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FIGURE 1. A, Rostral and B, right lateral views of the braincase of the type of Acrocanthosaurus atokensis, OMNH 10146. This is the braincase 
from which the digital endocast was constructed. Abbreviations: f.o., fenestra ovalis; i.c., internal carotid canal; pit., pituitary fossa; I, olfactory nerve 
foramen; II, optic nerve foramen; III, oculomotor nerve foramen, IV, trochlear nerve foramen; V, trigeminal nerve foramen; VI, abducens nerve 
foramen; VIIH, hyomandibular branch of the facial nerve foramen; VII,, palatine branch of the facial nerve foramen. 

and reconstruction scale of 900. A ring-free correction filter was 
later applied to each slice, to reduce ring artifact. 

To facilitate segmentation of the endocast as a subset of the 
total volume, the dataset was digitally re-sliced into 277 coronal 
slices extending from the tip of the frontals to the back end of the 
skull (with the same slice thickness and spacing as the original 
dataset) in Scion Image Beta 4.0.2 (Scion Corp., Frederick, 
Maryland). The slices were processed for viewing in Adobe Pho- 
toshop 6.0 (Adobe Systems, Inc., San Jose, California). Con- 
struction of the endocast was done manually, by outlining the 
endocranial cavity and nerve passageways in each slice, then 
assigning all contained pixels a unique color value (Franzosa, 
2001). The endocranial volume thus labeled in the dataset was 
volume-rendered and isosurfaced using an in-house isosurfacing 
program to generate a digital endocast whose surfaces and vol- 
ume could be measured. 

DESCRIPTION 

For the following description of the endocast, the terminology 
is predominately that of Nomina Anatomica Avium (Baumel et 
al., 1993). We acknowledge that the terms used to describe the 

TABLE 1. Ancillary web resources available at: www.DigiMorph.org/ 
specimens/acrocanthosaurus_atokensis/ 

Web resources available 
Transverse slice movie 
Sagittal slice movie 
Horizontal slice movie 
Transverse volumetric rendering of braincase 
Sagittal volumetric rendering of braincase 
Horizontal volumetric rendering of braincase 
3-D model of endocast 
Inspector applet 
Cutaway movies of braincase 

endocast are terms meant for the actual brains, in keeping with 
tradition (e.g. Jerison, 1973; Hopson, 1979). Although we realize 
that an endocast does not completely and faithfully reproduce 
the brain, the use of brain terms to describe the endocast dis- 
courages the creation of new terms for endocast features that can 
be described more easily by the terms that were created for the 
feature on an actual brain. 

The endocast of Acrocanthosaurus atokensis measures 14.88 
cm from the front of the olfactory bulbs to the foramen magnum, 
and has a volume of 190.8 cm3 (Fig. 2). The rostralmost portion 
of the endocast represents the olfactory bulbs and tracts (CN I). 
The olfactory bulbs are swollen and distinctive, evidently filling 
the rostral endocranial fossa (ethmoid fossa), which is enclosed 
dorsally by the frontals, and ventrally and laterally by the mes- 
ethmoid, which also supplies a median septum separating the 
two bulbs. This cavity lacks a rostral wall, and the endocast is 
therefore constrained rostrally by the rostral extent of the por- 
tion of the mesethmoid that forms the ventrolateral limit of the 
olfactory bulb and tract. As delimited, the olfactory bulb and 
tract measure 6.6 cm long. 

The olfactory tracts project toward the cerebral hemispheres 
as separate bilateral tracts that merge along the midline caudal to 
the median septum before joining the cerebral hemispheres. A 
comparable septum also occurs in Carcharodontosaurus and Gi- 
ganotosaurus (Larsson, 2001; Coria and Currie, 2002). In Allo- 
saurus and Sinraptor, there is no evidence that the olfactory tract 
was separated by the mesethmoid (Madsen, 1976; Currie and 
Zhao, 1993), but it is unclear whether this is an artifact of pres- 
ervation. The tract meets the cerebral hemispheres in a transition 
involving the ventral and lateral expansion of the forebrain. The 
cerebral hemispheres reach their maximum width (4.35 cm) dor- 
sal to the trigeminal (CN V) and facial (CN VII) nerves. 

A longitudinal ridge on the endocast overlies the cerebral 
hemispheres and represents the sinus sagittalis dorsalis. The 
right and left optic nerves (CN II) project to the cerebral hemi- 
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and hypoglossal (CN XII) nerves. The foramina for each of these 
nerves are found in a deep pit in the exoccipitals of the braincase. 
On the left side of the braincase is a third foramen, not found on 
the right side, that is probably either a separate exit for the 
glossopharyngeal nerve (CN IX), or possibly for the external 
ophthalmic artery and vein. The accessory nerve (CN XI) is not 
distinct, and probably exited the braincase with the vagus nerve, 
as did the glossopharyngeal nerve, if not through the third fora- 
men found on the left side of the braincase. Just caudal to these 
nerves is the foramen magnum, marking the end of the medulla 
oblongata, and of the endocast. The diameter of the foramen 
magnum is 35 mm transversely, and 27 mm vertically (Stovall 
and Langston, 1950). 

There are several major features of the brain that cannot be 
discerned in the endocast, the most important of which are the 
optic lobes. Based on the shape of the endocast, the optic lobes 
in Acrocanthosaurus probably had not yet obtained the ventro- 
lateral position seen in modern birds, and due to the venous 
sinuses in the braincase, the optic lobes did not leave any im- 
pressions on the inner walls. They were most likely positioned 
more dorsally and caudal to the cerebral hemispheres, more like 
what is seen in modern crocodilians. Also indiscernible in the 
endocast is the main body of the cerebellum. Some of the lateral 
margins can be seen, and the general position of the main body 
can be inferred based on the position of the floccular lobes, but, 
just as with the optic lobes, a large portion of it is covered with 
venous sinuses. While the venous sinuses and the internal carotid 
arteries are visible, the rest of the vasculature of the braincase is 
indiscernible. 

ORIENTATION OF THE HEAD 

The original scan of this specimen was such that the olfactory 
bulbs and tracts were in a horizontal position. While there is 
nothing wrong with this convention, it is not in keeping with the 
actual orientation of the head during the lifetime of the animal. 
With the anterior semicircular canals horizontal, rather than 
sloping dorsally, as they extend posteriorly, the other canals are 
similarly incorrectly oriented (Witmer et al., 2002, 2003). Rotat- 
ing the rostral end of the endocast ventrally approximately 25 
degrees (Fig. 2) places the semicircular canals in an orientation 
similar to that seen in Carcharodontosaurus and Allosaurus. The 
physical appearance of the canals is also similar in all three taxa. 
The anterior semicircular canal extends posterodorsally, lateral 
to the floccular lobe. The anterior edge of the posterior semicir- 
cular canal begins near the posterior edge of the anterior semi- 
circular canal, and extends posteroventrally. The horizontal 
semicircular canal begins ventral to the anterior edge of the an- 
terior semicircular canal, and extends posteriorly just ventral to 
the floccular lobe. After extending past the posterior edge of the 
floccular lobe, the horizontal semicircular canal meets the pos- 
terior semicircular canal, forming one continuous canal in the 
endocast, although the two canals were probably not continuous 
like this in life. This orientation gives the same subtriangular 
shape of the semicircular canals described for Carcharodonto- 
saurus and Allosaurus. 

DISCUSSION 

Having an endocast of Acrocanthosaurus allows several ques- 
tions to be addressed and answered. First, the braincase and 
endocast can give us characters that can be used to help corrobo- 
rate or discredit ideas about the relationship of Acrocanthosau- 
rus to other taxa. As was mentioned above, Acrocanthosaurus 
has been placed as the sister group to Carcharodontosaurus sa- 
haricus by Sereno et al. (1996), forming the monophyletic clade 
Carcharodontosauridae, with Giganotosaurus. Characters such 
as the division of the olfactory bulbs and tracts by a mesethmoid, 
which occurs in Acrocanthosaurus. Carcharodontosaurs, and Gi- 

ganotosaurus, but not in Allosaurus or Sinraptor, help to 

strengthen the postulated relationships. Several other examples 
such as this can be found throughout the description above. 

Second, the external shape of the endocast can tell us several 

things. The brain is only slightly sigmoidal, with very little ex- 

pansion of the cerebral hemispheres, and the optic lobes are still 
in a dorsomedial position. This general shape more closely re- 
sembles what is seen in crocodiles than birds, and this same 

general appearance is seen in most early theropods (pers. obs.). 
This is important because even though Acrocanthosaurus was a 

theropod, its brain still retains a condition that is more similar to 
that of ancestral archosaurs than that of modern theropods 
(birds). The endocast, by preserving the semicircular canals, 
shows the proper orientation of the head. Most previous studies 
of theropods treat the orientation of the head as if the frontals 
were habitually held horizontally. Recent analyses of pterosaur 
endocasts (Witmer et al., 2002, 2003) have re-emphasized that 
the horizontal semicircular canal is a more accurate indicator of 
habitual head orientation, and that it doesn't always afford the 
same perspective as the frontals. In Acrocanthosaurus, the hori- 
zontal semicircular canal is in a horizontal position when the 
rostral portion of the skull is rotated ventrally approximately 25 

degrees (Franzosa, 2004). This rotation suggests that rather than 

habitually looking straight ahead, the correct orientation of the 
skull would have the animal habitually looking somewhat down 
in front of itself. 

Lastly, having endocasts allows quantitative comparisons to be 
made between different theropods. As was mentioned previ- 
ously, along with Acrocanthosaurus, digital endocasts have been 
created for Tyrannosaurus (Brochu, 2000), Carcharodontosaurus 

(Larsson et al., 2000; Larsson, 2001), and also Ceratosaurus and 
Allosaurus for my dissertation (Franzosa, 2004). The datasets 
can be used as a source of characters, as was mentioned before, 
and these can be used not only for total-theropod-tree phyloge- 
netic analyses, but can also be used in smaller analyses, such as 
that performed by Larsson et al. (2001). Such analyses are the 
basis of manuscripts currently in preparation. As more endocasts 
become available, these analyses will become more meaningful 
as the represented taxa increase in number. It will also allow 
some of the gaps that are currently seen in the evolution of the 

theropod brain to be filled. 
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