ZIRCONIUM-RICH URANINITE FROM THE CENTRAL CITY DISTRICT, GILPIN COUNTY, COLORADO

Donggao Zhao and Rodney C. Ewing

Department of Nucl. Engin. & Radiological Sci. Department of Geological Sciences University of Michigan

Outline

- Background
- Objectives
- Sample locality and geology
- Analytical methods

- Sample petrography
- Chemical compositions
- Conclusions

Background

 Performance assessment (PA) of a spent nuclear fuel (SNF) repository in an oxidizing environment requires understanding of longterm behavior of the UO2 in SNF

• Fate of fission products and radionuclides is critical to PA

UO₂ in SNF is unstable: U(IV) ->
U(VI) in uranyl oxide hydrates,
uranyl silicates, uranyl phosphates.

 Fission products and radionuclides released from SNF UO₂ may be incorporated into of secondary uranium phases

Natural Analogues

• Extrapolation of lab data to the long time period (10³-10⁵ years) Natural uraninite UO_{2+x} with its impurities is a good structural and chemical analogue for the longterm behavior of the UO₂ in SNF

Samples

 From the Central City District, Gilpin County, Colorado

- In common with Yucca Mountain, i.e., relatively arid environment
- Uranium mineralization is young: 40 to 2 Ma (Late Tertiary)

High impurity content: Zr and Si

Geological Setting

- Uraninite occurs in arkosic rocks (alkali feldspar sandstone)
- Country rocks: Precambrian granite gneiss, schist and calc-silicate rocks cut by Tertiary granite, quartz monzonite, granodiorite and bostonite
- Bostonite dikes: rich in alkali feldspars, more radioactive, high uranium (up to 100 ppm)

Analytical Methods

- Optical microscopy
- Scanning electron microscopy (SEM)
- Electron microprobe analysis (EMPA)
- Back scattered electron (BSE)
- Energy dispersive spectrum (EDS)

Petrography

- Uraninite/pitchblende
- Zr- and Si-rich uranium phase
- K-feldspar and albite (K,Na)AlSi₃O₈
- Quartz SiO₂
- Sulfides, e.g., pyrite FeS₂ and sphalerite ZnS

BSE image of host rock of the uraninite/pitchbl ende: K-feldspar KAlSi $_3O_8$, quartz SiO $_2$, and sulfides such as pyrite FeS $_2$ and sphalerite ZnS

⁶⁰µm 400X

BSE image of Zr-rich uraninite with sulfides, Kfeldspar, and quartz in microfractures

200µm 100X

Point 17, bright, U; point 18, gray with U, Zr, Si and Fe; point 19, dark, more Zr and Si

- Textural relationship suggests that the uraninite has altered partly and that Zr and Si were incorporated into the resultant uranium phases
- Si-enrichment indicates coffinitization
- Other alterations: silicification, sericitization and pyritization

ENPA conditions

- Cameca CAMEBAX EMP (WDS)
- Voltage: 20 kV
- Beam: 80 nA for Pb, U, Th; 20 nA for other elements
- Beam: spot mode or 3x3 μm² (for profile)
- Peak count time: 30 seconds
- Cameca PAP (modified ZAF)

Structural Formula

- $[U^{4+}_{1-x-y-z-u} U^{6+}_{x}(Th^{4+})_{u}REE^{3+}_{y}M^{2+}_{z}]O_{2+x-(0.5)y-z}$
- PbO to UO₂
- U⁴⁺ to U⁶⁺, adding oxygen
- All U⁴⁺ converted to U⁶⁺:
 - total > 100 wt %, both U⁴⁺ and U⁶⁺ exist
 - total < 100, H₂O and/or CO₂ may exist

Chemical Composition

- Heterogeneous
- UO₂ 78.26 to 96.47 wt %
- PbO 0.52 to 5.27 wt %
- ZrO₂ 1.09 to 8.28 wt %
- SiO₂ 0.24 to 4.92 wt %

Trace Elements

Low or below detection limits (b.d.l.)

Oxide	Average (wt %)	Oxide	Average (wt %)
Na ₂ O	b.d.l.	La ₂ O ₃	0.03
K ₂ O	0.29	Ce_2O_3	0.08
MgO	0.02	Pr_2O_3	0.01
MnO	0.09	Nd_2O_3	0.02
TiO ₂	0.14	Sm_2O_3	0.02
SrO	b.d.l	Eu ₂ O ₃	0.01
SO ₃	0.58	Gd_2O_3	0.02
Y_2O_3	0.08	ThO ₂	0.04

 ZrO_2 in two areas; negative correlation between ZrO_2 and UO_2 ; pristine uraninite has higher UO_2 and lower ZrO_2 ; secondary uranium minerals contain lower UO_2 and higher ZrO_2

 SiO_2 in two areas; negative correlation between SiO_2 and UO_2 ; pristine uraninite has higher UO_2 and lower SiO_2 ; secondary uranium minerals contain lower UO_2 and higher SiO_2

FeO contents increase with the decrease of UO₂

P2O5 contents increase with the decrease of UO₂

Compositional Differences

Oxide (wt%)	Primary uraninite	Secondary Zr- and Si-rich region
UO ₂	90.2 to 96.5	78.3 to 90.4
ZrO ₂	1.1 to 1.7	2.6 to 8.3
SiO ₂	0.3 to 0.6	1.9 to 4.9

- ZrO₂, SiO₂, FeO and P₂O₅ increase with decreasing UO₂ contents
- UO₂ indicate the oxidizing conditions of alteration
- Oxidization -> Zr, Si, Fe and P incorporation > formation of uranium silicates or phosphates
- Uranium silicates or phosphates have high capability to incorporate trace elements, including fission products and radionuclides

Positive correlation between ZrO_2 and SiO_2 seemly indicates that Zr and Si are from zircon $ZrSiO_4$, a common component in host or country rocks

Geological Sciences

Conclusions

 BSE images and EDS show that the Zrand Si-rich phase is adjacent to the primary uraninite

 Primary uraninite contains higher UO₂ and lower ZrO₂ and SiO₂

 Secondary Zr- and Si-rich region has lower UO₂ and higher ZrO₂ and SiO₂

Conclusions

- Alteration of the uraninite results in incorporation of Zr, Si, Fe and P, thus formation of uranium silicates or phosphates,
- Uranium silicates or phosphates have higher capability to incorporate fission products and radionuclides, thus could serve as a barrier
- Other trace elements are low or below detection limit

