# Gd-apatite Precipitates in a Sodium Gadolinium Alumino-borosilicate Glass

Donggao Zhao, L.M. Wang, R.C. Ewing
The University of Michigan
Liyu Li, L.L. Davis, D.M. Strachan
Pacific Northwest National Laboratory

1999 The University of Michigan

# Objectives

- This work is part of a project which determines:
- Distributions and solubility of radionuclides and neutron absorbers in borosilicate glass waste
- Local atomic structure of radionuclides and neutron absorbers in phases;
- Partitioning of key elements, such as Gd;
- Release of radionuclides and neutron absorbers from waste forms

## Background: nuclear waste

- Sources of nuclear wastes: mining of uranium, nuclear reactors, nuclear weapons
- In 50 years of producing power and weapons from nuclear fuel, US has accumulated millions of cubic meters and tens of billions of curies of radioactive wastes
- For cleanup of the US weapons complex, the remediation and restoration activities will cost roughly \$189 to \$265 billions.

# Nuclear reactor



# Background: borosilicate glass

- Borosilicate glass is waste form for the immobilization of high-level nuclear waste
- Borosilicate glass compositions with neutron absorbers, such as Gd, being developed for the immobilization of actinides, e.g., excess weapons plutonium
- Gd crystalline precipitates studied comes from such borosilicate glass

# Background: silicate apatites

- Durable geologically
- Actinide waste form
- $A_{4-x}REE_{6+x}(SiO_4)_{6-y}(PO_4)_y(F,OH,O)_2$
- where A = Li, Na, Mg, Ca, Sr, Ba, Pb and Cd, and
- REE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd

### Sample

- Baseline glasses 15B<sub>2</sub>O<sub>3</sub>-20Na<sub>2</sub>O-5Al<sub>2</sub>O<sub>3</sub>-60SiO<sub>2</sub> synthesized from SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, H<sub>3</sub>BO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub>
- Glass compositions: 45.39-31.13 wt %
   Gd<sub>2</sub>O<sub>3</sub>, 28.80-34.04 wt % SiO<sub>2</sub>, 10.75-14.02 wt % Na<sub>2</sub>O, and 4.30-5.89 wt % Al<sub>2</sub>O<sub>3</sub>
- Crystals precipitated above the Gd solubility limit (11.3 mol %) in a gadolinium aluminoborosilicate glass

# Crystal morphology

- Size: tens of μm, some 200 μm in length
- Shape: elongated, acicular, prismatic, skeletal or dendritic
- Hexagonal: with or without euhedral voids

### Precipitated crystals tens of $\mu m$ , some 200 $\mu m$



### Precipitated crystals: dendritic or skeletal



### Precipitated crystals: hexagonal with euhedral void



### Precipitated crystals: hexagonal with no central void



# Precipitated phase: TEM



### Precipitated crystals: EDS

#### a. Precipitated crystal in B15Gd48



### Glass matrix: EDS

b. Glass marix of sample B15Gd48



# Crystal composition

- Boron analysis: Correlation between B-contents and the peak counts (WDS)
- Sodium analysis : same using different electron beam sizes and beam currents
- EMPA: procedures (Table 1), compositions (Table 3)
- Homogeneous:  $NaGd_9(Si_{5.25}B)O_{26}$  or  $NaGd_9(Si_{6-1}O_{26}B_x)O_{26}$ ) when x = 1
- In apatite formula:  $NaGd_9(Si_{0.875}B_{0.167}O_4)_6O_2$
- Relative to the glass: enriched in Gd<sub>2</sub>O<sub>3</sub> 81.25 wt %, depleted in SiO<sub>2</sub> 15.66 wt % and Na<sub>2</sub>O 1.38 wt %

# WDS spectra OV95











d. Wavelength Spectrometer (OV95) Scan for Glass





### B-contents vs. peak counts



### B-contents vs. peak counts



### **EMPA** procedures

Table 1. Electron microprobe analysis procedures for the precipitated sodium gadolinium silicate crystals in a sodium gadolinium alumino-borosilicate glass

| Procedure                  | 1a                               | 1b                               | 2a                                 | 2b                               |
|----------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------------|
| Accelerating voltage       | 20.0 kV                          | 20.0 kV                          | 15.0 kV                            | 15.0 kV                          |
| Electron beam current      | 15 nA                            | 15 nA                            | 6 nA                               | 6 nA                             |
| Electron beam size         | Point mode                       | $3 \times 3 \ \mu m$             | $6 \times 6 \mu m$                 | $15 \times 15 \ \mu m$           |
| Peak counting time         | 30 seconds                       | 30 seconds                       | 10 seconds                         | 10 seconds                       |
| Standard for Si K $\alpha$ | SiO <sub>2</sub>                 | SiO <sub>2</sub>                 | SiO <sub>2</sub>                   | SiO <sub>2</sub>                 |
| Standard for Al K $\alpha$ | Al <sub>2</sub> SiO <sub>5</sub> | Al <sub>2</sub> SiO <sub>5</sub> | Al <sub>2</sub> SiO <sub>5</sub>   | Al <sub>2</sub> SiO <sub>5</sub> |
| Standard for Na K $\alpha$ | NaAlSi2O6                        | NaAlSi2O6                        | NaAlSi <sub>2</sub> O <sub>6</sub> | NaAlSi2O6                        |
| Standard for Gd L $\alpha$ | GdPO <sub>4</sub>                | GdPO <sub>4</sub>                | GdPO <sub>4</sub>                  | GdPO <sub>4</sub>                |
| Standard for O K $\alpha$  | SiO <sub>2</sub>                 | SiO <sub>2</sub>                 | O not measured                     | O not measured                   |

### **EMPA** standards

| Formula                            | Detailed composition (weight fraction)                                                                     |
|------------------------------------|------------------------------------------------------------------------------------------------------------|
| SiO <sub>2</sub>                   | O 0.5330, Si 0.4670                                                                                        |
| Al <sub>2</sub> SiO <sub>5</sub>   | Al 0.3331, Si 0.1734, O 0.4935                                                                             |
| NaAlSi <sub>2</sub> O <sub>6</sub> | Na 0.1128, Al 0.1299, Fe 0.0019, Mn 0.0002, Mg 0.0018, Ca 0.0018, Si 0.2750, K 0.0004, O 0.4707, Ti 0.0001 |
| GdPO <sub>4</sub>                  | Gd 0.6234, P 0.1228, O 0.2538                                                                              |

### **Chemical Composition**

|                                  | Procedu        | re 1a*    |           |            |          |         |          |          |          |        |        |          | Procedu | ire 1b*                            |                    |
|----------------------------------|----------------|-----------|-----------|------------|----------|---------|----------|----------|----------|--------|--------|----------|---------|------------------------------------|--------------------|
| Point                            | 1              | 3         | 4         | 5          | 6        | 7       | 8        | 9        | 10       | 11     | 12     | Ave.     | 1       | 2                                  | Ave.               |
| $SiO_2$                          | 15.89          | 15.45     | 15.62     | 15.47      | 15.55    | 15.62   | 15.49    | 15.51    | 15.57    | 16.26  | 15.66  | 15.64    | 15.67   | 15.60                              | 15.63              |
| $Al_2O_3$                        | 0.00           | 0.00      | 0.00      | 0.00       | 0.00     | 0.00    | 0.00     | 0.02     | 0.00     | 0.17   | 0.00   | 0.02     | 0.00    | 0.00                               | 0.00               |
| Na <sub>2</sub> O                | 1.47           | 1.42      | 1.40      | 1.39       | 1.33     | 1.36    | 1.32     | 1.36     | 1.33     | 1.52   | 1.42   | 1.39     | 1.33    | 1.37                               | 1.35               |
| $Gd_2O_3$                        | 81.71          | 80.87     | 81.13     | 81.77      | 81.66    | 81.09   | 81.36    | 81.87    | 81.95    | 79.91  | 81.43  | 81.34    | 81.38   | 81.39                              | 81.38              |
| B <sub>2</sub> O <sub>3</sub> ** | 0.93           | 2.27      | 1.85      | 1.38       | 1.45     | 1.94    | 1.83     | 1.24     | 1.14     | 2.14   | 1.49   | 1.60     | 1.63    | 1.64                               | 1.63               |
|                                  | Normal to 26 O |           |           |            |          |         |          |          |          |        |        |          |         |                                    |                    |
| Si                               | 5.420          | 5.125     | 5.224     | 5.256      | 5.268    | 5.213   | 5.200    | 5.286    | 5.318    | 5.313  | 5.284  | 5.264    | 5.269   | 5.252                              | 5.260              |
| Al                               | 0.000          | 0.000     | 0.000     | 0.000      | 0.000    | 0.000   | 0.000    | 0.008    | 0.000    | 0.065  | 0.000  | 0.007    | 0.000   | 0.000                              | 0.000              |
| Na                               | 0.971          | 0.911     | 0.909     | 0.915      | 0.876    | 0.881   | 0.860    | 0.900    | 0.883    | 0.965  | 0.926  | 0.909    | 0.867   | 0.893                              | 0.880              |
| Gd                               | 9.237          | 8.895     | 8.997     | 9.212      | 9.169    | 8.973   | 9.055    | 9.249    | 9.276    | 8.657  | 9.109  | 9.073    | 9.074   | 9.080                              | 9.077              |
| В                                | 0.546          | 1.301     | 1.068     | 0.808      | 0.848    | 1.115   | 1.059    | 0.729    | 0.672    | 1.206  | 0.870  | 0.932    | 0.945   | 0.954                              | 0.950              |
| Σcation                          | 16.174         | 16.232    | 16.198    | 16.191 1   | 6.162 1  | 6.183 1 | 6.173 1  | 6.171    | 16.150 1 | 6.206  | 16.189 | 16.185   | 16.155  | 16.178                             | 16.166             |
| ΣΟ                               | 26.000         | 26.000 2  | 26.000 2  | 26.000 2   | 26.000 2 | 6.000 2 | 26.000 2 | 6.000    | 26.000 2 | 6.000  | 26.000 | 26.000   | 26.000  | 26.000                             | 26.000             |
|                                  | * See Ta       | able 2 fc | or the de | tails of e | each pro | cedure. | ** by c  | lifferen | ce.      |        |        |          |         |                                    |                    |
|                                  | Procedu        | ure 2a*   |           |            |          |         |          |          |          |        |        |          |         | Theo                               | oretical           |
| Point                            | 1              | 2         | 3         | 4          | 5        | 6       | 5 7      | 7        | 8        | 9 A    | ve. Gi | and ave. | NaG     | id <sub>9</sub> (Si <sub>5.2</sub> | 5B)O <sub>26</sub> |
| SiO <sub>2</sub>                 | 16.06          | 16.46     | 15.79     | 15.12      | 15.71    | 15.39   | 9 15.65  | 5 15.6   | 55 15.2  | 7 15.  | 68     | 15.66    | i       |                                    | 15.67              |
| $Al_2O_3$                        | 0.03           | 0.10      | 0.01      | 0.01       | 0.16     | 0.00    | 0.05     | 5 0.0    | 0.0      | 0.     | 04     | 0.03     |         |                                    | 0.00               |
| Na <sub>2</sub> O                | 1.37           | 1.46      | 1.38      | 1.25       | 1.38     | 1.45    | 5 1.45   | 5 1.3    | 30 1.3   | 51.    | 38     | 1.38     |         |                                    | 1.54               |
| $Gd_2O_3$                        | 81.04          | 79.16     | 81.51     | 80.10      | 81.05    | 81.47   | 82.50    | ) 80.5   | 50 82.6  | 9 81.  | 11     | 81.25    |         |                                    | 81.06              |
| $B_2O_3**$                       | 1.50           | 2.82      | 1.32      | 3.53       | 1.70     | 1.69    | 0.35     | 5 2.5    | 52 0.6   | 8 1.   | 79     | 1.68     |         |                                    | 1.73               |
|                                  | Normal to 26 O |           |           |            |          |         |          |          |          |        |        |          |         |                                    |                    |
| Si                               | 5.376          | 5.273     | 5.339     | 4.887      | 5.255    | 5.192   | 2 5.444  | 4 5.13   | 39 5.31  | 1 5.2  | 44     | 5.255    |         |                                    | 5.250              |
| Al                               | 0.010          | 0.036     | 0.002     | 0.003      | 0.063    | 0.000   | 0.022    | 2 0.01   | 0.00     | 1 0.0  | 17     | 0.010    | 1       |                                    | 0.000              |
| Na                               | 0.892          | 0.905     | 0.903     | 0.782      | 0.896    | 0.951   | 0.978    | 8 0.82   | 0.91     | 9 0.8  | 94     | 0.900    | )       |                                    | 1.000              |
| Gd                               | 8.992          | 8.404     | 9.139     | 8.585      | 8.985    | 9.110   | 9.516    | 5 8.76   | 54 9.53  | 5 8.9  | 94     | 9.041    |         |                                    | 9.000              |
| В                                | 0.866          | 1.561     | 0.772     | 1.968      | 0.980    | 0.983   | 0.210    | ) 1.42   | 0.41     | 0 1.0  | 33     | 0.975    |         |                                    | 1.000              |
| ∑cation                          | 16.136         | 16.179    | 16.155    | 16.225     | 16.179   | 16.236  | 5 16.170 | ) 16.17  | 1 16.17  | 5 16.1 | 81     | 16.182   |         |                                    | 16.250             |
| ΣΟ                               | 26.000         | 26.000    | 26.000    | 26.000     | 26.000   | 26.000  | ) 26.000 | ) 26.00  | 0 26.00  | 0 26.0 | 00     | 26.000   |         |                                    | 26.000             |

# Crystal structure

- XRD: similar to that of LiGd<sub>9</sub>Si<sub>6</sub>O<sub>26</sub> (*P6<sub>3</sub>/m*, a = 0.9407 nm and c = 0.6842 nm)
- Hexagonal with the apatite structure

# Precipitated crystals: XRD



### XRD data

| 1       |           | 2       |           | <u>1</u> |           | 2       |
|---------|-----------|---------|-----------|----------|-----------|---------|
| d space | Intensity | d space | Intensity | d space  | Intensity | d space |
| 4.063   | 30        | 4.070   | 35        | 1.802    | 21        | 1.804   |
| 3.871   | 27        | 3.876   | 30        | 1.776    | 22        | 1.778   |
| 3.427   | 25        | 3.420   | 20        | 1.750    | 25        | 1.750   |
| 3.160   | 39        | 3.153   | 35        | 1.719    | 14        | 1.711   |
| 3.072   | 33        | 3.078   | 40        | 1.715    | 15        |         |
| 2.805   | 100       | 2.809   | 100       |          |           | 1.630   |
| 2.768   | 57        | 2.767   | 45        | 1.619    | 8         |         |
| 2.707   | 25        | 2.715   | 30        | 1.576    | 8         | 1.577   |
| 2.620   | 8         | 2.620   | 2         | 1.538    | 8         | 1.540   |
| 2.550   | 8         |         |           | 1.528    | 11        | 1.529   |
| 2.466   | 8         |         |           | 1.502    | 11        | 1.495   |
| 2.406   | 7         |         |           | 1.471    | 12        | 1.471   |
| 2.290   | 7         | 2.289   | 2         | 1.448    | 12        | 1.447   |
| 2.256   | 10        | 2.260   | 6         | 1.430    | 11        | 1.431   |
| 2.228   | 8         | 2.224   | 4         | 1.427    | 10        | 1.426   |
| 2.216   | 8         |         |           | 1.314    | 8         |         |
| 2.139   | 8         | 2.146   | 1         | 1.310    | 8         |         |
| 2.129   | 10        | 2.127   | 4         | 1.293    | 7         | 1.292   |
| 2.061   | 15        | 2.052   | 10        | 1.280    | 8         | 1.281   |
| 2.034   | 11        | 2.037   | 6         |          |           | 1.262   |
| 1.994   | 10        | 1.990   | 1         | 1.256    | 10        |         |
| 1.936   | 21        | 1.938   | 20        |          |           | 1.250   |
| 1.886   | 21        | 1.886   | 12        | 1.236    | 11        | 1.233   |
| 1.869   | 12        | 1.869   | 5         | 1.222    | 8         | 1.222   |
| 1.836   | 31        | 1.833   | 25        | 1.220    | 12        | 1.219   |

Intensity

1. Sodium gadolinium silicate (B15Gd48); 2. Lithium gadolinium silicate (JCPDS-ICDD # 32-0557).

# Conclusions

- Formula: NaGd<sub>9</sub>(Si<sub>5.25</sub>B)O<sub>26</sub>
- Structure: hexagonal apatite structure
- Gd<sub>2</sub>O<sub>3</sub>-rich (81.25 wt %) phase with apatite structure can be formed from a borosilicate glass
- The precipitated crystals can serve as waste host for weapons Pu and other actinides