) (Sierra Acatita)
Kelly, 1936 Humphrey and
Diaz, 1956
CENOMANIAN CENOMANIAN C“ecflﬁfade' Deep water laminites | _ _ _ _ CENOMANIAN |
__________________ & & Praeglobotruncana stephani
Shallow subtidal
ALBIAN LATE ALBIAN carbonates
ALBIAN
Mixed
| evaporites/carbonates
EARLY TO Acatita of the restricted
APTIAN MIDDLE ALBIAN A evaporitic interior
& & Pseudonummoloculina heimi
N & | ® Mesorbitulinaparva _ _ _ _ _ _|
————————— Skeletal grainstones e e APTIAN
| Choffatella
L. APTIAN Las Uvas = @ decipiens EARLY APTIAN
e i i S N
Coahuila Granodioritic
PERMO-TRIASSIC Block basement PERMO-TRIASSIC

Figure 8. Generalized lithostratigraphy in the Sierra Acatita contrasting the stratigraphic interpretations of Kelly (1936) andHumphrey and
Diaz (1956) with the revised stratigraphic interpretation of this study.

Coahuila Block Sandstones directly overlying basement on thtbe Sierra Acatita (which he called “Lower
Coahuila block in the Sierra Acatita (0—15 nCuchillo Formation”) that were preserved “as
The correlation of Barremian-Albian carbon-thick) were defined as the Las Uvas Formation byolds, making specific identification difficult or
ates in the Sierra de Parras with evaporites aftbmphrey and Diaz (1956). Overlying the Lasindeterminable” and stated that “provisional
carbonates on top of the Coahuila block is diffidvas Formation is the Acatita Formation, consistidentification” of the late Aptian ammonite
cult because lateral transitions are buried withimg of a basal, massive skeletal limestone (60Bufrenoyia justinaewas made by a student
the intervening Parras basin (Fig. 3). In additiorf,00 m thick) that passes upward into an ~500-nfp. 1024). He argued, despite the equivocal iden-
unequivocal La Pefia shales with their timethick succession of alternating evaporites antification, that “the boundary between the Aptian
diagnostic fauna do not crop out on the Coahuildolomites (Kelly, 1936; Humphrey and Diaz,and the Albian lies somewhere in the upper
block. Further complications arise due to extent956; Perkins, 1960; Wilbert, 1976; Wilson andCuchillo” (Acatita) (Kelly, 1936, p. 1027).
sive dolomitization of carbonates interbeddediVard, 1993). Overlying the Acatita Formation are  Humphrey and Diaz (1956) assumed the iden-
with evaporites, resulting in poor fossil preserval90-260 m of massive shallow-water limestonetfication of D. justinaeby Kelly (1936) to be cor-
tion. Consequently, previous age determinatiorsontaining miliolids and rudists (Aurora Forma-rect, and thus a late Aptian age for the Las Uvas.
of strata overlying Coahuila basement are equition). Deeper water facies of the Cuesta del Cuighey interpreted these sandstones as a nearshore
ocal and poorly constrained. New biostratiormation overlie the Aurora deposits. equivalent to the La Pefia Formation and inferred
graphic and isotopic data collected in this study, Kelly (1936) correlated the Acatita with theoverlying evaporitic facies of the Acatita Forma-
however, permit a refinement of age estimatesvaporitic Cuchillo Formation of northern Chi-tion to be Albian in age. Furthermore, Perkins
and a new stratigraphic model. Before explainhuahua (Burrows, 1909; King and Adkins, 1946)1960), working in the Sierra de Tlahualilo west
ing this model, a brief description of the litho-based on “lithologic similarities” and strati- of the Sierra Acatita, correlated the upper part of
stratigraphy and previous stratigraphic work ographic position below Aurora facies. He colthe Aurora Formation with the upper Albian
the Coahuila block is necessary (Fig. 8). lected ammonites from Las Uvas sandstones kredericksburg and Washita Groups in Texas.
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Figure 9. Chronostratigraphic interpretation for the Barremian to Albian strata of this study (modified from Lehmann et al., 198). Note that
the Las Uvas Formation and the overlying carbonates of the Lower Acatita Formation are coeval with the upper transgressive pairthe Cupido
Formation (“Cupidito”). Chart illustrates temporal relationships between the Coahuila block to the northwest and the Sierra d®arras to the
south-southeast. See Figure 2B for symbols.

Both interpretations combined suggest that evapesorbitolina parvaandPseudonummoloculina signment, coupled with the occurrenceChfof-
orites and carbonates of the Acatita Formatioheimi(west side Sierra Acatita, El Rayo), sugfatella decipiensn the stratigraphically lowest
are early Albian in age and thus correlative witlgesting an Albian age. sample, suggests that the |6WC value corre-
the Glen Rose Formation in Texas. The new age assignments for the lowelates with the more negati®3C values of the
These interpretations do not provide a cleakcatita Formation on the Coahuila block are furearliest Aptian (uppeBlobigerinelloides blowi
age assignment of the carbonates and evaporitesr constrained by ti&3C and®’Sr/8Sr values zone). Combined chemostratigraphic and bio-
deposited on top of the Coahuila block. Our reaf limestones and dolomites from the Sierratratigraphic relationships support a latest Bar-
vised stratigraphic interpretation, based on newlfcatita section (Fig. 7). The least diageneticallyemian to earliest Aptian age for the basal
acquired biostratigraphic data combined wittaltered limestone samples from the basal maéeatita Formation on the Coahuila block.
stratigraphic trends in carbon and strontium isaive skeletal limestones of the Acatita and car- Stratigraphically younger samples from the
topes, significantly modifies the existing age asbonate interbeds within the lowermost Acatitanassive skeletal limestone in the lower Acatita
signments (Fig. 8). The most important differevaporites exhibit a large ranged¥C values Formation record decreasifgsrfeSr values.
ence is that the Las Uvas Formation and thaver a relatively thin (~70 m) stratigraphic inter-Two components of a grainstone (rudist and ma-
massive skeletal limestone of the basal Acatiteal. A similar range and magnitude of shifts irrine cement) from the top of the limestone (data
Formation are interpreted to be early to late ApBC values of Tethyan pelagic and hemipelagipoints within shaded squares on Fig. 7) have the
ian in age (rather than late Aptian to early Allimestones define three global carbon isotope elowest®’SrfSr values (0.70727 and 0.70731) of
bian). This interpretation is based on the presencarsions during Aptian and earliest Albian timeall carbonates analyzed in this study. These
of large miliolids and orbitolinids, especially the(Scholle and Arthur, 1980; Weissert and Lini8’Srf8Sr values and those of stratigraphically
occurrence o€hoffatella decipiensat the base 1991; Follmi et al., 1994). A rudist from the baseg/ounger samples are characteristic of marine
of the massive carbonates of the lower Acatitaf the Acatita Formation (data point within8’SrPSr values that define the latest Aptibie(-
Formation and the top of the Las Uvas Formatioshaded circle in Fig. 7) has a I@&°C value bergella trocoideaand Ticinella bejaouaensis
(west-side Sierra Acatita and Agua Chico), sug-l.1%o) and arf’Srf8Sr value (0.70760) that is zones) to very earliest Albian “trough” in the
gesting a latest Barremian to early Aptian agéigher than any mid-Cretaceous primary marineomposite seawater Sr isotope curves of Bralower
Furthermore, carbonate interbeds within the lowvalue. This singlé7Sr8Sr value is closer to et al. (1997) and Jenkyns et al. (1995). This age
ermost Acatita evaporites, which directly overlieBarremian and earliest Aptian mari#/&rféSr  estimate supports a post-middle Aptian age for the
the massive skeletal limestones, contain an ovalues than to middle Aptian through middle Altop of the massive skeletal limestones in the lower
bitolinid and miliolid facies association includingbian values (shown by arrow). This Sr age agcatita Formation and suggests that most of the
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Aptian is recorded in the basal 70 m of the Acatitpenninicazone, whereal. stephanéxtends from remian time and controlled the orientation of the
Formation in the Sierra Acatita section. theR. appenninicaone through the CenomanianCupido shelf margin (Figs. 1 and 12A). The mor-
A limestone interbed from the lowermoststrata (Sliter, 1989). Cooccurrence of thesphology and composition of the shelf margin,
evaporites in the Acatita Formation (data poinforaminifers in comparable stratigraphic intervalfiowever, are variable in relief, slope angle, and
within shaded triangle on Fig. 7) has the lowesh the two sections suggests that diachronous tdithofacies. This study documents that the southern
813C value (1.0%o) for this stratigraphic interval,mination of shallow-water deposition on theCupido platform in the Sierra de Parras has the
but an overlapping to slightly high&¥SrfSr  Coahuila platform began during middle Albianmorphology of a shelf with a low-relief, barrier
value (0.70732) than immediately underlyingime and was complete by latest Albian timeshoal margin. In contrast, the shelf margin toward
carbonates. Rudists from directly overlying car(R. appenninicaone; Fig. 4). These relative ageghe east near Monterrey is dominated by rudist
bonate interbeds show a significant shift towarahdicate that the Coahuila shallow-water platfornmeefs with stromatoporoids and corals (Wilson,
more positived'3C values (2.88%0—3.99%0) backstepped in concert with onlap of Cuesta d&B75; Conklin and Moore, 1977; Goldhammer
while maintaining near constaf6re8Sr values Cura deep-water facies, the diachroneity of whicht al., 1991). This paleodepositional variability
(0.70734 and 0.70733). These combined isavas recognized by Ice and McNulty (1980).  along the same platform margin suggests that in-
topic trends, along with the cooccurrence of ben- Carbon and strontium isotope values and trendsnsic controls such as the windward-leeward ori-
thonic foraminifersMesorbitolina parvaand of least-altered rudists, limestones, and syndeposgitation of the platform margin relative to domi-
Pseudonummoloculina heinsiuggest that the tional dolomites throughout the upper Acatita andant current, wave, and wind patterns may exert a
83C values of lowermost Acatita evaporitesAurora carbonates from the Coahuila block areritical control on margin composition and archi-
record the peak of the latest Aptian through easimilar to Albian through early Cenomanian poriecture. The reefal Cupido margin flanking the
liest Albian negative isotope excursion and théons of Tethyan pelagii3C curves and the sea-eastern edge of the platform faced the open Gulf of
subsequent early Albian positive excursion. Invater Sr isotope curve (Fig. 7). Although 8&C  Mexico and likely underwent conditions of strong
addition, increasin§’Srf%Sr values from over- values do not provide unequivocal time conwave energy and high rates of biologic productiv-
lying carbonates record the early to middle Alstraints, thé’Sr£5Sr values of the upper Acatitaity, comparable to many modern east-facing reef
bian rise of the composite seawater Sr isotopnd Aurora Formations are characteristic of midnargins (e.g., Bahamas, Belize, Great Barrier
curve (Fig. 7). These chemostratigraphic reladle Albian to early Cenomanian seawater valueReef). The southern shoal margin of the Cupido
tionships imply that the Aptian-Albian boundaryBased on the integrated biostratigraphic and isptatform, oriented perpendicular to the open gulf,
occurs near the base of the Acatita evaporites inopic data, we infer that the termination of carbormay have been dominated by longshore currents
mediately overlying the massive skeletal limeate deposition on the Coahuila platform correand suppressed wave and wind energy, resulting in
stones (Figs. 7 and 8). sponds with the worldwide drowning of carbonatéhe south to southwest migration of sand shoals
The new age assignments suggest that maripkatforms during th&®otalipora appenninicflat- and general absence of organic buildups. Minero
incursions onto the Coahuila block occurred eaest Albian) time interval (Grotsch et al., 1993(1991) documented similar characteristics to the

lier than previously suggested and permit th€ahrenkamp et al., 1993; Sliter, 1995). variable Cupido shelf margin in facies of the mid-
construction of a chronostratigraphic diagram Cretaceous El Abra Formation, deposited in pro-
that illustrates the genetic relationships betwedPALEOGEOGRAPHY AND PLATFORM tected-island versus open paleoenvironments
the Cupido and Coahuila platforms (Fig. 9). AMORPHOLOGY along the windward eastern margin of the Valles
deepening trend within the middle to late Aptian platform to the south.

part of the upper Cupido (Cupidito of Wilson and The revised stratigraphy and age control, com- A broad, flat-topped, peritidal shelf-lagoon
Pialli, 1977; Goldhammer et al., 1991) is likelybined with platform facies associations, allow théormed in the lee of the southern and eastern Cu-
coeval with the Las Uvas Formation and massiveonstruction of cross sections, isopach maps, apidlo margins, extending to the edge of the
skeletal limestones of the lower Acatita Formatime-slice paleogeographic maps that collectiveloahuila block where carbonates became mixed
tion. Deposits contemporaneous with the lathelp to document platform morphology and evowith siltstones and sandstones derived from the
Aptian La Pefa shales are inferred to be préution. All measured section data that were useskposed basement (Fig. 10). Isopachs of the
served as a condensed and reworked interval construct cross sections such as Figure 10 (sEaraises, Cupido, and Lower Tamaulipas Forma-
within the transition between massive carbonatedso Lehmann, 1997) were integrated with théons (Fig. 11A) define the trend of the Cupido
and evaporites of the lower Acatita Formationchronostratigraphic interpretation (Fig. 9) to genshelf margin (maximum thicknesses) and docu-
However, this condensed interval was not recograte isopach maps (Fig. 11) and time-sliceent tapering of a Cupido wedge toward the
nized in our measured sections. paleogeographic maps (Fig. 12). A west-eagoahuila block.

Incipient drowning of the Coahuila carbonatecross section extending from the western part of During early to middle Aptian time (Fig. 12B),
platform is recorded in the upper Aurora Formathe Sierra de Parras to the Sierra de Picachosthie initial phases of flooding forced a retrograde
tion by as much as 20 m of foraminiferal mudiustrates the facies relationships of Lower Cretdsackstep of the Cupido platform, gradually trans-
stone and wackestone that grade up into chertgous strata, excluding those of the Coahuil@rming the earlier reef- and shoal-rimmed shelf
deeper water calcisphere wackestones of tliock (Fig. 10). This cross section shows thahto a homoclinal ramp (Cupidito facies). An iso-
Cuesta del Cura Formation (Fig. 8). The mudtick accumulations of shallow-water carbonatefted rudist pinnacle reef in the Cupidito was de-
stone and wackestone underlying the Cuesta d#lthe Cupido platform extend for >250 km fromscribed by Conklin and Moore (1977) from a lo-
Cura at Cafion Corazon del Toro (Fig. 3) contaithe shelf margin near Monterrey to the edge afality in Potrero Oballos north of the study area;
the planktonic foraminifePraeglobotruncana the Coahuila block. Above the La Pefia shalesje interpret this reef to reflect an attempt to keep
stephaniThe foraminifersTicinella primulaand  only deep-ramp facies of the Upper Tamaulipasp with incipient drowning. Shallow subtidal de-
T. madecassianaccur in similar muddy carbon- Formation are exposed along the profile, reflecposits of the Cupidito covered an area from the
ates overlying shallow-water facies of the Auroréng the significant backstep of the Coahuila platedge of the Coahuila block to the Cupido margin
Formation in the Sierra de la Pefia (Fig. 3). Botform margin. before passing seaward into muddy facies of the
Ticinellaforms extend up to thRotalipora ap- The Coahuila block was exposed during Barikower Tamaulipas Formation (Fig. 10).
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A Taraises, Cupido, Lower Tamaulipas
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Figure 11. Isopach maps (not palinspastically corrected) of three
lithostratigraphic intervals comprising the Cupido and Coahuila plat-
forms. Thickness data were acquired from Humphrey and Diaz (1956),
Charleston (1974), Conklin and Moore (1977), Wilson and Pialli (1977),
Elliot (1979), Tinker (1985), and this study. (A) Thin deposits on the
Coahuila block are updip equivalents to the uppermost “Cupidito” fa-
cies of the Cupido Formation (Las Uvas and lower Acatita Formations).
(B) Shales and lime mudstones of the La Pefia Formation do not extend
up onto the Coahuila block (shaded interior of 0 m contour), but a thin
interval of carbonate and perhaps evaporite strata of the lower Acatita
is interpreted to be coeval with the La Pefia Formation on the block.
(C) Two thickest accumulations on the Coahuila block represent evap-
oritic subbasins centered over the Sierra Acatita (west) and Cafion
Corazon del Torro (east). Same area as shown in Figure 3. Light lines
are outline of the mountain ranges shown in Figure 3. MO—Monclova,
M—Monterrey, S—Saltillo, P—Parras.

On the Coahuila block, deposition of the basalemise throughout the peri-Tethyan regiotack toward the Coahuila block during the Cu-
carbonate-rich sandstone (Las Uvas) and overlgFolimi et al., 1994). Small, rounded phosphoritgidito—La Pefia backstep (Fig. 9).
ing skeletal packstone-grainstone (lower Acatitajlasts within the La Pefia shale suggest reworking After the La Pefia flooding, carbonate plat-
marks the beginning of Early Cretaceous carbomvithin the La Pefia and are a common feature &frm development resumed (Fig. 12D) with the
ate platform development in that area. The Ladrowning events (F6llmi, 1989). In the area overmargin of the Coahuila ramp backstepped to the
Uvas Formation represents transgressive shoiging the Coahuila block, this flooding interval northwest ~100 km relative to the Aptian Cupido
line deposition preserved in topographic lows oshould be marked by a condensed and reworkethrgin near Monterrey. Evaporites of the Acatita
the irregular basement surface. Overlying puriaterval within the transition from carbonates td-ormation formed in the interior of the Coahuila
carbonates of the lowermost Acatita Formatiorvaporites in the lower Acatita Formation (Figs. @arbonate platform; variable thicknesses of the
reflect the complete marine inundation of thend 11B). Significant unconformities are probaevaporites throughout the region (200-500 m;
Coahuila block and the establishment of a cable in the Aptian lower Acatita Formation, basedhe greatest thicknesses are centered over the
bonate-generating biota. on extremely slow accumulation rates of 7.5-12.Sierra Acatita and Cafion Corazon del Torro;

During middle to late Aptian time (Fig. 12C), m/m.y. (60-100 m of accumulation over ~8 m.y.)Fig. 11C) suggest differing degrees of restriction
deposition of shales and laminated foraminiferalhe diachronous Cupidito—La Pefia floodindehind the ramp margin barrier. The ramp mar-
mudstones of the La Pefia Formation marked tlewent records both the demise of the Cupido shejin that isolated the Coahuila interior lagoon
peak of flooding and termination of the Cupidaand the initiation of the Coahuila ramp. This tranfrom open-marine conditions is only exposed at
platform. The Cupido platform termination coin-sition occurred simply by the landward migratiortwo locations on the Coahuila block, but the
cides with a major episode of shallow platfornof the locus of shallow-marine sedimentatiopresence of skeletal packstone and grainstone
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Figure 12. Paleogeographic maps (not palinspastically corrected)
and interpreted morphologies for Barremian to Albian carbonate
platforms of the study area (maps A and D modified from Lehmann
et al., 1998). Telescoping of facies in the Sierra de Parras is related to
a 30%-50% shortening during the Laramide orogeny (R. Marrett,
1995, personal commun.). Solid line in (A) indicates the trace of the
cross section from which the platform morphologies were inter-

preted. Same area as shown in Figure 3.
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both beneath and above evaporitic facies (Agusard along the Sierra de Parras into a semicontitise. Scott Edwards, Raully Jones, and Brian
Chico, Cafion Corazon del Toro, Cafion Grand@pus grainstone shoal. (2) The Cupido platform iMurtagh provided able field assistance. This pa-
El Roya, west side Sierra Acatita, Sierra de lthe lee of the margin is now recognized to be per benefited from careful reviews by James Lee
Pefa) suggests that similar carbonate facies mispad, flat-topped peritidal shelf-lagoon extendingVilson, Bill Ward, Bob Scott, Robert Goldham-
have composed the barrier margin of the Coarorthwestward to the Coahuila basement blockaer, and Peter Sadler. We th&iletinreview-
huila platform (Fig. 9). (3) Initial flooding of the Coahuila block may haveers Tim Bralower, Paul Enos, and John
By middle Albian time (Fig. 12E), the Acatita occurred earlier than previously suggested, peHumphrey for their constructive criticism and
evaporitic lagoon was replaced by a fully develhaps beginning in late Barremian or early Aptiamsight.
oped carbonate system that produced abunddime with retrogradational backstep recorded in
peloidal, miliolid-rich packstone and grainstonehe Cupidito facies of the Cupido Formation. Th%EFERENCES CITED
(Aurora Formation). Aurora shallow subtidal fa-peak Cupidito—La Pefia flooding event is repre-
cies centered on the Coahuila block are intesented on the Coahuila block as a strongly connderson, T. H., and Schmidt, V. A., 1983, The evolution of
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