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ABSTRACT

This dissertation focuses on mantle compositions and processes.  Mineral inclusions in

diamonds from the Liaoning kimberlites, China belong mainly to a harzburgitic

assemblage.  The diamonds crystallized at depths of 140 to 200 km.  Mineral inclusions in

chromites from the same locality include silicates, carbonates, hydrous silicates and

sulfides.  Composite inclusions of carbonates+silicates in chromites might represent

entrapped and crystallized kimberlitic magma.  A garnet-olivine-chromite assemblage

indicates that the depth where chromites formed is ~140 km.  Similarities and differences

between the inclusion assemblages in diamonds and in chromites suggest that minerals in

diamonds and in chromites came from different depths, and that most mineral inclusions in

chromites were probably trapped during the stage of the formation of kimberlite.

Mantle xenoliths from the Nikos kimberlites, Somerset Island, and the Zulu

kimberlites, Brodeur Peninsula, Baffin Island, Canada are mainly coarse, protogranular,

low-temperature lherzolites.  High-temperature xenoliths, which are common in the

Kaapvaal and Siberian cratons, were not found at Nikos.  Garnet-spinel lherzolite xenoliths

are common at Nikos.  The calculated pressures and temperatures follow a continental

geotherm.  The fO2 from olivine-orthopyroxene-spinel is from 1.3 log units above to 0.6

log units below EMOD (enstatite-magnesite-olivine-diamond), suggesting that diamond

may or may not be stable relative to carbonates.

A MORID vein (mica-orthopyroxene-rutile-ilmenite-diopside±chromite) in a garnet-

spinel lherzolite is characterized by high K, Fe, Ti and OH components.  A method

(referred to as RI) is developed to calculate oxygen fugacity from rutile-ilmenite for a

MORID or similar suite with the reaction 2Fe2O3 (in ilmenite) + 4TiO2 (rutile) = 4FeTiO3

(in ilmenite) + O2.  The RI is applicable to many rutile-ilmenite-bearing assemblages.


