DIAMONDS AND MANTLE XENOLITHS IN KIMBERLITES FROM THE NORTH CHINA CRATON AND THE CANADIAN NORTHWEST TERRITORIES

by

Donggao Zhao

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mineralogy) in The University of Michigan 1998

Doctoral Committee:

Professor Eric J. Essene, Co-chair
Associate Professor Youxue Zhang, Co-chair
Professor Anthony H. Francis
Associate Professor Rebecca A. Lange
Professor James R. O’Neil
Dedicated to
my families, in China and here in the United States, especially to my wife Qinglan Liu and children Sijia and Sihua.
ACKNOWLEDGMENTS

I would like to thank my supervisors Prof. Eric J. Essene and Prof. Youxue Zhang for their direction of my studies and for their financial support from NSF and other funds (EAR 93-15918, 94-58368 and 97-25566 to YZ, EAR 91-17772 and 95-26596 to EJE, and a research fund from NWT Geology Division of DIAND, the Government of Canada to EJE, Chris M. Hall and YZ). Financial and other assistance provided by the Department of Geological Sciences, the Electron Microbeam Analysis Laboratory, the Scott Turner Awards, the Rackham Travel Grant, and the Geological Society of America are also gratefully acknowledged. I am grateful to the members of the Dissertation Committee, Prof. James R. O'Neil, Prof. Rebecca A. Lange and Prof. Anthony H. Francis, for their encouragement and comments. I am also grateful to Prof. Steve Kesler and Prof. Kyger C. Lohmann for the use of their cameras, and to Prof. Bruce Wilkinson for the use of his scanner. I would like to thank my friends in the department for their kindness and academic help during my tenure in Ann Arbor.

The field trip to the Liaoning kimberlites, China for this work was sponsored by the Institute of Mineral Deposits, Chinese Academy of Geological Sciences and the Sixth Geological Exploration Team, Bureau of Geology and Mineral Resources of Liaoning Province, China. Yunhui Huang, Shuying Qin, Yawen Cao, Ruishan Liu, Zhuguo Han, Jize Lin, and Xianfeng Fu are thanked for their assistance during the field trip.

The diamond samples studied in this work were provided by or purchased from the Sixth Geological Exploration Team of Liaoning Province through Zhuguo Han. The chromite samples studied in this work were mainly provided by Qing Miao and Weixin Wang of the Sixth Geological Exploration Team. The Canadian xenolith samples were
provided by A.J. Pell of the NWT Geology Division, DIAND, Yellowknife, who is presently in the Trivalence Mining Corporation, Vancouver. The ilmenite samples with known Fe$^{3+}$/(Fe$^{3+}$+Fe$^{2+}$) from Mössbauer analyses were loaned from David Virgo of the Geophysical Laboratory. The MARID data were from the Ph.D. thesis of F. Waters. To all of them the author is greatly indebted.

The electron microprobe analyzer used in this work was acquired under Grant # EAR-82-12764 from the National Science Foundation. Carl Henderson is thanked for helping with EMPA and SEM; Liping Wang, Wenbing Yu and Yang Liu are thanked for assistance with FTIR spectroscopy; and Michael D. Morris, Nancy Bradley, Ken Christensen and Jerilyn Timlin are thanked for their assistance with micro-Raman spectroscopy.

Support from families can never be over valued. Without it, the opportunities I have had, the progress I have made, and the completion of this study would never be possible. Their encouragement gave me energy to work overnight, to overcome the difficulties I thought I could not be able to overcome, and to reach the goals finally. One day, four years ago, when we first stepped on Michigan soil, less than three years old Sijia asked me to make a call to her grandparents in Beijing. I replied, "Jia Jia, Beijing is now in the evening, the grandparents are still sleeping." "How come?", Sijia puzzled by my answer. "Beijing is on the other side of the Earth and the grandparents can not see the Sun right now," I said. "Er..., why don't we put the Sun between Michigan and Beijing? So the grandparents and we can all see the Sun at the same time." How simple and straightforward her answer was! To her, it may also be very reasonable. One night, just a few days ago, when I still concentrated on the computer in the early morning, Sijia, who always wants to stay with dad and mom even when it is too late, again came to me with questions like where the dinosaurs came from, why they died, and how about humans. I told her, without thinking, dinosaur was originated from a tiny thing called a cell and so did humans. "How come?" I realized, to her, how strange my answer is. But what can I say to her? Do I need to spend more time with her? I guess so. Yes, there are many questions
to be asked and to be answered, by children and also by adults. Yes, to the universe and mankind, every individual human being is just like a naive child to an adult. The road to explore the truths of both the universe and mankind will never end. The goal of perfection may never be accomplished. However, for the happiness of the people related or not related, I will continue to explore, to pursue, and to struggle.

Thanks!
TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGMENTS .. iii

LIST OF FIGURES .. viii

LIST OF TABLES .. xvi

LIST OF APPENDICES .. xvi

ABSTRACT xix

CHAPTER

I. INTRODUCTION .. 1

II. MINERAL INCLUSIONS IN DIAMONDS FROM THE NO. 50 KIMBERLITE DIATREME, LIAONING PROVINCE, CHINA ... 4
 Abstract ... 4
 Introduction .. 5
 Geology of the No. 50 kimberlite diatreme ... 8
 Diamonds studied and their morphology ... 11
 Sample preparation ... 16
 Analytical methods .. 17
 Features of mineral inclusions and their hosts 18
 Chemistry of mineral inclusions ... 41
 Discussion .. 77
 Conclusions ... 89
 References cited .. 91

III. MINERAL INCLUSIONS IN CHROMITES FROM THE FUXIAN KIMBERLITES, LIAONING PROVINCE, CHINA ... 99
 Abstract .. 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>100</td>
</tr>
<tr>
<td>Geology of the No. 42 and 50 kimberlite diatremes</td>
<td>100</td>
</tr>
<tr>
<td>Analytical methods</td>
<td>101</td>
</tr>
<tr>
<td>Features of chromites and their mineral inclusions</td>
<td>103</td>
</tr>
<tr>
<td>Compositions of chromites and their mineral inclusions</td>
<td>115</td>
</tr>
<tr>
<td>Discussion</td>
<td>136</td>
</tr>
<tr>
<td>References cited</td>
<td>145</td>
</tr>
<tr>
<td>IV. MANTLE XENOLITHS FROM THE NIKOS KIMBERLITES ON SOMERSET ISLAND AND</td>
<td>148</td>
</tr>
<tr>
<td>THE ZULU KIMBERLITES ON BRODEUR PENINSULA, BAFFIN ISLAND, CANADA</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>148</td>
</tr>
<tr>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>The Nikos and Zulu kimberlites</td>
<td>151</td>
</tr>
<tr>
<td>Petrography</td>
<td>152</td>
</tr>
<tr>
<td>Mineral chemistry</td>
<td>155</td>
</tr>
<tr>
<td>P-T estimates of xenoliths</td>
<td>172</td>
</tr>
<tr>
<td>Oxygen fugacities</td>
<td>174</td>
</tr>
<tr>
<td>Discussion</td>
<td>174</td>
</tr>
<tr>
<td>References</td>
<td>181</td>
</tr>
<tr>
<td>V. AN OXYGEN BAROMETER FOR RUTILE-ILMENITE ASSEMBLAGES: OXIDATION</td>
<td>186</td>
</tr>
<tr>
<td>STATE OF METASOMATIC AGENTS IN THE MANTLE</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>186</td>
</tr>
<tr>
<td>Introduction</td>
<td>186</td>
</tr>
<tr>
<td>Formulation of the oxygen barometer</td>
<td>189</td>
</tr>
<tr>
<td>Sources of error</td>
<td>191</td>
</tr>
<tr>
<td>Comparison with other oxygen barometers</td>
<td>196</td>
</tr>
<tr>
<td>Applications</td>
<td>196</td>
</tr>
<tr>
<td>References</td>
<td>201</td>
</tr>
<tr>
<td>VI. CONCLUSIONS</td>
<td>206</td>
</tr>
</tbody>
</table>

APPENDICES .. 209
LIST OF FIGURES

Figures of Chapter II

Fig. 2.1. Schematic tectonic map of China showing the main tectonic elements and kimberlite and lamproite localities in the North China Craton6

Fig. 2.2. The open pit of the No. 50 kimberlite diatreme, Liaoning Province, China (photo by Donggao Zhao, June, 1995). The field of the photo is about 300 meters across ...7

Fig. 2.3. Schematic diagrams of the No. 50 kimberlite diatreme outcrop (A) and profile (B), Liaoning Province, China..10

Fig. 2.4. Diamond crystals: (A) octahedral diamond (No. 4), size ~2 mm; (B) dodecahedral diamond (No. 3), size ~3 mm; (C) octahedral diamond (No. 14), size ~1 mm. From Huang et al. (1992)..........................15

Fig. 2.5. Transmitted light image of diamond LN50D02 with two big and one small olivine inclusion. Notice the black platelets evenly distributed over the surface of the small euhedral elongated olivine inclusion. Plane polarized light. Width of field ~1.2 mm..20

Fig. 2.6. Transmitted light images of two oriented olivine inclusions (A) and an irregular chromite inclusion (B) in diamond LN50D04. Plane polarized light. Width of field: (A) ~0.2 mm; (B) ~0.1 mm.................................20

Fig. 2.7. Transmitted light image of diamond LN50D07 with two chromite inclusions. One of the inclusions is only partly included in the diamond host. Plane polarized light. Width of field ~2 mm.............................21

Fig. 2.8. Transmitted light image of diamond LN50D10 with garnet (purple) and olivine (lower right corner) inclusions. Plane polarized light. Width of field ~1.5 mm..21

Fig. 2.9. Transmitted light image of diamond LN50D40 with two orthopyroxene inclusions. Plane polarized light. Width of field ~0.4 mm21

Fig. 2.10. Diamond LN50D38 with butterfly-like graphite inclusions. The X-ray mapping of the fracture shows no Si counts, thus indicating that the inclusions are not SiC. Transmitted light, plane polarized light. Width of field: (A) ~2 mm; (B) ~0.3 mm.................................22

Fig. 2.11. Multiple inclusions: (A) Diamond LN50D12 with at least 7 inclusions (4 olivines and 3 chromites); (B) Diamond LN50D14 with at least 6 inclusions (most are olivines). Transmitted light, plane polarized light. Width of field ~2 mm..22
Fig. 2.12. BSE images of two polished sections for diamond LN50D03 (A) with an elongated olivine inclusion, showing cathodoluminescent patterns. Width of field ~1.3 mm; (B) two euhedral olivine inclusions. The c axis of the large olivine is perpendicular to the polished section, while the c axis of the small olivine is close to parallel to the polished section. Width of field ~1.1 mm. Working distance 15 mm, accelerating voltage 15 kV..........................24

Fig. 2.13. BSE images of polished section of diamond LN50D04 (A) two olivine inclusions and one chromite inclusion at the upright corner. Notice the cathodoluminescent pattern surrounding the olivine at the center. Width of field ~1.7 mm; (B) an euhedral olivine inclusion at the center of the diamond. Notice the ring structure surrounding the olivine inclusion, which may be the result of strain between the inclusion and host. Width of field 0.1 mm. Working distance 15 mm, accelerating voltage 15 kV..........................24

Fig. 2.14. BSE image of polished section of diamond LN50D39 with an olivine inclusion, showing triangular cathodoluminescent pattern (also see LN50D40). Width of field ~2.0 mm. Working distance 14 mm, accelerating voltage 20 kV..25

Fig. 2.15. BSE images of polished section for diamond LN50D44 (A) the host with an olivine inclusions. Width of field 2.3 mm; (B) the enlarged olivine inclusions. Width of field 0.24 mm. Working distance 15 mm, accelerating voltage 20 kV..25

Fig. 2.16. BSE images of polished section of diamond LN50D45 (A) the host with an euhedral olivine inclusion. Width of field 2.1 mm; (B) the euhedral olivine inclusion at higher magnification. Notice the bent feature of the crystal, which was constrained by the crystal form of diamond host. Width of field 0.2 mm. Working distance 15 mm, accelerating voltage 20 kV..............26

Fig. 2.17. BSE images of polished section of diamond LN50D55 (A) the host with an olivine. Width of field ~2.5 mm; (B) the olivine inclusion at higher magnification. Width of field 0.18 mm. Working distance 14 mm, accelerating voltage 20 kV ...26

Fig. 2.18. BSE images of polished section of diamond LN50D57 (A) the host with an olivine. Width of field 2.4 mm; (B) the olivine inclusion at higher magnification. Width of field 0.18 mm. Working distance 14 mm, accelerating voltage 20 kV ...26

Fig. 2.19. BSE images of polished section of diamond LN50D68 (A) the host with an olivine. Width of field ~1.8 mm; (B) the olivine inclusion at higher magnification. Width of field 0.2 mm. Working distance 14 mm, accelerating voltage 20 kV ...27

Fig. 2.20. BSE images of polished section of diamond LN50D07 with three chromite inclusions. The inclusions are distributed along the edge of cathodoluminescent pattern (cf. LN50D12). Working distance 15 mm, accelerating voltage 15 kV, width of field 2.0 mm..................28

Fig. 2.21. BSE images of polished section of diamond LN50D12 (A) the host with a chromite inclusions at the center of cathodoluminescent pattern. Width of
field 2.0 mm; (B) the chromite inclusion at higher magnification. Width of field 0.18 mm. Working distance 15 mm, accelerating voltage 15 kV......28

Fig. 2.22. BSE images of polished section of diamond LN50D58 (A) the host with a tiny (30 µm) chromite inclusion. The diamond host was broken during the polishing process. Width of field 2.3 mm; (B) the euhedral chromite inclusion at higher magnification. Width of field 0.1 mm. Working distance 15 mm, accelerating voltage 20 kV ...29

Fig. 2.23. BSE images of polished section of diamond LN50D10 (A) the host with a garnet inclusion. Width of field ~2.5 mm; (B) Enlarged BSE images of the garnet. Width of field 0.3 mm. Working distance 15 mm, accelerating voltage 15 kV..29

Fig. 2.24. BSE images of a garnet and some carbonate inclusions (bright parts in the fracture) in diamond LN50D13 (A) the garnet was broken and the fractures were filled with polishing materials (epoxy, crystal bond or alumina powders). There are fractures connected to the outside, but the relatively large inclusion suggests that it may not be formed after the formation of diamond host. Width of field 2.5 mm; (B) the garnet inclusion at higher magnification. Width of field 0.5 mm; (C) the carbonate inclusions at higher magnification. Width of field 0.2 mm. Working distance 15 mm, accelerating voltage 15 kV ...31

Fig. 2.25. BSE images of polished section of the diamond LN50D71 (A) the host with a garnet inclusion. Notice the complex cathodoluminescent pattern. Width of field ~1.5 mm; (B) the garnet inclusion at higher magnification. Width of field 0.06 mm. Working distance 15 mm, accelerating voltage 15 kV...31

Fig. 2.26. BSE images of polished section of diamond LN50D42 (A) the host with a sulfide inclusion. Width of field 2.0 mm; (B) BSE image of the sulfide inclusion at higher magnification. Width of field 0.09 mm. Working distance 15 mm, accelerating voltage 20 kV ...32

Fig. 2.27. BSE images of polished section of the diamond LN50D70 (A) there is a protogenetic or syngenetic olivine inclusion close to the center. A fracture extended to the surface of diamond cuts through the cathodoluminescent pattern, indicating that it was developed after the formation of the diamond host. In the top part of the fracture an epigenetic pyrite inclusion was identified. Width of field 2.0 mm; (B) the fracture with an epigenetic pyrite inclusion identified (top). Width of field 0.15 mm. Working distance 15 mm, accelerating voltage 15 kV...32

Fig. 2.28. BSE images of polished section of diamond LN50D40 (A) the host with two coexisting orthopyroxene inclusions, also showing cathodoluminescent pattern. Width of field ~1.7 mm; (B) the orthopyroxene inclusions at high magnification. Width of field 0.35 mm. Working distance 14 mm, accelerating voltage 20 kV ...33

Fig. 2.29. BSE images of polished section of diamond LN50D11 (A) the host with one olivine and one calcium carbonate inclusions. Width of field 1.5 mm; (B) the Ca-carbonate which was partly destroyed. Width of field 0.1 mm. Working distance 15 mm, accelerating voltage 15 kV...33
Fig. 2.30. BSE images of polished section of diamond LN50D36 with a diamond inclusion. Width of field 0.15 mm ...35

Fig. 2.31. BSE images of polished section of diamond LN50D67 (A) the host with an unknown silicate inclusion. Width of field 2.2 mm; (B) the unknown silicate at higher magnification. The inclusion is yellowish and soft. Width of field 0.18 mm; (C) the unusual cathodoluminescent pattern of the diamond host surrounding the unknown inclusion, which may be the result of strain between the inclusion and host. Width of field 0.26 mm; (D) the inclusion was finally lost during the polishing process. Filled in the hole is now the polishing materials. Width of field 0.2 mm. Working distance 14 mm, accelerating voltage 20 kV ...35

Fig. 2.32. (A) BSE image of polished section of diamond LN50D45 with a chromite inclusion in the broken fracture, which was developed during polishing. Width of field 1.8 mm; (B) secondary electron image of the chromite inclusion in diamond LN50D45 at higher magnification. Width of field 0.2 mm. Working distance 15 mm, accelerating voltage 20 kV37

Fig. 2.33. Sulfide in diamond LN50D04. Fe and Ni are heterogeneously distributed and Cu is much enriched in some areas. The view area is ~30 µm.................38

Fig. 2.34. Sulfide inclusion in diamond LN50D32. Sulfur is concentrated in the core while Ni in the rim, resulting in the relatively dark area in the BSE image. The view area is ~50 µm...39

Fig. 2.35. (A) Polarized, single-crystal Raman spectrum of olivine inclusion on the polished surface of diamond LN50D68; (B) Raman spectrum of olivine inclusion below the polished surface (LN50D73); (C) Raman spectrum of a low EMPA total olivine inclusion below the polished surface (LN50D96). Olivines with normal and low EMPA totals show the same or similar micro-Raman spectra...40

Fig. 2.36. Histograms of Mg# (=100Mg/(Mg+Fe) by atoms) (A) and NiO content (B) of olivine inclusions in diamonds from the No. 50 kimberlite diatreme. The data are given in Table 2.3...48

Fig. 2.37. Diagrams of Mg # versus Cr$_2$O$_3$ (A) and Mg # versus CaO (B) for the olivine inclusions in diamonds from the No. 50 kimberlite diatreme...............49

Fig. 2.38. Histogram of the Mg# (=100Mg/(Mg+Fe) by atoms) of orthopyroxene inclusions in diamonds. The data are listed in Table 2.453

Fig. 2.39. Diagrams of Cr$_2$O$_3$ versus Al$_2$O$_3$ (A) and Cr$_2$O$_3$ versus CaO (B) for orthopyroxene inclusions in diamonds from the No. 50 kimberlite diatreme. All the harzburgitic orthopyroxenes are similar, but different from the websteritic orthopyroxene...52

Fig. 2.40. Histograms of Mg# (A), Cr# (B) and Ca# (C) for garnet inclusions in diamonds. The data are listed in Table 2.6..56

Fig. 2.41. Diagrams of CaO versus Cr$_2$O$_3$ (A), Mg # versus Cr$_2$O$_3$ (B), and Mg # versus TiO$_2$ (C) for garnet inclusions in diamonds. Solid line divides
compositional fields for lherzolitic and harzburgitic garnets, dashed line distinguishes peridotitic from non-peridotitic garnets. Both lines are described in detail in Gurney and Zweistra (1995).

Fig. 2.42. Histograms of Mg# (A), Cr$_2$O$_3$ (B) and SiO$_2$ (C) for chromite inclusions in diamonds. The data are listed in Table 2.7.

Fig. 2.43. Diagrams of Cr$_2$O$_3$ versus TiO$_2$ (A) and Fe$_2$O$_3$ versus Al$_2$O$_3$ (B) for chromite inclusions in diamonds from the No. 50 kimberlites. Dashed lines delineate a "diamond inclusion field" (Kopylova et al. 1997).

Fig. 2.44. Diagrams of S versus Fe (A), S versus Ni (B) and S versus Cu (C) for sulfide inclusions in diamonds from the No. 50 kimberlite diatreme.

Fig. 2.45. Temperature-pressure plots for each inclusion assemblage in diamonds from the No. 50 kimberlite diatreme (the right diagram of each sample was enlarged and used to estimate P-T). Each curve represents a thermobarometer. Diamond-graphite boundary is also shown. See text and Table 2.12 for explanation and abbreviations.

Figures of Chapter III

Fig. 3.1. Fragment of an anhedral chromite host (LN42SP10) with a hole left by inclusion.

Fig. 3.2. An anhedral chromite host (LN42SP12) with a small inclusion.

Fig. 3.3. Rounded, anhedral chromite (A) with an euhedral olivine inclusion (B). Sample # LN42SP14.

Fig. 3.4. Chromite host (LN50SP01) with a silicate inclusion, which has magnetite crystals on the rim. The original inclusion might have been orthopyroxene or olivine.

Fig. 3.5. Chromite host (LN50SP04) with olivine inclusion.

Fig. 3.6. Subhedral chromite (A) with an euhedral, elongated olivine inclusion (B). Sample # LN42SP13.

Fig. 3.7. Chromite host (LN42SP01) with two olivine inclusions (B and C) and one pyrope (D). The garnet inclusion possesses a symplectitic rim in which aluminous spinel and pyroxene were identified. (E) and (F) are enlarged images of squares in (D).

Fig. 3.8. Subhedral chromite (A) with a subhedral olivine inclusion (B). Sample # LN42SP16.

Fig. 3.9. Chromite host (LN50SP02) with olivine inclusion.

Fig. 3.10. Chromite host (LN50SP03) with olivine inclusion.
Fig. 3.11. Chromite host (LN50SP05) with a magnesite inclusion (B). The longer bar in (B) is 10 µm..........................109

Fig. 3.12. Chromite host (LN50SP06) with olivine inclusion.................................110

Fig. 3.13. Euhedral chromite with euhedral olivine inclusion (LN42SP2).............110

Fig. 3.14. Euhedral chromite (A) with a hole (B) left by the inclusion (LN42SP04) ..111

Fig. 3.15. Chromite host (LN50SP10) with a sulfide inclusion..............................111

Fig. 3.16. A rounded, anhedral olivine inclusion in chromite LN42SP11..............112

Fig. 3.17. Chromite host (LN42SP07) with phlogopite (A), calcite (B), and a complicated inclusion of norsethite and phlogopite (C)..............................112

Fig. 3.18. Chromite host (LN42SP06) with a single composite inclusion containing dolomite, norsethite and phlogopite..113

Fig. 3.19. Chromite host (LN50SP07) with) with a single composite inclusion containing magnesite, dolomite, norsethite, phlogopite and SiO$_2$..............113

Fig. 3.20. Histograms of Mg# (A), Cr$_2$O$_3$ (B) and SiO$_2$ (C) for chromites in the No 42 and 50 kimberlite diatremes, Liaoning. The data are listed in Table 3.2....118

Fig. 3.21. Diagrams of Cr$_2$O$_3$ versus TiO$_2$ (A) and Fe$_2$O$_3$ versus Al$_2$O$_3$ (B) for chromites from the Liaoning kimberlites. Dashed lines in (A) delineate a "diamond inclusion field" (Kopylova et al. 1997). Dotted lines in (B) delineate a diamond inclusion field for the No. 50 kimberlites.....................119

Fig. 3.22. Histograms of Mg# (=100Mg/(Mg+Fe) by atoms) (A) and NiO content (B) for the olivine inclusions in chromites from the No. 42 and 50 kimberlite diatremes...123

Fig. 3.23. Mg # versus CaO (wt %) for the olivine inclusions in chromites from the No. 42 and 50 kimberlite diatremes..124

Fig. 3.24. Variation of Cr across an olivine inclusion in chromite LN50SP06 (961008, 10 kV; 961010, 30 kV). The increase of Cr toward the chromite-olivine boundary is owing to fluorescence. Cr fluorescent effect becomes significant with increasing voltage or approaching the olivine-chromite boundary.....124

Fig. 3.25. Fe$^{2+}$ variation across an olivine in chromite LN42SP01.....................138

Fig. 3.26. Temperature-pressure plots of each assemblages for chromites from the No. 42 and 50 kimberlite diatremes. Each curve represents a thermobarometer. See text and Table 3.10 for abbreviations..141

Figures of Chapter IV

Fig. 4.1. Map of Somerset Island and Brodeur Peninsula, Baffin Island, Northwest Territories, Canada, showing kimberlite localities......................150
Fig. 4.2. Histograms of Mg # (=100Mg/(Mg+Fe) by atoms) of Ol, Opx, Cpx and Gt from the Nikos and Zulu xenoliths ...158

Fig. 4.3. Na$_2$O vs. Cr$_2$O$_3$ diagram for clinopyroxenes from the Nikos and Zulu xenoliths ...162

Fig. 4.4. CaO vs. Cr$_2$O$_3$ diagram for garnet from the Nikos and Zulu xenoliths ...165

Fig. 4.5. Histograms of Cr # (=100Cr/(Cr+Al) by atoms) for Gt and Sp from the Nikos and Zulu xenoliths ..166

Fig. 4.6. Temperature-pressure plots for the mantle xenoliths from the Somerset kimberlites. Open square: Ham kimberlites (Jago and Mitchell, 1987); Open diamond: Batty Bay kimberlites (Kjarsgaard and Peterson, 1992); Solid circle: Nikos kimberlites (this study). The diamond-graphite univariant curve is from Kennedy and Kennedy (1976). Geotherms are from Pollack et al. (1993). The P-T’s are calculated from thermometer of MgSiO$_3$ partitioning between orthopyroxene and clinopyroxene and barometer of Al-in-opx coexisting with garnet (Brey and Köhler, 1990). The individual P-T may change when other thermobarometers are used but the trend is not significantly altered ..175

Fig. 4.7. log f$_{O_2}$ - T°C plots for EMOD (enstatite-magnesite-olivine-diamond equilibrium MgSiO$_3$ + MgCO$_3$ = Mg$_2$SiO$_4$ + C + O$_2$). Experimental calibrations by Eggler and Baker (1982) and Wei and Luth (1993) show a discrepancy at T < 1300°C. Calculation of EMOD from thermodynamic data (Holland and Powell 1990; Saxena et al. 1993; Robie and Hemingway 1995) gives values between the two experimental calibrations. EMOD from Robie and Hemingway (1995) was used in this study..179

Fig. 4.8. The calculated log f$_{O_2}$ of the xenolith assemblages from the Nikos normalized to EMOD buffer (Robie and Hemingway 1995). The log f$_{O_2}$ values and P-T are listed in Table 4.1 ..180

Figures of Chapter V

Fig. 5.1. log f$_{O_2}$ vs. T for several oxygen buffers at 1 bar. MH: magnetite-hematite; RI: rutile-ilmenite; NNO: Ni-NiO; QFM: quartz-fayalite-magnetite; WM: wüstite(Fe$_{0.947}$O)-magnetite. The RI buffer curves are calculated using data from [28-30] for comparison. The thick curve of RI shows overlapping from [29] and [30]; the thin curve below is from [28] with modification from Ghiorso [26]. Other buffers are calculated using data from [30] only......190

Fig. 5.2. Comparison of calculated Fe$^{3+}$/Fe$^{3+}$+Fe$^{2+}$ ratios using microprobe analyses from various laboratories (vertical axis) with the Mössbauer measurements of Virgo et al. [10]. Three samples (ULM 2, Yakutia-Dalnaya No. 1 D-46/79, and ROM 264 IL-41) used in the comparison were provided by D. Virgo. Legend: UM = University of Michigan, ZAF correction; PSU = Pennsylvania State University, Bence-Albee correction; GL-BA=Geophysical Lab, Bence-Albee correction; GL-ZAF=Geophysical Lab, ZAF correction; GL-JEOL-ZAF= Geophysical Lab, JEOL-SEM, ZAF correction. Results of UM microprobe analyses are from this work. Results of other microprobe
analyses are from Virgo et al. [10]. The solid line is a 1:1 line. Also shown are 2σ error bars for Mössbauer analyses (3% relative, D. Virgo, pers. comm.) and for repeated microprobe analyses at University of Michigan.

Fig. 5.3. logf_{O_2} (normalized to NNO) vs. T obtained from the RI oxygen barometer for different rutile-ilmenite assemblages. Only for MORID vein [19] can a unique value of fO_2 be obtained (open circle). The range of fO_2 (shaded area) obtained from MARID assemblages in the literature [13, 16] is approximately 1 log unit below to 2 log units above NNO. Ilmenite-rutile from a Kimberlitic eclogite [38] and ilmenite-rutile in a "Granny Smith" diopside megacryst [39] show similar fO_2 to MARID suites. For comparative purposes, 36 kbar, which is estimated from the host assemblage (JP1-X17) of MORID, was used for all samples in the diagram when calculating fO_2. The assumption of 36 kbar for MARID assemblages is consistent with experiments [14, 15, 34]. Use of a $\Delta logfO_2$ minimizes any variation with pressure. NNO is from [8]. QFM and EMOD are calculated from thermodynamic data [29].
LIST OF TABLES

Tables of Chapter II

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diamonds and their mineral inclusions from the No 50 kimberlite diatreme, Liaoning, China</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Mineral inclusions identified in diamonds from the No. 50 kimberlite diatreme</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Average compositions of olivine inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>Compositions of orthopyroxene inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>51</td>
</tr>
<tr>
<td>2.5</td>
<td>Compositions of clinopyroxene inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>54</td>
</tr>
<tr>
<td>2.6</td>
<td>Compositions of garnet inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>55</td>
</tr>
<tr>
<td>2.7</td>
<td>Compositions of chromite inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>60</td>
</tr>
<tr>
<td>2.8</td>
<td>Representative compositions of sulfide inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>65</td>
</tr>
<tr>
<td>2.9</td>
<td>Compositions of carbonate inclusions in diamonds from the No. 50 kimberlite diatreme</td>
<td>71</td>
</tr>
<tr>
<td>2.10</td>
<td>Compositions of unknown (dense hydrous?) phases in diamonds from the No. 50 kimberlite diatreme</td>
<td>73</td>
</tr>
<tr>
<td>2.11</td>
<td>Compositions of unknown Fe-rich phase (goethite?) in diamond from the No. 50 kimberlite diatreme</td>
<td>76</td>
</tr>
<tr>
<td>2.12</td>
<td>Calculated T (°C) and P (kbar) for mineral inclusion assemblages in diamonds from the No. 50 kimberlites</td>
<td>81</td>
</tr>
</tbody>
</table>

Tables of Chapter III

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Chromites and their mineral inclusions from the No 42 and 50 kimberlite diatremes, Liaoning</td>
<td>114</td>
</tr>
</tbody>
</table>
Table 3.2. Compositions of chromites from the No. 42 and 50 diatremes116
Table 3.3. Compositions of olivine inclusions in chromites from the No. 42 and 50 kimberlite diatremes ...121
Table 3.4. Compositions of a garnet inclusion in chromite LN42SP01..........126
Table 3.5. Compositions of pyroxenes in the symplectite rim of a garnet inclusion in chromite LN42SP01...127
Table 3.6. Compositions of phlogopite inclusions in chromite LN42SP07........129
Table 3.7. Compositions of an unknown silicate inclusion in chromite LN50SP01 .130
Table 3.8. Compositions of carbonate inclusions in chromites from the No. 42 and 50 kimberlite diatremes ...132
Table 3.9. Compositions of a sulfide inclusion in chromite LN50-SP10.........135
Table 3.10. Calculated T (°C) and P (kbar) for mineral inclusions in chromites from the Liaoning kimberlites...140
Table 3.11. Comparison of mineral inclusions in diamonds and in chromites from the Liaoning kimberlites...144

Tables of Chapter IV

Table 4.1. Petrography, pressure, temperature and oxygen fugacity of the mantle-derived xenoliths from the Nikos and Zulu kimberlites..................153
Table 4.2. Average compositions of olivines in the Nikos and Zulu xenoliths.......158
Table 4.3. Average compositions of Opx in the Nikos and Zulu xenoliths..........160
Table 4.4. Average compositions of Cpx in the Nikos and Zulu xenoliths..........161
Table 4.5. Average compositions of garnets in the Nikos and Zulu xenoliths164
Table 4.6. Average compositions of spinels in the Nikos and Zulu xenoliths........167
Table 4.7. Average compositions of phlogopites in the Nikos and Zulu xenoliths and kimberlites...168
Table 4.8. Compositions of ilmenites and rutiles in the Nikos xenoliths170
Table 4.9. Compositional profile across an ilmenite (~300 µm) adjacent to the spinel in the JP1-X17 MORID vein..171

Table of Chapter V

Table 5.1. Oxygen fugacities of various assemblages calculated from rutile-ilmenite (RI) and other oxygen barometers.......................................197
LIST OF APPENDICES

Appendices of Chapter II

Appendix 2.1. Compositions of olivine inclusions in diamonds from the No. 50 kimberlite diatreme...210

Appendix 2.2. Compositions of orthopyroxene inclusions in diamonds from the No. 50 kimberlite diatreme...231

Appendix 2.3. Compositions of garnet inclusions in diamonds from the No. 50 kimberlite diatreme...233

Appendix 2.4. Compositions of chromite inclusions in diamonds from the No. 50 kimberlite diatreme...236

Appendix 2.5. Compositions of sulfide inclusions in diamonds from the No. 50 kimberlite diatreme...241

Appendix 2.6. Average compositions of peridotitic mineral inclusions in diamonds from the Liaoning kimberlites...247

Appendices of Chapter III

Appendix 3.1. Compositions of chromites from the No. 42 and No. 50 kimberlite diatremes..252

Appendix 3.2. Compositions of olivine inclusions in chromites from the No. 42 and No. 50 kimberlite diatremes...291

Appendix of Chapter IV

Appendix 4.1. Microprobe analyses of the mantle-derived xenoliths from the Nikos and Zulu kimberlites by sample ...311
ABSTRACT

This dissertation focuses on mantle compositions and processes. Mineral inclusions in diamonds from the Liaoning kimberlites, China belong mainly to a harzburgitic assemblage. The diamonds crystallized at depths of 140 to 200 km. Mineral inclusions in chromites from the same locality include silicates, carbonates, hydrous silicates and sulfides. Composite inclusions of carbonates+silicates in chromites might represent entrapped and crystallized kimberlitic magma. A garnet-olivine-chromite assemblage indicates that the depth where chromites formed is ~140 km. Similarities and differences between the inclusion assemblages in diamonds and in chromites suggest that minerals in diamonds and in chromites came from different depths, and that most mineral inclusions in chromites were probably trapped during the stage of the formation of kimberlite.

Mantle xenoliths from the Nikos kimberlites, Somerset Island, and the Zulu kimberlites, Brodeur Peninsula, Baffin Island, Canada are mainly coarse, protogranular, low-temperature lherzolites. High-temperature xenoliths, which are common in the Kaapvaal and Siberian cratons, were not found at Nikos. Garnet-spinel lherzolite xenoliths are common at Nikos. The calculated pressures and temperatures follow a continental geotherm. The fO_2 from olivine-orthopyroxene-spinel is from 1.3 log units above to 0.6 log units below EMOD (enstatite-magnesite-olivine-diamond), suggesting that diamond may or may not be stable relative to carbonates.

A MORID vein (mica-orthopyroxene-rutile-ilmenite-diopside±chromite) in a garnet-spinel lherzolite is characterized by high K, Fe, Ti and OH components. A method (referred to as RI) is developed to calculate oxygen fugacity from rutile-ilmenite for a MORID or similar suite with the reaction $2Fe_2O_3$ (in ilmenite) + 4TiO$_2$ (rutile) = 4FeTiO$_3$ (in ilmenite) + O$_2$. The RI is applicable to many rutile-ilmenite-bearing assemblages.